
Predictability as an Emergent Behaviour
Alan Burns and David Griffin

Department of Computer Science,
University of York, UK.

email {burns, djg}@cs.york.ac.uk

Abstract—One means of obtaining time predicable systems is
to build them from predictable components which are themselves
built from predictable subcomponents. But this is not the only
approach. In this paper we illustrate the benefits that are possible
if components are designed to exhibit independent random
behaviour. The worst-case execution time of application code
can be estimated (with low probability of failure) to be not
much greater than what one would expect the average to be.
Unfortunately this approach of obtaining predictability as an
emergent property of the code’s execution cannot be delivered
by today’s hardware. Means by which hardware can be made
more accommodating to this objective are explored.

I. INTRODUCTION

At the last workshop Lee [9] argued that predictable systems
must be built from predictable components. Here we wish to
explore an alternative framework in which components with
more random behaviour are combined so that predictability
(where it is needed) emerges. Predictability is a necessary
property only at the application level; an application may
have timing constraints that have to be adhered to, but how
the necessary level of predictability is obtained is not usually
prescribed. Ultimately all computer-based systems rely on the
regular behaviour of electronic circuits that are composed of
electrons with essentially random behaviour. The resulting (or
emerging1) predictable behaviour comes from the enormous
difference in scale there is between the system and its compo-
nents; we consider here whether the ‘effects of large numbers’
can also be used for timing analysis.

In this paper we first explore, in a purely abstract way, the
relation between randomly behaved components (at a low level
of time granularity) and predictability (at a higher level of
granularity). We then consider how hardware could be made
to work in an appropriately random way.

The framework we employ to argue about systems that
behave at different time scales is that of Timebands [2]. In
the Timebands framework a system is assumed to consist
not of a single time dimension but a finite set of partially
ordered bands. Each band is represented by a granularity
(expressed as a unit of time that has meaning within the
band, e.g. the milliseconds band) and a precision that is a
measure of the accuracy of the time frame defined by the
band. System activities are placed in some band B if they

1Whether temporal predictability is actually an emergent property is a
debateable point; there are many different definitions of emergence (see
Stepney at al[12] for a discussion on possible definitions of emergence),
certainly significant differences in level does appear to be one recurring
characteristic.

engage in significant events at the time scale represented by
B. They have dynamics that give rise to changes that are
observable or meaningful in band B’s granularity. In real-time
systems, applications usually have deadlines and periods in
the millisecond range, whereas individual instructions on a
fast modern embedded computer are measured in nanoseconds.
This represents a scale difference of six orders of magnitude.

In the timebands framework a band is populated by events
and activities. Events, in the normal way, are considered to
be instantaneous (a cut of the time line) within the band of
their definition. Activities by comparison have duration of one
or more ‘units’ of the band’s granularity. Within an activity
there will be collections of events with precedence constraints
defined to represent the behaviour of the activity. Bands are
linked by mapping events in one band to activities in lower
bands with finer granularity. For example an interrupt in the
milliseconds band may be considered instantaneous; the actual
interrupt handler will however have duration in the nanosecond
band. The mapping between these two representations is con-
strained by the requirement for the activity in the nanosecond
band to have a duration no longer than the precision of the
millisecond band.

We have shown in previous work [3] how behaviour in an
activity (failures in this case) can be represented by ‘point’
failures in a time band of coarser granularity. In this paper we
are again interested in the behaviour at a coarser band (that
applicable to the application), but behaviour that is derived
from the collective behaviour of a large number of entities at
a much lower time granularity. These entities do not need to
be predictable, but their collective behaviour does. It is also
clear that predications do not need to be absolute. Levels of
imprecision are always allowed in any engineering process.
Here we will use probability of the predication being false as
the characteristic of imprecision.

II. RANDOM BEHAVIOUR

Consider a completely abstract and theoretical machine
in which the execution times of basic instructions are iid
(independent and identically distributed). Let the execution
time of all of the machine’s instructions be either 1 or 10.
This could perhaps represent the cost with cache hit or cache
miss. Let the probability of a cache miss (execution time of
10) be 0.1 (ie. 10%). The average instruction execution time
for the machine is therefore easily computed as 1.9.

