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A Timeband Framework for Modelling Real-Time Systems

Alan Burns · Ian J. Hayes

Abstract Complex real-time systems, must integrate physical processes with dig-
ital control, human operation and organizational structures. New scientific founda-
tions are required for specifying, designing and implementing these systems. One
key challenge is to cope with the wide range of time scales and dynamics inherent
in such systems. To exploit the unique properties of time, with the aim of producing
more dependable computer-based systems it is desirable to explicitly identify distinct
time bands in which the system is situated. Such a framework enables the temporal
properties and associated dynamic behaviour of existing systems to be described and
the requirements for new or modified systems to be specified. A system model based
on a finite set of distinct time bands is motivated and developed in the paper.

1 Introduction

The construction of large socio-technical real-time systems, such as those envisaged
in cyber-physical applications, imposes a number of significant challenges, both tech-
nical and organisational. Their complexity makes all stages of their development (re-
quirements analysis, specification, design, implementation, deployment and mainte-
nance/evolution) subject to failure and costly re-working. Even the production of an
unambiguous behavioural description of an existing system is far from straightfor-
ward.

One characteristic of these computer-based systems is that they are required to
function at many different time scales (from microseconds or less to days or more).
Time is clearly a crucial notion in the specification (or behavioural description) of
computer-based systems, but it is usually represented, in modelling schemes for ex-
ample, as a single flat physical phenomenon. Such an abstraction fails to support the
structural properties of the system, forces different temporal notions on to the same
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flat description, and fails to support the separation of concerns that the different time
scales of the system facilitate. Even with a single time scale, system architects seem
to have great difficulty in specifying temporal properties in anything other than very
concrete implementation-level terms. But just as the functional properties of a system
can be modelled at different levels of abstraction or detail, so too should its temporal
properties be representable in different, but provably consistent, time scales.

To make better use of ‘time’, with the aim of producing more dependable computer-
based systems, we propose a framework that explicitly identifies a number of distinct
time bands in which the system under study is situated. The framework enables the
temporal properties of existing systems to be described and the requirements for new
or modified systems to be specified.

In the following section we first motivate the main notions and properties of the
timeband framework. Then, in Section 3, an abstract model of timebands is presented,
and in Section 4 is extended to describe state. Section 5 gives a brief summary of the
model. The model is, in itself, not intended to be a complete semantic description.
That is achieved by ‘embedding’ the model in a parent notation/logic. The focus of
this paper is, however, the framework itself. Section 6 introduces some notation to
allow specification of properties in the timeband framework. A short example of the
use of the framework in presented in Section 7 and conclusions are covered in Section
8.

2 Motivation

A large real-time system exhibits dynamic behaviour on many different levels. The
computational components have circuits that have nanosecond speeds, faster elec-
tronic subcomponents and slower functional units. Communication on a fast bus is
at the microsecond level but may be tens of milliseconds on slow or wide-area me-
dia. Human time scales move from the 1ms neuron firing time to simple cognitive
actions that range from 100ms to 10 seconds or more. Higher rational actions take
minutes and even hours. Indeed it takes on the order of 1000 hours to become an ex-
pert at a skilled task, such as flying a plane [22] and the development of highly skilful
behaviour may take many years. At the organisational and social level, time scales
range from a few minutes, through days, months and even years. Perhaps for some
environmentally sensitive systems, consequences of failure may endure for centuries.
To move from nanoseconds to centuries requires a framework with considerable de-
scriptive and analytical power.

The concept of timebands comes from an detailed study of existing computer-
based systems1 and their requirements (eg.[13]), ethnographical studies (eg. [5,2]),
the work of Newell [18] in his attempts to describe human cognition, work on system
structure such as that of Simon [23], reports on system failures (eg. Columbus [4]),
studies from areas such as the psychology and sociology of time [9,10,21,17,3],
formalisms such as the teleo-reactive programming model [19,20] and Statecharts
that require instantaneous state changes, and the few examples of modelling work

1 As part of the Dependability Interdisciplinary Research Collaboration – DIRC, see web.
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that do attempt to consider more than one time scale within a system (eg. Corsetti et
al [8,7]).

As the concept of ‘now’ (present moment) seems to be fundamental to our rea-
soning about time, it follows that notions such as ‘instantaneous’, ‘simultaneous’ and
‘immediate’ are natural ones to use in specifying temporal properties. As Bergadaà
[3] states in his work on temporal framework:

The present time could be made of moments that enable the allocation of
time to different activities. They could also be made of duration in which the
activity will take the time necessary for its completion.

From such observations and the literature noted above we distil the following
properties that we identify as being of relevance to the modelling of complex real-
time systems.

– The dynamics of a system (how quickly things change) are central to understand-
ing its behaviour.

– Systems clearly operate at many difference granularities (of time), ie. there are
different abstract views of the dynamics of the system.

– It is useful to consider certain actions (events) as atomic and instantaneous (whilst
allowing them to have internal state and behaviour at a more detailed level of
description).

– It is useful to consider two or more events as occurring simultaneously (instanta-
neously), or the response to some event being immediate (whilst allowing them
to be separated in time at a more detailed level of description).

– The order (but not necessarily the time) at which events occur is important; prece-
dence can give rise to causality.

– The durations of certain actions are important, but the measuring of time must not
be overly precise and must allow for tolerance (non-determinacy) in the temporal
domain.

– Abstract clocks are useful for relating and coordinating activities, but real clocks
are never perfectly reliable or accurate.

– At each level of temporal behaviour it is useful to have access to both continuous
and discrete notions of time – controlling actions are typically described using
discrete time, the controlled object due to its continuously changing nature often
requires dense time for its behavioural description.

– Hierarchical control (cascade control) and hierarchical scheduling (planning) are
often observed through the time levels of a system.

– At each level of temporal behaviour similar phenomena is observed (e.g., cyclic/
repetitive actions, deadlines-driven actions, synchronous and asynchronous event
handling, agreement, coordination, etc.)

Engineers, even of real-time systems, seem to have great difficulty over the use
of precise values of time. Why choose an iteration rate of 20ms? – why not 19ms
or 21ms? What does a deadline of 15ms actually mean? – would a delay of 10µs be
significant? This difficulty with temporal quantities is not mirrored in the physical
domain where tolerances on lengths, weight etc. are commonly expressed.
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In the timebands framework, apparently more natural (and essentially atemporal)
notions are available such as ‘immediate’, ‘instantaneous’, ‘simultaneous’ ’definitely’
and ‘possible’. And durations are first expressed in general terms - for example “this
is a minute-level activity” (ie. it will last a few minutes, rather than hours or seconds).
Orders of magnitude between rates of change give an initial decomposition of the sys-
tem. Indeed the framework uses time itself to separate concerns in any architectural
description or system specification.

The central notion in the framework is that of a time band that is defined by a
granularity (eg. 1 minute) and a precision (eg. 5 seconds). Granularity defines the
unit of time of the band; precision bounds the actual duration of an event that is
deemed to be instantaneous in this band. To complete this short motivation section
the important topics of sampling and rates of change are addressed.

Sampling. Our focus is on embedded real-time systems and hence we cannot avoid
issues like sampling of inputs, and discretization of continuous quantities. For exam-
ple, if it is an error for two proximity sensors to give simultaneous positive inputs,
then by placing this requirement for error detection in the minute band (with preci-
sion of 5 seconds) the following constraints are derived – assume the two proximity
conditions are represented by boolean variables top and bottom, representing that a
controlled gate is at the top or bottom, respectively, of its travel.

– If in any interval of duration five seconds, or more, top and bottom are perma-
nently true then the error condition must be identified.

– If in any interval of duration five seconds, or less, top and bottom are true for part
of the interval then the error condition can be identified. Note that the intervals
over which top and bottom, respectively, hold don’t have to be the same, or even
overlap.

This dual use of must and can cannot be eliminated. One may move the requirement
between time bands to decrease the value of the precision parameter, but even in
the lowest band in the system there is an inevitable non-determinacy because true
perfectly simultaneous polling of the two sensors is not possible.

Rate of change. Even though an environmental entity is subject to continuous change
it does not mean that all such behaviour must be captured at the lowest possible
band – and that this band must have a dense notion of time whilst the others can be
discrete. Rather within any band many (perhaps most) entities will be discrete, but
some may be continuous. So if the purpose of an automatic ‘plant watering’ system
in a greenhouse is to aid the growth of plants in some controlled environment, the
rate of growth of the crop per week or day may be significant (but not per second or
millisecond).

Consider, for example, the maximum rate of flow of water from a pump. At an
upper time band this may be stated as r litres per time unit. But at a lower time band,
for a piston-style pump there are two phases: one filling the cylinder, in which there is
almost no flow of water out of the pump; and the other emptying the cylinder, during
which the rate of flow of water out of the pump is about twice r.
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The rate change of a state variable may be uniform between some pairs of time
bands, but not between others. For example, with the piston pump the rate of flow is
not uniform at the time band that distinguishes the filling and emptying phases of the
cylinder, but between a pair of higher bands the rate of flow may be uniform. At a still
higher pair of bands, we may be switching the pump on and off to control the rate of
flow over a broader time base. Again the rate of flow won’t be uniform, but between
still higher bands, which don’t distinguish the on and off phases, it may emerge to be
uniform again.

The motivation for proposing this timeband framework is to simplify the spec-
ification of complex systems, improve the dependability of deployed systems and
reduce the cost of designing (and redesigning) such systems. It allows dynamic prop-
erties to be partitioned but not isolated from each other.

3 Definition of the Timeband Model

From the above considerations, a timeband model has been developed2 that is de-
scribed in this section (with some illustrative small examples). The aim of a time-
band model is to be an essential part of any complete system description. It enables
the temporal properties of existing systems to be described and the requirements for
new or modified systems to be specified. The informal description of the framework
is supported by a formal model expressed in the Z notation [24].

The framework is developed in a number of stages that build up the full model.
Some examples of how this model can be extended into a language for actual use
in specifying systems is then given. The list of topics discussed in this section are:
time bands, granularity and precision, events and classes of events, precedence, si-
multaneous and immediate, activities, mappings between bands, durations, clocks,
(nondeterministic) state, change-of-state events, mapping states, and rates of change.

3.1 Time bands

A system is assumed to consist not of a single time dimension but a finite set of
bands. Each band is represented by a granularity (expressed as a unit of time that has
meaning within the band, e.g. the minute band) and a precision that is a measure of
the accuracy of the time frame defined by the band – see definitions below. System
activities are placed in some band B if they engage in significant events at the time
scale represented by B. They have dynamics that give rise to changes that are observ-
able or meaningful in band B’s granularity. So, for example, at the 10 millisecond
band, neural circuits are firing, significant computational functions are completing,
and an amount of data communication will occur. At the 5 minute band, work shifts
are changing, meetings are starting, etc. For any system there will be a highest and
lowest band that gives a temporal system boundary – although there will always be

2 Initial developments of the framework are described in technical reports [6,5].
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the potential for larger and smaller bands. Note that at higher bands the physical sys-
tem boundary may well be extended to include wider (and slower) entities such as
legislative constraints or supply chain changes.

For our formal model, we take the set of time bands (B) as a primitive type. Both
“v” and “@” are relations between bands, with “v” forming a partial ordering3 on
time bands. The type of a relation between bands is given as B ↔ B. A relation is
equivalent to a set of pairs, ie. (B ↔ B) = P(B×B), where PX stands for power set
of X, (i.e., the set of all subsets of X).

v : partial order[B]
@ : B ↔ B
∀ b1, b2 : B • (b1 @ b2 ⇔ b1 v b2 ∧ b1 6= b2)

For example, we may have that

MinuteBand @ DayBand @ MonthBand

From a focus on some band B adjacent bands are identified (C @ B @ A). Slower
(higher or coarser) bands (e.g. A) can be taken to be unchanging (essentially con-
stant) for issues of concern to B. At the other extreme, behaviours in the faster (lower
or finer) bands (e.g. C) are assumed to be instantaneous. The actual differences in
granularity between A, B and C are not precisely defined (and indeed may depend
on the bands themselves) but will typically be in the range 1/10th to 1/100th. When
bands map on to hierarchies (structural or control) then activities in band A can be
seen to constrain the dynamics of band B, whereas those in C enable B to proceed in
a timely fashion. The ability to relate behaviour at different time bands is one of the
main properties of the framework.

As an example, consider a university lecture course. Here there are immedi-
ately four bands to identify. The year band in which new courses and curriculum
are planned, the weekly band in which lectures are scheduled, the minute band that
allows each lecture to be structured, and the second band that can capture various in-
teractions with the available technical support (eg. laptop response). Whilst giving a
lecture, one can assume that the curriculum is stable (unchanging) and that the laptop
reacts instantaneously to slide change requests.

Systems that don’t respect some form of time band structure can become ex-
tremely complex and difficult to comprehend, e.g., changing the course syllabus
while lecturing is likely to lead to great confusion.

It is important to emphasise that the full behaviour of a system is not obtained by
refining down to the lowest band or by projecting emergent behaviours up to the high-
est band. Rather it is the amalgamation of all band descriptions – all have behaviours
that may be needed in any assertion about the system as a whole.

3 See Appendix A.
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3.2 Granularity and precision

For each band its granularity, representing the unit of time in that band, and precision,
representing the measure of accuracy of events within that band. They must both be
expressed relative to a lower band. For example, the granularity of the MonthBand
with respect to the DayBand may have a granularity defined as follows:

Granularity(MonthBand, DayBand) = {28, 29, 30, 31}
and the granularity of the DayBand with respect to the MinuteBand is defined as
follows:

Granularity(DayBand, MinuteBand) = {1440},
because there are 24 ∗ 60 = 1440 minutes in a day. Hence the granularity of the
MonthBand with respect to the DayBand is

Granularity(MonthBand, MinuteBand) =
{28 ∗ 1440, 29 ∗ 1440, 30 ∗ 1440, 31 ∗ 1440}.

Note that this set is not contiguous. For ease of presentation we assume that standard
units such as minutes, milliseconds etc are well defined. However not all time scales
will give rise to time bands.

For a band b1, its granularity will be defined with respect to all lower bands; hence
the domain of the granularity function is all pairs of bands (b1, b2), such that b2 is
lower than b1. If b1 is related to a lower band b2, and b2 to b3, then the granularity
of b1 with respect to b3 is the composition of the granularities of b1 with respect to
b2 and b2 with respect to b3. The set N is the natural numbers and N1 is the non-zero
natural numbers. Granularity is a partial function ( 7→) from pairs of time bands to a
non-empty set (P1) of non-zero natural numbers.

Granularity : (B × B) 7→ P1 N1

dom(Granularity) = {b1, b2 : B | b2 @ b1}
∀ b1, b2, b3 : B; g : N1 • b3 @ b2 @ b1 ⇒

g ∈ Granularity(b1, b3) ⇔
(∃ g1, g2 : N1 • g = g1 ∗ g2 ∧

g1 ∈ Granularity(b1, b2) ∧
g2 ∈ Granularity(b2, b3))

Within a band, behaviour is defined using events (which are instantaneous), activ-
ities (that have duration) and state (both discrete and continuous). These are defined
in later sections, but important here is the property that events are defined to be in-
stantaneous. And two or more events may be defined to be simultaneous. A band’s
precision is the constraint on the duration of ‘instantaneous’ and ‘simultaneous’ when
measured in a finer band. For example, if the precision of the hour band is defined to
be one minute then simultaneous events must occur within a minute of each other.

As precision can only be expressed using the granularity of a finer band it is
defined on a pair of (upper and lower) time bands.
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Precision : (B × B) 7→ N1

dom(Precision) = {b1, b2 : B | b2 @ b1}
∀ b1, b2, b3 : B; p : N1 • b3 @ b2 @ b1 ⇒

Precision(b1, b3) ≤ Precision(b1, b2) ∗ min(Granularity(b2, b3))

The definition of precision enables the framework to be used effectively for re-
quirements specification. A temporal requirement such as a deadline is band-specific;
similarly the definition of a timing failure. For example, being one second late may
be a crucial failure in a computing device, whereas on a human scale being one sec-
ond late for a meeting is meaningless. The duration of an activity is also ‘imprecise’
(within the band). Stating that a job will take three months is assumed to mean plus
or minus a couple of days. Of course the precision of a band can only be explored in
a lower band.

Again with the lecturing example, assume the precision of the minute band is one
second. The instantaneous ‘slide change’ event when mapped to a laptop activity in
a lower band must have a duration of not more than one second.

A key aspect of the timeband framework is that certain entities are considered to
be instantaneous, and that they are then mapped to actions that have duration in a
more detailed description of the system. One means of achieving this property would
be to give all such entities a distinct precision. However in constructing behaviours
from collections of entities, composition is much more straightforward if the same
notion of precision applies. Moreover, the property of being ‘instantaneous’ relates
to the level of the temporal abstraction not to the event itself. Hence the timeband
framework starts by defining the bands and then places entities into the bands. If
the entity is instantaneous it is represented by an event; if it has duration then it
is represented by an activity with a duration that is adequately expressed using the
granularity of the chosen band. Hence ‘adequately’ means with sufficient (but not
excessive) precision over the value of the defined duration.