Now we require for scheduling analysis the worst-case
execution time, WCET, for a task whose longest path has



N=105 N=106 N=107 N=108

Average ET 190000 1900000 19000000 190000000
WCET, p=10−3 192639 1908344 19026385 190083437
Average ET 190000 1900000 19000000 190000000
WCET, p=10−5 193642 1911516 19036415 190115153
Average ET 190000 1900000 19000000 190000000
WCET, p=10−7 194440 1914039 19044393 190140383
Average ET 190000 1900000 19000000 190000000
WCET, p=10−9 195122 1916195 19051211 190161941

TABLE I
ESTIMATES BASED ON N AND P

been analysed to contain N instructions2, say 100,000. For
a standard definition of worst-case this leads to a value for
the task of 100,000 x 10, ie. 1,000,000. The average being
190,000. But the absolute worst-case is not actually needed
as there is a tolerance on the accuracy required from the
timing analysis. One way of expressing this tolerance is via
an estimate, E, of the worst-case execution time such that the
probability of the execution time of an actual run of the task,
A, being greater than E is less than some defined probability
p. That is

prob(A > E) ≤ p

So, for example, if N is 100,000 and our tolerance bound
is 10−5 (probability, of any one execution time of the task
having a value greater than the estimate, E being less than or
equal to 10−5) leads to a value of E of just 193,642. Note how
close this is to the average value – it is approximately only
0.25% larger. Other values of E (for various combinations of
N and p) are shown in Table 1. This table also includes the
average execution time (Average ET) for comparison.

Within the timeband framework any temporal statement
expressed within the context of a particular band is assumed
to have an accuracy requirement given by the precision of the
band. So a statement that the WCET of a component is C is
true as long as the actual execution time is less than C + ρ
- where ρ is the band’s precision. In general precision is no
greater than 1% of granularity (of the band). It follow that in
the examples given in this section WCET can be taken to be
ACET (Average-Case Execution Time).

The values in Table 1 come the following straightforward
analysis. Each of the N execution times is an independent
random variable (S). For large N the actual execution time,
A, of the sequence of instructions is the sum of N random
variables and will be approximately Normally distributed by
the Central Limit Theorem. The variance of A will be N times
the variance of S. And the distribution [E-A]/sqrt[var(A)] has
the standard N(0,1) normal distribution. From this one can
compute the probability of any estimate E begin greater than
A, or as we did above, compute E for a desirable probability
bound p. Note Table 1 was actually produced directly rather
than via standard tables as these don’t usually go down to
10−5 level.

2Analysis can be undertaken on a set of paths, here we concentrate on just
a single candidate for longest path.

Table 1 shows that for even very high levels of reliability,
such as the probability of failure being less than 10−9 (which
is sometimes quoted for the most stringent avionics applica-
tions), the estimate of WCET is very close to the average. This
results from the size of N – the number of basic instructions
in a path of the application’s code. Here this could quite
reasonable be 107 or more.

The above analysis has focused on the probability of failure
of a single run of the task. More generally failure rates are
expressed as a maximum per hour of execution. If we assume
that our representative tasks has a period of 100ms then in
an hour of execution it will execute 36,000 times. Taking
again the program with 100,000 instructions and a required
failure rate of 10−9, then the execution time estimate for a
single execution of the task is 195,122 (see Table 1). Now to
compute the failure rate for a single execution (X) so that the
cumulative failure rate per hour is 10−9 requires the solution
of:

1− (1−X)36,000 = 10−9.

This is solved (approximately) by the value X = 10−13.
Using the same analysis as before this delivers an estimate
of of WCET of 196,275. Again a very small increase over the
average.

If rather than our simple 1 or 10 execution time, our basic
instruction times are more realistic but still iid then the above
technique can still be applied. All one needs to be able to
compute is the variance of the instruction’s execution time.

Note this method of computing an adequate estimate of the
worst-case execution time of a task does not involve the use
of extreme value distributions such as Gumbel [8], [4], [7].

III. REAL/POTENTIAL HARDWARE

Current real hardware does not of course exhibit perfectly
random execution times. But this does not mean that the
idealized results form the above analysis cannot be adapted.
Consider the following points.

• Instructions could be classified into M basic types, the
worst-case path through a task would need to ‘count’ the
occurrences of each basic type.