As well as the system itself manifesting behaviour at many different time bands,
the environment will exhibit dynamic behaviour at different granularities. The bands
are therefore linked to the environment at the level determined by these dynamics. In
many system abstractions it is useful to assume the environment is in some form of
steady state. But this assumption is clearly false as environment evolves, perhaps as
a result of the deployment of the embedded system under development. By mapping
the rate of this evolutionary change to an appropriate (relatively slow) time band
one can gain the advantage of the steady-state abstraction whilst not ignoring slower
dynamics.

3.3 Classes of events/activities

In describing the behaviour of a system we often want to refer to repetitive activi-
ties/events. We say they are of a particular class, e.g., the event class corresponding
a door opening, where the door will opened many times during the life of the sys-
tem. Each class of events/activities has a unique time band and name that we use to
characterise the class.
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C
band : B
name : String

The above is a Z schema: it defines a record type C with two fields, band and name.

3.4 Events

By definition, all actions within a band have similar dynamics. Within a band, events
are instantaneous, while activities may have a non-zero duration. Events are a natural
way of expressing change within a system. By first defining behaviours to be instan-
taneous, an abstract definition of their cause and effect can be given. Also seemingly
impossible specifications can be given clear semantics. For example, the change-of-
state event to turn of a water pump (as used in the case study in Section 7) is an event
that ideally is instantaneous at some level of abstraction but clearly must take time at
a more detailed level of description (in a finer band).

In a particular behaviour there may be any (countable) number of instances of
events of a particular class, including zero. The set of instances of an event class
within a behaviour are totally ordered by precedence (see below), and hence we can
also assign a unique index to an event instance. An event instance, “event” for short,
is characterised by its class (time band and name), and a natural number index, n,
indicating that it is occurrence n of events of that class within a behaviour.

E
class : C
index : N

We use the notation c # i to stand for the event of class c that has index number i. We
define a shorthand for the time band of an event.

band : E → B
∀ e : E • band(e) = e.class.band

For a band, b, Events(b) defines the set of all events in that band.

Events : B → P E
∀ b : B • Events(b) = {e : E | band(e) = b}

3.5 Precedence

Although time is of central important, there are contexts in which pure order is a
more natural way of describing behaviour [16,1,11] (X was before Y, e.g., “before
the end of the shift”, “after the plane took off”, “before the flood”, “after the thread
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has completed”, “before the gate has fired”). The framework must therefore represent
both precedence relations and temporal frames of reference.

There is of course a strong link between temporal order (i.e., time-stamped events
and activities) and precedence relations. However, in this framework, we do not im-
pose an equivalence between time and precedence. Due to issues of precision, time
cannot be used to infer precedence unless the time interval between two events is
sufficiently large in the band of interest.

Where bands are, at least partially, ordered by granularity, then order and hence
potential causality is preserved as one moves from the finer to the coarser bands.
However, order and hence causality are not necessarily maintained as one moves
down through the bands. Where order is important then proof must be obtained by
examining the inter-band relationships.

A precedence relation (¹) defines a partial ordering4 on the events. Only events
in the same time band are related by the precedence relation. We use the operator ≺
for strict precedence. A behaviour of a system will consist of some nonempty set of
events ordered by precedence. The notation ( ¹ ) stands for the precedence relation
taken as a whole.

BehaviourEvents
ev : P1 E
¹ : partial order[E ]
≺ : E ↔ E

( ¹ ) ∈ ev ↔ ev
∀ e, f : E •

(e ¹ f ⇒ band(e) = band(f )) ∧
(e ≺ f ⇔ e ¹ f ∧ e 6= f )

∀ c : C; i, j : N • i < j ∧ c # j ∈ ev ⇒ c # i ∈ ev ∧ c # i ≺ c # j

The above Z schema declares a number of fields and constrains them to satisfy the
predicate below the line. Note that we don’t insist that all pairs of events are related
one way or the other, but if both e ¹ f and f ¹ e, because it is a partial order we
insist that e = f . If there is an instance of a event with index j, then there must be
instances for all indices less than j and these instances must precede the jth instance.

3.6 Simultaneous and immediate

In the specification of a system, an event may cause a response immediately (instanta-
neously) – meaning that at this band the response is within the precision of the band.
This use of untimed notions helps eliminate the problem of over specifying require-
ments that is known to lead to implementation difficulties [13]. For example consider
the naturally specified requirement ‘when the fridge door opens the light must come
on immediately’; this apparently give no scope for an implementation to incorporate
the necessary delays of switches, circuitry and the light’s own latency. Making the

4 See Appendix A.
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term ‘immediate’ band specific, enables a finer-granularity band to include the nec-
essary delays, latencies and processing time that are needed to support the immediate
behaviour at the higher band. This separation of concerns removes the need to add
a precise deadline to the ‘light-on’ event. An explicit deadline (of say 8.5ms) is too
concrete – rather the deadline is ‘the definition of immediate in this band’. Obvi-
ously being immediate in the hour band is not the same as being immediate in the
microsecond band.

Two events may have a precedence relations (eg. slide X before slide Y) but occur
at the same time (same hour).

It follows from these observations that, in this framework, there is a difference
between two events being simultaneous and being ‘at the same time’. The former
is a much stronger statement. Here two simultaneous events (in band B say) must,
when viewed from a finer band, be within the precision of band B. Whereas ‘at the
same time’ only required the two events to occur within the granularity of band B.
As the precision is typically 1/10th to 1/100th of the granularity, clearly events being
simultaneous is a much tighter constraint.

Precedence gives rise to potential causality. If P is before Q then information
could flow between them, indeed P may be the cause of Q. In the use of the frame-
work for specification we will need to use the stronger notion of precedence to imply
causality. For example, “when the fridge door opens the light must come on”. Within
the band of human experience this can be taken to be immediate (simultaneous but
ordered). At a finer band a number of electro-mechanical activities will be needed to
be described that will sense when the door is open and enable power to flow to the
light. Importantly, no causality relationship can be inferred (without explicit prece-
dence) for two events occurring at the same time within their particular band. In effect
they are logically concurrent and may occur in sequence or overlapped in time when
viewed from a lower band.

We introduce a separate relation (') to denote that two events are simultaneous.
While ' is reflexive and symmetric, it isn’t transitive.5 One event, f , immediately
follows another, e, written e £ f , if f both follows e and is simultaneous with e. Be-
haviours are extended to include simultaneous events. This schema includes schema
BehaviourEvents, and hence includes all the fields of that schema as well as its con-
straints.

BehaviourSimultaneous
BehaviourEvents
' : symmetric rel[E ]
£ : E ↔ E

( ' ) ∈ ev ↔ ev
(∀ e, f , g, h : E •

(e ' f ⇒ band(e) = band(f )) ∧
(e ¹ f ¹ h ∧ e ¹ g ¹ h ∧ e ' h ⇒ f ' g) ∧
(e £ f ⇔ e ¹ f ∧ e ' f ))

5 See Appendix A for the definition of symmetric rel.



12 A. Burns and I.J. Hayes

3.7 Activities

An activity has a class (time band and name) and an instance number.

A
class : C
instance : N

We also use the notation c # i to refer to the activity with class c and instance i. We
define a shorthand for the time band of an activity.

band : A → B
∀ a : A • band(a) = a.class.band

For a band, b, Activities(b) defines the set of all activities in that band.

Activities : B → PA
∀ b : B • Activities(b) = {a : A | band(a) = b}

An activity has associated with it a nonempty set of events (ie. P1 E), all of which
are in the same time band. Every activity, a, has associated with it a start event, ↑ a,
and possibly an end event, ↓ a. An activity may not have an end event if it never
terminates, or if we are only considering a partial trace of behaviour. For an activity
of class c, the start events of such activities are of class ↑ c and the end events are of
class ↓ c; note that we have overloaded the up and down arrow symbols to function on
both classes and activities. The start event of an activity should precede all events in
the activity, which should themselves precede the activity’s end event. The instance
number of an activity is the same as the index number of its start event. Note that
if we allow two activities of the same class to overlap, the instance number of an
activity and the index number of its end event need not correspond.
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BehaviourActivities
BehaviourSimultaneous
act : PA
events of : A 7→ P1 E
↑ : A 7→ E
↓ : A 7→ E
events of ∈ act → P1 ev
dom(↑) = act
dom(↓) ⊆ act
∀ a : act •

events of (a) ⊆ Events(band(a)) ∧
↑ a ∈ events of (a) ∧
(a ∈ dom(↓) ⇒ ↓ a ∈ events of (a)) ∧
(↑ a).class = ↑(a.class) ∧
(a ∈ dom(↓) ⇒ (↓ a).class = ↓(a.class)) ∧
(↑ a).index = a.instance ∧
(∀ e : events of (a) • ↑ a ¹ e ∧ (a ∈ dom(↓) ⇒ e ¹ ↓ a)) ∧
(∀ i : N • i < a.instance ⇒ a.class # i ∈ act)

For the lecturing example, viewed at the year time band there may be an activity
that corresponds to a course. The events of this activity include a set of lectures, all
of which are after the start of the course and before its end. The lecture events may
be related by precedence. At this level the precedence may just correspond to the
dependence of material in one lecture on that in another, and hence the ordering of
the lectures need not be total.

Many activities will have a repetitive cyclic behaviour with either a fixed peri-
odicity or slowly varying pace. Other activities will be event-triggered. Most will
have temporal constraints (deadlines). Activities are performed by agents (organi-
sational, human or technical). In some bands all agents will be artificial (physical,
computational or electrical), at others all human, and at others both will be evident.
In addition to agents, there will often be the need for resources to enable the agent to
make progress.

In this framework definition we will not include agents and resources; rather we
concentrate on behaviour (events, activities and state). The scheduling of agents and
resources so that activities meet their timing requirements is a natural extension to
this description and would make use of standard scheduling and planning techniques.

3.8 Mappings between bands

In the components of the framework so far considered, all behaviours have been con-
fined to a single band. In doing so some notions such as ‘instantaneous’, ‘simultane-
ous’, and ‘immediate’ have been defined but their semantic properties have not yet
been fully defined. To do this, multiple-band behaviours need to be accommodated.
This is achieved by mapping events in one band to activities in finer bands.
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Band B

Band C

Band A

Event E in Band A

Activity X in Band B

Activity Z in Band C

Fig. 1 Time Band Example

Events that are instantaneous in band A (say) may map to activities that have
duration at some lower band with a finer granularity – we will denote this lower band
as B. A key property of a band is the precision it defines for its time scale. This
requires the activity associated with event E (in band A) to have a maximum duration
of ρ (the precision of band A - as measured in band B). An illustration of a three band
system with the mapping of events to activities is shown in Figure 1. As noted earlier,
the start and end of an activity are themselves represented as events.

The link between any two bands is expressed in terms of each band’s granularity
and precision. Usually the finer of the two bands can be used to express these two
measures for the broader band. Where physical time units are used for both bands
these relations are straightforward. For example a band that is defined to have a gran-
ularity of an hour with a precision of two minutes is easily linked to a band with a
granularity of ten seconds and precision of half a second. The granularity relation is
a link from one time unit (1 hour) in the higher band to 360 units in the lower band.
The precision of one minute means that a time reference at the higher band (e.g., 3
o’clock) will map down to the lower band to imply a time reference (interval) be-
tween 2.59 and 3.01. In general, two bands are said to be ordered if the precision of
one band is larger then the granularity of the other.

If an event, e, maps to an activity, a, then that activity has a signature event,
sign(a), which corresponds to e at the lower level. Behaviours are extended with
activities. The mapping preserves the precedence relation between two high-level
events e and f by requiring that the signature events of the activity e is mapped to
precedes the signature event of the activity f it is mapped to.
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BehaviourMapping
BehaviourActivities

Ã : E ↔ A
sign : A 7→ E
( Ã ) ∈ ev ↔ act
dom(sign) ⊆ act
∀ e : ev; a : act • e Ã a ⇒ (band(a) @ band(e) ∧ a ∈ dom(sign))
∀ e : ev; a1, a2 : act • band(a1) = band(a2) ∧ e Ã a1 ∧ e Ã a2 ⇒ a1 = a2
∀ a : act • a ∈ dom(sign) ⇒ sign(a) ∈ events of (a)
∀ e1, e2 : ev; a1, a2 : act •

e1 Ã a1 ∧ e2 Ã a2 ∧ band(a1) = band(a2) ⇒
(e1 ¹ e2 ⇒ sign(a1) ¹ sign(a2))

3.9 Durations

The function duration gives the time between any two events. To allow for lack of
knowledge of the exact time between events and the granularity of the the time base,
the result of duration is a time interval, i.e., a contiguous nonempty set of times, each
of which is represented by a natural number.

Interval == {I : P1 N | (∀ t1, t2 : I; t : N • t1 < t < t2 ⇒ t ∈ I)}
The duration of a terminating activity is determined from its start and end events.

BehaviourDurations
BehaviourMapping
duration : (E × E) 7→ Interval
act duration : A 7→ Interval

dom(duration) = {e, f : ev | e ¹ f}
∀ e, f , g, h : ev • e ¹ f ¹ g ¹ h ⇒

(∀ I1, I2 : Interval • duration(e, h) = I1 ∧ duration(f , g) = I2 ⇒
I2 ⊆ I1)

dom(act duration) = dom(↓)
∀ a : dom(act duration) • act duration(a) = duration(↑ a, ↓ a)

Any event in the upper band is mapped to an activity in the lower band whose
duration is within the precision of the upper band (with respect to the lower band).

Precision is not only important in defining the bounds on what it means for an
event to be instantaneous (in a band), it is also used to constrain what is meant by
two events to be simultaneous in some band. If e and f are simultaneous in band b
(with precision ρ with respect to the lower band c) then the signature events of the
mapped activities must occur within ρ in band c. Similarly, two events can be defined
to be ‘not simultaneous’ and may require some component of the system to test that
this erroneous situation does not occur. Again, by placing such a requirement in the
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right band, the necessary tolerance on the implementation of the monitoring task is
precisely defined.

BehaviourPrecision
BehaviourDurations

∀ e : ev; a : act; n : N •
e Ã a ∧ n ∈ act duration(a) ⇒ n ≤ Precision(band(e), band(a))

∀ e1, e2 : ev; a1, a2 : act; n : N • e1 ' e2 ∧
e1 Ã a1 ∧ e2 Ã a2 ∧ band(a1) = band(a2) ∧
n ∈ duration(sign(a1), sign(a2)) ⇒

n ≤ Precision(band(e1), band(a1))

3.10 Clocks

For the time bands associated with computational activity there is usually a strong
notion of time and (adequately accurate) physical clocks that will aid scheduling and
coordination. This is also increasingly the case with the bands of human experience
as external sources of time and temporal triggers abound [17]. So measures such as
second, minute, hour, day, week, month, year, decade and century are now universal.
But other time scales such as ‘generation’, ‘era’ and ‘age’ are also used in specific
domains. In a different context the granularity of a band may relate to a physical
property of the system, such as the rotation of the crank shaft for an engine control
unit.

A frame of reference defines an abstract clock that counts ticks of the band’s
granularity and can be used to give a time stamp to events and activities. A band
may have more than one such abstract clock but they progress at the same rate. For
example the day band will have a different abstract clock in each distinct geographical
time zone.

We develop a consistent model of time by representing certain moments in the
dynamics of a band as “clock tick” events, which are modelled just like any other
event. When necessary, an event can be situated in absolute time (within the context
of a defined band and clock) by stating a precedence relationship between the event
and one or more clock ticks. So an event occurred between 2.00 and 3.00 (in the hour
band) if the event occurred after the start of hour from 2.00 to 3.00 but before the
end of that hour. Note this is different to saying the event occurred ‘at 2.00’. Here the
implication is that it is simultaneous with the 2.00 event. So ‘I will arrive at 2.00’ is
satisfied by arriving sufficiently close to the 2.00 event (within the precision of the
hour band). However ‘I’ll will arrive by 3.00’ is quite different and allows the arrival
event to occur anytime up to the 3.00 event.

A clock can be modelled as a sequence of clock-tick events of a given class, and
hence a given time band. Successive clock-tick events are separated by one time unit
in the granularity of the band. They are therefore never simultaneous.
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4 State

In modelling state within the timeband framework there are a number of issues we
need to take into account:

observations: within a particular time band only a subset of the state variables (ob-
servations) will be relevant,

nondeterminism: at the time interval corresponding to an event within a band, there
may be a set of possible values of a state variable,

change-of-state events: for discrete state observations, changes in value correspond
to change-of-state events,

accuracy: for a continuous state observation there will be a maximum change over a
time interval corresponding to the precision of the band, and

rate-of-change: also for continuous observations there will be a maximum rate of
change over an interval of size the granularity of the time band.