• Levels of dependence could be accounted for by the use
of copulas [10], [1].

• Caches could be designed to exhibit more random be-
haviour - see work on random cache replacement policies
from the PROARTIS Project [5].

• Other hardware components such as branch predication
could be made more random.

• Shared buses on multi-core architectures could also be
‘randonised’.

The latter point is an important one if we are to derive com-
positional analysis for multi-core architectures. Here we need
the execution time of a task on one core to be independent of
the details of the execution time behaviour of the tasks on other
cores. So the analysis of one core can assume the other cores
are ’busy’ but should not depend on the particular execution



sequences (memory accesses) of the software executing on
other cores.

One interesting idea here would be to introduce random
fluctuations in clock speed, for each individual core. This
effectively breaks inter-core pathological cases by breaking
the notion of shared time which some pathological cases rely
on (ie. a pathological case which requires precise ordering
of instructions on a core relative to what is happening on
another core; if the notion of time fluctuates between cores,
then this probability of maintaining this precise ordering over
any period of time effectively drops to zero).

The simple analysis above has focused on synchronous
hardware where the clocked instruction represents the ‘com-
ponent’ from which task execution times (at a much higher
level of time granularity) are derived. Asynchronous (clock-
less) hardware would drop the level of analysis to an even
lower level. Such hardware has already shown that clock-free
basic executions can give rise to timely executions at higher
levels of abstraction [11], [6]. Counter-intuitively, for real-time
applications, it may be that asynchronous hardware may be
more predictable than synchronous!

IV. CONCLUSION

The time scale differences between the basic components of
modern hardware and the time bands in which the applications
resides means that methods based on the worst-case of the
worst-case of worst-case (etc. for each architectural level)
cannot deliver temporal predictions that are anything other
than hopelessly pessimistic. We must develop methods from
which worst-case behaviour can emerge from the average
behaviour of lower level components. This short paper has
illustrated the potential benefits thats can accrue from ran-
domising the behaviour of the hardware components. Whether
such components will emerge remains an open question.

Acknowledgements

This work is funded in part by the UK EPSRC via the
Tempo Project. The authors would like to thanks Bev Lit-
tlewood and Paul Cairns for advice on the Central Limit
Theorem.

REFERENCES

[1] G. Bernat, M. Newby, and A. Burns. Probabilistic timing analysis, an
approach using Copulas. Journal of Embedded Computing, 1(2):179–
194, 2005.

[2] A. Burns and I.J. Hayes. A timeband framework for modelling real-time
systems. Real-Time Systems Journal, 45(1–2):106–142, June 2010.

[3] A. Burns and B. Littlewood. Reasoning about the reliability of multi-
version, diverse real-time systems. In Proceedings of IEEE Real-Time
Systems Symposium (RTSS), pages 73–81, 2010.

[4] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In
Proceedings 22nd IEEE Real-Time Systems Symposium, 2001.

[5] E.Quiones, E. Berger, G. Bernat, and F. Cazorla. Using randomised
caches in real-time systems. In Proceedings of the 21st Euromicro
Conference on Real-Time Systems (ECRTS), pages 129–138, 2009.

[6] M. Ferringer. Towards self-timed logic in the time-triggered protocol.
In International Conference on Dependable Systems and Networks
Workshops (DSN-W), pages 136–141, 2010.

[7] D Griffin and A Burns. Realism in statistical analysis of worst case
execution times. In 10th Intl. Workshop on Worst-Case Execution Time
Analysis, pages 49–57, July 2010.

[8] E. J. Gumbel. Statistics of Extremes. Columbia University Press, 1958.
[9] E.A. Lee. Compositional timing in concurrent, parallel, and distributed

real-time systems. In Keynote Talk, CRTS 2010, 2010.
[10] R.B. Nelsen. An introduction to Copulas. Springer, 1998.
[11] J. Spars and S. Furber. Principles of Asynchronous Circuit Design - a

Systems Perspective. Kluwer Academic, 2001.
[12] S. Stepney, F. Polack, and H. Turner. Engineering emergence. In

ICECCS 2006: 11th IEEE International Conference on Engineering of
Complex Computer Systems, Stanford, CA, USA, August 2006, pages
89–97. IEEE, 2006.