The observation variables of different time bands may be different. Typically,
the representation becomes richer as one moves down to a time band with a finer
granularity. We say that the state of the system is projected onto a band; in some
bands not all possible observation variables will be accessible (as the time spent in
that state is too short). To illustrate, consider an automatic door:

– at a high time band one can view the door as either open or closed, with “instan-
taneous” events to open or close it;

– at a lower time band the open and close events take time, and there are new
activities opening and closing

– at a lower level still one may model how far open the door is by a percentage
between 0% open (i.e., closed) and 100% open; this numeric measurement may
either be discrete, with some granularity, or continuous; if it is discrete then, at a
still lower time band, it may be discrete with a finer granularity.

This can be modelled by having different observation variables at different time
bands.

4.1 States

The state space can be represented by a mapping from variables names taken from
the set Var to values taken from the set Val.

State[Var, Val] == Var 7→ Val

The above definition of State is generic in the set of variables and values. A state,
σ ∈ Var 7→ Val, maps each variable name in its domain to its value in that state. For
simplicity we use the universal set Val for all values, rather than each variable having
values of a particular type.

The set of observation variables in a particular time band is fixed, and hence it is
useful to refer to sets of states, all of which have the same variables (i.e., domain).

StateSet[Var, Val] ==
{ss : P State[Var, Val] | (∀σ1, σ2 : ss • dom(σ1) = dom(σ2))}
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For example, if x and y are variables and integers are values then s is a state and ss is
a state set.

s = {x 7→ 0, y 7→ 1}
ss = {{x 7→ 0, y 7→ 1}, {x 7→ 0, y 7→ 0}}

4.2 Nondeterministic state

Over the time interval corresponding to an event, e, within a particular time band,
one can extract the set, ss, of actual states that occur in that interval. Unfortunately,
the set of states view doesn’t reflect the reality of observing multiple variables, all of
which are evolving over time. For example, if we have two variables x and y which
are both initially zero, and if in quick succession x changes to one and then y changes
to one, then there is no point at which the state has x with value zero and y with value
one. However, a program sampling the two variables may first sample x and get zero
and then sample y and get one.

To address this issue we introduce the notion of a nondeterministic state, which
for each variable records a set of values. This has less information than the equivalent
set of states. The “sets of states” view is adequate for a single sequential process
controlling all the variables in the state, but if there are concurrent processes or an
externally evolving environment, observation of the state at a particular time precision
may observe one variable at one instant and another at a slightly different instant.
Hence, if we don’t determine the order of observation of the variables, there is a set
of values that we can observe for each variable at that time “instant”. This leads to
a less determined representation of the state, a nondeterministic state, in which each
variable is mapped to a nonempty6 set of possible values.

NDState[Var, Val] == Var 7→ P1 Val

Note that nondeterministic states are a form of state with values replaced by sets of
values:

NDState[Var, Val] = State[Var,P1 Val]

As with states we define the sets of nondeterministic states, all of which have the
same variables.

NDStateSet[Var, Val] == StateSet[Var,P1 Val]

The set of (standard) states that may be apparent in a nondeterministic state can be
extracted by considering all possible states such that each variable maps to an element
of its set of possible values.

[Var, Val]
apparent : NDState[Var, Val] → StateSet[Var, Val]

∀ ns : NDState[Var, Val] •
apparent(ns) = {σ : dom(ns) → Val | (∀ v : dom(ns) • σ(v) ∈ ns(v))}

6 Hence P1 rather than P.
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In the opposite direction, given a set of states, one may define a corresponding non-
deterministic state.

[Var, Val]
nondet : StateSet[Var, Val] → NDState[Var, Val]

∀ ss : StateSet[Var, Val] •
let vars == {v : Var | (∃σ : ss • v ∈ dom(σ))} •

nondet(ss) = (λ v : vars • {y : Val | (∃σ : ss • y = σ(v))})

Note that while
ns = nondet(apparent(ns)) (1)

in general, we only have

ss ⊆ apparent(nondet(ss)) (2)

rather than equality. For example,

ss = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 1}}
ns = nondet(ss)

= {x 7→ {0, 1}, y 7→ {0, 1}}
ss′ = apparent(ns)

= {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 1}, {x 7→ 0, y 7→ 1}, {x 7→ 1, y 7→ 0}}
⊃ ss

ns′ = nondet(ss′)
= {x 7→ {0, 1}, y 7→ {0, 1}}
= ns

Hence a set of states has potentially finer information than its corresponding nonde-
terministic state.

4.3 Behaviour with state

Within a behaviour one can ask for the nondeterministic state, ev val(e), that coin-
cides with an event, e. For a discrete state variable, there is often a unique value,
but if the event occurs close in time to a change of state then multiple values are
possible to reflect our lack of knowledge of the actual value. For example, if an
event is simultaneous with an hour band clock clk striking 12 then ev val will re-
turn {clk 7→ 11, clk 7→ 12}. For a continuous state variable, if its value is changing
at the time of the event then there is a range of values of the variable.

The set of nondeterministic states over an interval between (but not including) two
events, e1 and e2, in the same time band is given by interval val(e1, e2). Behaviours
are extended with state.
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BehaviourState
BehaviourPrecision
observables : B → PVar
ev val : E 7→ NDState[Var, Val]
interval val : E × E 7→ NDStateSet[Var, Val]

dom(ev val) = ev
dom(interval val) = {e1, e2 : ev | band(e1) = band(e2)}
∀ e : ev • dom(ev val(e)) = observables(band(e))
∀ e1, e2 : ev • (e1, e2) ∈ dom(interval val) ⇒

(∀σ : interval val(e1, e2) •
dom(σ) = observables(band(e1)))

∀ e1, e2, e3 : ev • e1 ≺ e2 ≺ e3 ⇒ ev val(e2) ∈ interval val(e1, e3)
∀ e1, e2 : ev • e1 ¹ e2 ⇒ interval val(e2, e1) = {}
∀ e1, e2, e3, e4 : ev • e1 ¹ e2 ¹ e3 ¹ e4 ⇒

interval val(e2, e3) ⊆ interval val(e1, e4)
∀ e1, e2 : ev • e1 ≺ e2 ⇒

(∀ e : {e1, e2} •
(∃σ : interval val(e1, e2) •

(∀ v : dom(σ) • ev val(e)(v) ∩ σ(v) 6= {})))

For a nonempty interval the states corresponding to the end-point events “overlap” in
values with some state within the interval.

The set of nondeterministic states over an activity, a, is given by act val(a), which
includes all the states between the start and end events of the activity, including at the
start and end events.

BehaviourStateActivities
BehaviourState
act val : A 7→ NDStateSet[Var, Val]

dom(act val) = act
∀ a : act •

(∀σ : act val(a) • dom(σ) = observables(band(a))) ∧
(∀ e1, e2 : events of (a) •

ev val(e1) ∈ act val(a) ∧
interval val(e1, e2) ⊆ act val(a))

4.4 Change of state events

For discrete state, changes in value can be modelled by events. We can represent a
change of state event in which variable v takes on the new value X, by the syntax
(v := X) for this class of event. A variable, v is constant between state change events
for v.
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BehaviourStateChange
BehaviourStateActivities

∀ e1 : ev; v : Var; X : Val • e1.class = (v := X) ⇒
X ∈ ev val(e1)(v) ∧
(∀ e2 : ev • e1 ≺ e2 ∧

¬ (∃ e : ev; Y : Val • e1 ≺ e ≺ e2 ∧ e.class = (v := Y)) ⇒
(∀σ : interval val(e1, e2) • σ(v) = {X}))

4.5 Mapping states

If an event e is mapped to an activity a in a lower band, then the nondeterministic
state at the event in the higher band corresponds to the union of the state values for
the activity in the lower band.

BehaviourStateMapping
BehaviourStateChange

∀ e : ev; a : act • e Ã a ⇒
(∀ v : observables(band(e)) ∩ observables(band(a)) •

ev val(e)(v) = {x : Val | (∃ ns : act val(a) • x ∈ ns(v))})

4.6 Accuracy and rates of change

As discussed above, within a single band a numeric-valued variable may have an
accuracy and a maximum rate of change. Its accuracy is the maximum amount it
can change over a period of size the precision of the band, and its maximum rate of
change is the maximum amount it can change over a period of size the granularity of
the band.

Within a particular time band, the rate of change of a state variable can be viewed
as the change in its value over a time unit within the band. We’ll illustrate this by
discussing the maximum rate of change of a state variable, v.

– Within a given time band the maximum rate of change of v may be r, i.e., v can
change by at most r over one time unit in that band.

– For a lower time band to be consistent with the upper band, the sum of the changes
over a sequence of time units within the lower time band, with length correspond-
ing to the granularity of the upper band with respect to the lower band, must be at
most r.
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BehaviourRates
BehaviourStateMapping
accuracy : B → (Var 7→ R)
rate : B → (Var 7→ R)

∀ b : B •
dom(accuracy(b)) = dom(rate(b)) ∧ dom(rate(b)) ⊆ observables(b)

∀ e : ev • (∀ v : dom(accuracy(band(e))) •
(∀ x, y : ev val(e)(v) • abs(x− y) ≤ accuracy(band(e))(v)))

∀ e1, e2 : ev • e1 ≺ e2 ⇒ (∀ v : dom(rate(band(e1))) •
(∀σ1, σ2 : interval val(e1, e2) • (∀ x : σ1(v); y : σ2(v) •

abs(x− y) ≤ rate(band(e1))(v) ∗ max(duration(e1, e2)))))
∀ e : ev; a : act • e Ã a ⇒

(∀ v : dom(accuracy(band(e))) ∩ dom(rate(band(a))) •
rate(band(a))(v) ∗ max(act duration(a)) ≤ accuracy(band(e))(v))

Satisfying the consistency condition has a special case if we consider the state vari-
able to be uniform between two levels, or uniform for short. If the granularity of the
upper time band with respect to the lower time band is n, then for a uniform state
variable the maximum rate of change in the lower time band will be at most r/n. At
a still lower time band with granularity m with respect to the above lower band (and
hence granularity m ∗ n with respect to the upper time band) the maximum rate of
change in this still lower time band will be at most r/(m ∗ n). With a uniform state
variable, as the size of the time unit of the band approaches zero the rate of change
approaches the derivative of the state variable with respect to time.

5 Summary

Rather than have a single notion of time, the proposed framework allows a number of
distinct time bands to be used in the specification or description of a system. System
behaviours are always relative to (defined within) a band.

The above discussion has defined the timeband framework and introduced a num-
ber of key notions that are central to the framework. Here we summarize these ideas:

– band – a subset of system behaviours (discrete and continuous) with similar tem-
poral properties;

– system – a partially ordered set of bands;
– separation – the property of being able to assume that activities in lower (quicker)

bands are instantaneous and the state of higher (slower) bands is unchanging;
– granularity – the unit of time defined by a band;
– precision – the constraint on instantaneous behaviour within a band;
– event – an instantaneous action within a band;
– activity – an action with duration within a band;
– duration – a time interval between events;
– clock – an abstract band-specific clock that produces ticks (events) at the granu-

larity of the band;
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– precedence – one event happening after another event;
– simultaneous – two events occurring at the same instant;
– immediate – a precedence relation between two simultaneous events;
– mapping – a link between an event in one band to an activity in a lower band;
– state – the observations available within a time band;
– nondeterministic state – the observations over the period of an event;
– change-of-state events – for discrete observations;
– accuracy – maximum “instantaneous” change in a continuous variable;
– rate-of-change – maximum rate of change of a continuous variable over a unit of

time.

6 Towards a Language for Timebands

Having presented a model for the timeband framework it is then necessary to define
a language that can be used to specify system requirements and behaviour. Such
a language is derived from the abstract model. In this paper we do not attempt to
provide a single, or even a complete, timeband language. Rather we illustrate features
that such a language could usefully contain. These are used in a short example of the
use of time bands in the Section 7.

6.1 Predicates

We represent predicates over a state space, Σ, via subsets of Σ.

Definition 1 (Predicate) For a state space Σ, a predicate is represented by a set of
states.

Pred[Σ] == PΣ

We use the conventional notations, “∧”, “∨”, and “¬ ” instead of intersection, union,
and complement of sets, respectively, when dealing with predicates.

6.2 Predicates on sets of states

Given a predicate, p, there are two obvious ways to promote it to a set of states (as in
modal logics [12]). If p holds for all states in the set, we write ¤* p, and if p holds for
some state in the set, we write ¡ p.

Definition 2 (All states and some states)

[Σ]
¤* : Pred[Σ] → Pred[P1 Σ]
¡ : Pred[Σ] → Pred[P1 Σ]

∀ p : Pred[Σ]; ss : P1 Σ •
ss ∈ (¤* p) ⇔ (∀σ : ss • σ ∈ p) ∧
ss ∈ (¡ p) ⇔ (∃σ : ss • σ ∈ p)
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We promote the boolean operators to predicates on sets of states in the obvious way
(because they are defined as predicates, but over sets of states rather than states). We
have the following properties.

¬ ¤* p = ¡(¬ p)
¤* p V ¡ p
¤* p ∧ ¤* q = ¤* (p ∧ q)
¡ p ∨ ¡ q = ¡(p ∨ q)
¤* p ∨ ¤* q V ¤* (p ∨ q)
¡(p ∧ q) V ¡ p ∧ ¡ q

Note that the second property above is valid because the sets of states must be non-
empty.

From these properties we can deduce other properties such as the following.

(¡ p ⇒ ¤* q) V (¤* (p ⇒ q)) (3)

This can be shown as follows.

¡ p ⇒ ¤* q
≡ ¬ ¡ p ∨ ¤* q
≡ ¤* ¬ p ∨ ¤* q
V ¤* (¬ p ∨ q)
≡ ¤* (p ⇒ q)

6.3 Predicates on nondeterministic states

A nondeterministic predicate is a predicate on a nondeterministic state.

Definition 3 (Nondeterministic predicate)

NDPred[Var, Val] == Pred[NDState[Var, Val]]

We promote a predicate, p, on a single state, to a predicate on a nondeterministic
state in two ways. If p holds for all apparent states (see Section 4.2) derivable from the
nondeterministic state, we say p definitely holds for the nondeterministic state, written
~ p, and if p holds for at least one apparent state derivable from the nondeterministic
state, we say p possibly holds for the nondeterministic state, written ¯ p.

Definition 4 (Definitely and possibly)

[Var, Val]
~ : Pred[State[Var, Val]] → NDPred[Var, Val]
¯ : Pred[State[Var, Val]] → NDPred[Var, Val]

∀ p : Pred[State[Var, Val]]; ns : NDState[Var, Val] •
ns ∈ (~ p) ⇔ (∀σ : apparent(ns) • σ ∈ p) ∧
ns ∈ (¯ p) ⇔ (∃σ : apparent(ns) • σ ∈ p)
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We promote the boolean operators to nondeterministic predicates in the obvious way
(because nondeterministic predicates are defined as predicates, but over nondetermin-
istic states rather than states).

For example, in the methane control example considered in the following section,
if the methane in a mine shaft is ever over a critical level, then to avoid causing an
explosion, the pump extracting water from the mine must be off. We can formalise
this property by the following nondeterministic predicate, that characterises those
nondeterministic states which satisfy the property.

¯(methane ≥ Critical) ⇒ ~(pump = Off )

If the methane is critical at some instant (i.e., the nondeterministic state includes an
apparent state in which the methane is critical), then the pump is definitely off (i.e., it
is off for all apparent states of the nondeterministic state).

6.4 Properties of nondeterministic predicates

The definitely and possibly operators are related to “all states” and “some state” as
follows.

ns ∈ ~ p ⇔ apparent(ns) ∈ ¤* p (4)
ns ∈ ¯ p ⇔ apparent(ns) ∈ ¡ p (5)

Hence, we have the following properties directly derivable from the properties of
predicates on sets of states.

¬ ~ p = ¯(¬ p) (6)
~ p V ¯ p (7)

~ p ∧ ~ q = ~(p ∧ q) (8)
¯ p ∨ ¯ q = ¯(p ∨ q) (9)
~ p ∨ ~ q V ~(p ∨ q) (10)
¯(p ∧ q) V ¯ p ∧ ¯ q (11)

There are two interesting properties of definitely and possibly that don’t hold for
“all states” and “some states”.

Theorem 1 If the free variables of p and q are disjoint, then

¯ p ∧ ¯ q = ¯(p ∧ q)
~(p ∨ q) = ~ p ∨ ~ q



26 A. Burns and I.J. Hayes

Proof. We focus on the first property because the second can be derived from it be-
cause ~ p = ¬ ¯¬ p. The reverse implication is property (11) above. In the for-
ward direction, if we assume ns ∈ ¯ p and ns ∈ ¯ q, then (∃σ : apparent(ns) •
σ ∈ p) and (∃σ : apparent(ns) • σ ∈ q). Hence let σ1 ∈ p ∩ apparent(ns),
σ2 ∈ q ∩ apparent(ns), w be the set of free variables occurring in p, and σ =
(w C σ1) ∪ (w −C σ2), where w C σ is the state σ restricted to just the observations
in w and w −C σ is σ restricted to the observations not in w. Because p depends only
on variables in w and w C σ = w C σ1, it follows that σ ∈ p. Similarly, because
q only depends on variables not in w, σ ∈ q. Finally, because both σ1 and σ2 are
in apparent(ns), σ ∈ apparent(ns). Hence (∃σ : apparent(ns) • σ ∈ p ∧ q), i.e.,
ns ∈ ¯(p ∧ q).

2

Note that these properties hold for ¯ p but not ¡ p. For example, if

ss = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 1}}

we have ss ∈ ¡(x = 0) ∧ ¡(y = 1) but not ss ∈ ¡(x = 0 ∧ y = 1).

6.5 On the relation between reality and observation

Over the time interval corresponding to an event, e, within a particular time band, one
can extract the set, ss, of actual states that occur in that interval. The corresponding
nondeterministic state is nondet(ss). Note from property (2) in Section 4.2 that ss ⊆
apparent(nondet(ss)). If we assume nondet(ss) ∈ ~ p, then we have by (4) that
apparent(nondet(ss)) ∈ ¤* p and hence ss ∈ ¤* p, i.e., p holds for all actual states
corresponding to event e.

If the environment satisfies p at some point in the interval, i.e., ss ∈ ¡ p, then as
ss ⊆ apparent(nondet(ss)) we have (∃σ : apparent(nondet(ss)) • σ ∈ p), and hence
nondet(ss) ∈ ¯ p. That is, if reality satisfies ¡ p, then our (weaker) nondeterministic
view satisfies ¯ p.

In the simple case in which we are only dealing with one free variable, x, in
a predicate, e.g., the predicate is of the form ~(x ∈ S) or ¯(x ∈ S), where S is
constant over the observation interval, then ~(x ∈ S) in the nondeterministic view
is equivalent to ¤* (x ∈ S) in reality, and ¯(x ∈ S) in the nondeterministic view is
equivalent to ¡(x ∈ S) in reality. Special cases of these predicates are comparisons
of a variable with an expression, C, that is constant over the observation interval, e.g.,
x = C and x < C.

When one samples a variable, x, in the environment, and gets the value C, one
can deduce ¡(x = C), which is equivalent to ¯(x = C). Similarly, by sampling y we
may deduce ¡(y = D), which is equivalent to ¯(y = D). These samples allow one
to deduce ¯(x = C ∧ y = D) but not the stronger condition ¡(x = C ∧ y = D).
This formalises the property that sampling two boolean variables, top and bottom,
introduced in Section 2. Getting two sample values, e.g., true and true, does not allow
one to deduce that the two variables simultaneously have those values (i.e., we can’t
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deduce ¡(top ∧ bottom)), but we can deduce the weaker property ¯(top ∧ bottom).
We have

ss ∈ ¡(top ∧ bottom) ⇒ nondet(ss) ∈ ¯(top ∧ bottom)

but not the other way around, in general. Note that ¯(top ∧ bottom) = ¯ top ∧
¯ bottom, but only ¡(top ∧ bottom) ⇒ ¡ top ∧ ¡ bottom, in general.

6.6 Application to state model

In this section we develop some notation for using nondeterministic predicates with
the nondeterministic state model. Given a behaviour and an event e, ev val(e) gives
the nondeterministic state corresponding to event e. For a nondeterministic predicate,
p, we introduce the notation p @ e to state that p holds for the nondeterministic state
corresponding to e, i.e.,

p @ e ⇔ ev val(e) ∈ p

For events e1 and e2, interval val(e1, e2) gives the set of nondeterministic states
occurring (strictly) between the two events. We introduce the notation p during
(e1, e2) to stand for p holding for all nondeterministic states between e1 and e2,
and p within (e1, e2) to state that p holds for some nondeterministic state between e1
and e2, i.e.,

p during (e1, e2) ⇔ interval val(e1, e2) ∈ ¤* p ∧
p within (e1, e2) ⇔ interval val(e1, e2) ∈ ¡ p

The properties of behaviours on state allow one to deduce properties expressed in
terms of these relations. For example, if a property definitely holds at an end point
event of a nonempty interval then, because the state of the end point “overlaps” with
those in the interval, we get the following property for all pairs of events e1 and e2
such that e1 ≺ e2,

(~ p) @ e1 ⇒ (¯ p) within (e1, e2) (12)

For example, if ~(m ≥ C) @ e1 holds, i.e., for all values of m in the nondeterministic
state corresponding to e1 we have m ≥ C holding, then because the end of event e1
corresponds to the start of the interval (e1, e2), we have that m ≥ C at the very start
of the interval (e1, e2), but note that we don’t have any guarantee that m stays above
C for any given period—not even the precision of the band—during the interval, and
hence we can only deduce ¯(m ≥ C) holds within the interval.

We introduce two further shorthands to state that a nondeterministic predicate
holds just before (after) an event.

p before e ⇔ (∃ e′ : ev • e′ ¹ e ∧ p during (e′, e)) ∧
p after e ⇔ (∃ e′ : ev • e ¹ e′ ∧ p during (e, e′))

We assume all these relations have higher precedence than logical operators, but
lower precedence than the other operators.
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From the properties for predicates on sets of states we can deduce properties for
during and within, e.g., the following property.

(p within (e1, e2)) ⇒ (q during (e1, e2)) V
(p ⇒ q) during (e1, e2) (13)

This holds because

(p within (e1, e2)) ⇒ (q during (e1, e2))
≡ letting sns = interval val(e1, e2)

sns ∈ ¡ p ⇒ sns ∈ ¤* q
≡

sns ∈ (¡ p ⇒ ¤* q)
V by (3)

sns ∈ ¤* (p ⇒ q)
≡

(p ⇒ q) during (e1, e2)

7 Example: Mine pump

The mine pump case study has been used by a number of formal frameworks to in-
vestigate and illustrate different specification approaches (see [15] for a number of
examples). In its briefest form the case study involves two subsystems: a methane
monitoring subsystem that sounds an alarm if the sensed level of methane is above
a threshold, and a pump control subsystem that pumps water from the mine sump
if the water level reaches a High water level sensor (the pump then operates until a
Low water level sensor is reached). The two subsystems are coupled by the safety
requirement not to operate the pump if the methane is high (due to risk of gas ex-
plosion). There is also a performance requirement that limits the number of days lost
due to flooding to be two or less. In the following partial treatment we concentrate on
the methane control subsystem.

We specify the mine pump in terms of rely and guarantee conditions [14], which
are similar to preconditions and postconditions, except that rely and guarantee condi-
tions are specified over the interval during which the system is running, rather than in
terms of the before and after states for pre-/post-conditions. A guarantee condition is
a condition that the system should maintain over its operating interval, provided the
rely conditions hold for that interval.

Mine pump guarantee. A pump is used to extract water from a mine shaft. However,
if there is a critical level of methane in the mine shaft, an explosion could result if the
mine pump is operated. Hence, one requirement is that at all times while the system
is running, it should guarantee that the pump is off at any time the methane level is
critical.7

7 In a more detailed analysis, one may want to distinguish between the pump being turned off and it
actually having come to a stop.
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For a guarantee about a system’s behaviour, if one can show the system guar-
antees ~ p holds for the nondeterministic view of the state, then ¤* p holds for the
corresponding real states. Hence in the mine pump example, one guarantee is

¤* (methane ≥ Critical ⇒ pump = Off )

should hold for all (normal) states of the system, which is implied by the following
requirement on all nondeterministic states of the system

~(methane ≥ Critical ⇒ pump = Off )

which is equivalent to

¯(methane ≥ Critical) ⇒ ~(pump = Off ) (14)

by the following reasoning.

~(methane < Critical ∨ pump = Off )
≡ Theorem 1; free variables in the two disjuncts are disjoint

~(methane < Critical) ∨ ~(pump = Off )
≡ ¬ ¯(methane ≥ Critical) ∨ ~(pump = Off )
≡ ¯(methane ≥ Critical) ⇒ ~(pump = Off )

The “definitely” operator is interpretted with respect to a particular time band. Inter-
estingly, from the point of view of this guarantee, all we require is that there is some
time band in which this is satisfied (and this can be determined by the implementa-
tion). If we added a requirement ensuring that the pump is on whenever the methane
level is safe (i.e., it is below critical by some bound), then this would constrain the
choice of implementation time band.

Mine pump rely. In order to implement the requirement, one may rely on a number
of properties of the environment. We’ll assume that the implementation will be op-
erating within a particular time band, but the properties we rely on are valid over a
range of possible choices of time bands. Assume the accuracy of the methane level
within the band is Acc meth. Recall that this is the maximum amount the methane
level can vary over a period of size the precision of the time band. Hence for any
nondeterministic state of the system and any value Z

¯(methane = Z) ⇒ ~(methane ∈ Z ± Acc meth) (15)

from which we can deduce

¯(methane ≥ Z) ⇒ ~(methane ≥ Z − Acc meth) (16)

Note that this accuracy is only concerned with the timing precision of the band. We
should separately consider the accuracy of the methane sampling sensor itself, but for
the purposes of this example we assume there is no sampling error.

Assume the maximum rate of change of methane level in the band is Rate meth.
Recall that this is the maximum change in the methane over a period of size the
granularity of the time band. For an interval of size n, the level of methane can change
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by at most n times Rate meth over that interval. Hence, for some value, Z, if the
methane is ever at least than Z + n ∗ Rate meth within the interval, then it must have
been at least Z at the start of the interval. For all pairs of events e1 and e2 within the
time band such that e1 ≺ e2 and max(duration(e1, e2)) ≤ n, and for any value Z,

¯(methane ≥ Z + n ∗ Rate meth) within (e1, e2) ⇒
¯(methane ≥ Z) @ e1

(17)

Mine pump implementation. The implementation samples the methane level at regu-
lar intervals. The ith sampling event is s # i. It is assumed that the pump is off before
the first sample.

~(pump = Off ) before s # 0 (18)
We require that the maximum time between samples is n time units in the granularity
of the implementation band, i.e., max(duration(s # i, s # i + 1)) ≤ n. A sample
event, s# i, corresponds to an activity, sample # i, at a lower time band. This activity,
which all takes place within the precision of the upper time band, contains events to
set up analog-to-digital converters to read the methane and water levels, wait until the
conversions are complete and read the levels, and turn the pump off if the methane is
above a threshold value. In addition, if the methane is below the threshold it turns the
pump on or off depending upon the current water level.

Here we focus on the properties relating to the methane monitoring. If the pump
is on up until sample i then,

– if the methane is definitely above the threshold for sample i, the pump must be off
immediately after the sample

~(methane ≥ Threshold) @ s # i ⇒ ~(pump = Off ) after s # i (19)

– if the pump is off immediately after sample i, the methane was possibly over the
threshold during the sample,

~(pump = Off ) after s # i ⇒ ¯(methane ≥ Threshold) @ s # i (20)

Note this is an example of the “must/can” sampling issue raised in Section 2.
Between any two successive sampling events the state of the pump is stable.

Hence if the pump is off after sample i it remains off until at least sample i + 1:

~(pump = Off ) after s # i ⇒ ~(pump = Off ) during (s # i, s # i + 1) (21)

From (19) and (21) one can deduce

~(methane ≥ Threshold) @ s# i ⇒ ~(pump = Off ) during (s# i, s# i+1) (22)

If the pump was already off up until sample i then at sample i, if the methane is
definitely at least the threshold, the pump remains off for the sample.

~(pump = Off ) before s # i ∧ ~(methane ≥ Threshold) @ s # i
⇒ ~(pump = Off ) @ s # i (23)

To allow for the maximum rate of change between the sampling events (which are at
most n time units apart) and the inaccuracies of the sampling events at each end of
the interval, we require the following constraint between Critical and Threshold.

Critical ≥ Threshold + n ∗ Rate meth + 2 ∗ Acc meth (24)
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Satisfaction of the specification.

Theorem 2 The implementation fulfils the guarantee (14) whenever the system is
running, provided the rely conditions hold.

Proof. We assume the rely conditions and the conditions specified for the implemen-
tation and show that the guarantee condition (14) holds over the operating interval,
by showing that it holds for every interval between one sample and the next, and at
every sampling event. That is, for all natural numbers i

(¯(methane ≥ Critical) ⇒ ~(pump = Off )) @ s # i (25)
(¯(methane ≥ Critical) ⇒ ~(pump = Off )) during (s # i, s # i + 1) (26)

First we show

¯(methane ≥ Critical− Acc meth) within (s # i, s # i + 1) V
~(pump = Off ) during (s # i, s # i + 1) (27)

as follows

¯(methane ≥ Critical− Acc meth) within (s # i, s # i + 1)
V from the constraint on the threshold (24)
¯(methane ≥ Threshold + n ∗ Rate meth + Acc meth) within (s # i, s # i + 1)

V from the maximum rate-of-change of methane (17)
¯(methane ≥ Threshold + Acc meth) @ s # i

V from methane accuracy (16)
~(methane ≥ Threshold) @ s # i

V as the pump is turned off if methane is high (22)
~(pump = Off ) during (s # i, s # i + 1)

To show (25) we first consider the case for sampling events other than sample
zero.

¯(methane ≥ Critical) @ s # i + 1
V from methane accuracy (16)

~(methane ≥ Critical− Acc meth) @ s # i + 1
V by (12)
¯(methane ≥ Critical− Acc meth) within (s # i, s # i + 1)

V from above lemma (27)
~(pump = Off ) during (s # i, s # i + 1)

V by the definition of before
~(pump = Off ) before s # i + 1

V by (23) and Critical ≥ Threshold + Acc meth
~(pump = Off ) @ s # i + 1

For sample zero we have ~(pump = Off ) before s # 0 from (18), and hence it is
sufficient to apply the equivalent of the last step of the above proof.

To show (26), we first note that, using (13), it is implied by

¯(methane ≥ Critical) within (s # i, s # i + 1) ⇒
~(pump = Off ) during (s # i, s # i + 1)
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which we show as follows.

¯(methane ≥ Critical) within (s # i, s # i + 1)
V from methane accuracy (16)

~(methane ≥ Critical− Acc meth) within (s # i, s # i + 1)
V as ~ p ⇒ ¯ p
¯(methane ≥ Critical− Acc meth) within (s # i, s # i + 1)

V using lemma (27)
~(pump = Off ) during (s # i, s # i + 1)

2

The above reasoning has been generic with respect to the choice of time band,
in particular, the precision and granularity of the time band and the choice of the
sampling interval n. From (24) we have

Critical− Threshold ≥ n ∗ Rate meth + 2 ∗ Acc meth.

The larger the gap between Critcal and Threshold the less time the pump will be ac-
tive when it is safe to be active. The predominant factor is the choice of the sampling
interval, here represented by n times the granularity of the band. If we add a further
requirement that the pump should be active whenever the methane level is below a
level of Safe, then this will put an upper bound on n ∗ Rate meth + 2 ∗ Acc meth.

This mine pump example does not need time bands in order to specify its be-
haviour. But the brief outline here does have a much simpler form than other de-
scriptions. This clarity comes from being able to initially specify all behaviours as
instantaneous events and all actions as immediate. This very real-time system did not
need time in its initial specification, but it does allow time to play its full role in more
detailed levels of description.

8 Conclusion

In this paper we have argued that complex real-time systems exhibit behaviour at
many different time levels and that a useful aid in describing and specifying such
behaviour is to use time bands. Viewing a system as a collection of event and ac-
tivities within a finite set of bands is an effective means of separating concerns and
identifying inconsistencies between different ‘layers’ of the system. Time bands are
not mapped on to a single notion of physical time. Within a system there will always
be a relation between bands but the bands need not be tightly synchronised. There is
always some level of imprecision between any two adjacent bands.

The use of the timeband framework is intended to help develop a comprehensive
foundation to the study and development of future systems. Of course an adequately
expressive model of time is just one element of such a foundation, but it is perhaps
the most important to define if dependable systems are to be engineered.
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A Notation

A partial order “¹” on some set X is reflexive, transitive, and anti-symmetric.

[X]

partial order : P(X ↔ X)

partial order = { ¹ : X ↔ X | ∀ x1, x2, x3 : X •
x1 ¹ x1 ∧
(x1 ¹ x2 ∧ x2 ¹ x3 ⇒ x1 ¹ x3) ∧
(x1 ¹ x2 ∧ x2 ¹ x1 ⇒ x1 = x2)}

[X]

symmetric rel : P(X ↔ X)

symmetric rel = { ' : X ↔ X | (∀ e, f : X •
e ' e ∧ (e ' f ⇔ f ' e))}


