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Abstract

Earliest Deadline First (EDF) is the most widely studied optimal dynamic
scheduling algorithm for uniprocessor real-time systems. For realistic pro-
grams, tasks must be allowed to exchange data and use other forms of re-
sources that must be accessed under mutual exclusion. With EDF sched-
uled systems, access to such resources is usually controlled by the use of
Baker’s Stack Resource Protocol (SRP). In this paper we propose an alterna-
tive scheme based on deadline inheritance. Shared resources are assigned a
relative deadline equal to the minimum (floor) of the relative deadlines of all
tasks that use the resource. On entry to the resource a task’s relative deadline
(and hence its current absolute deadline) is immediately reduced to reflect
the resource’s deadline floor. On exit the original deadline for the task is re-
stored. We show that the worst-case behaviour of the new protocol (termed
DFP — Deadline Floor inheritance Protocol) is the same as SRP. Indeed it
leads to the same blocking term in the scheduling analysis. We argue that
the new scheme is however more intuitive and easier and more efficient to
implement.

1 Introduction

The correctness of an embedded real-time system depends not only on the system’s
outputs but also on the time at which these outputs are produced. The completion
of a request after its timing deadline is considered to be of no value, and could even
lead to a failure of the whole system. Therefore, the most important characteristic



of real-time systems is that they have strict timing requirements that must be guar-
anteed and satisfied. Schedulability analysis plays a crucial role in enabling these
guarantees to be provided.

A real-time system comprises a set of real-time tasks; each task consists of a
potentially unbounded stream of jobs. The task set can be scheduled by a number
of policies including dynamic priority or fixed priority algorithms. The success of
a real-time system depends on whether all jobs of all the tasks can be guaranteed
to complete their executions before their timing deadlines. If they can then we say
the task set is schedulable.

The Earliest Deadline First (EDF) algorithm is one of the most widely studied
dynamic priority scheduling policies for real-time systems. It has been proved [13]
to be optimal among all scheduling algorithms for a uniprocessor; in the sense that
if a real-time task set cannot be scheduled by EDF, then it cannot be scheduled by
any other algorithm.

Although many forms of analysis (including that reported in the above citation)
assume tasks are independent of each other, in realistic systems the tasks need to
make use of shared resources that must be accessed under mutual exclusion. These
resources are typically protected by semaphores or mutexes provided by an RTOS
(real-time operating system). If a high-priority task is suspended waiting for a
lower-priority task to complete its use of a non-preemptable resource, then priority
inversion occurs [15]. The task is said to be blocked by the lower priority task.

For uniprocessor fixed priority (FP) scheduled systems, blocking time can be
minimised by the use of a Priority Ceiling inheritance Protocol (PCP). With this,
accesses to resources are serialised, mutual exclusion is furnished without the use
of locks and multiple resources can be used in a manner that is guaranteed to be
deadlock free. For systems scheduled by the EDF scheme, Baker [2, 1] generalised
PCP to define a Stack Resource Policy (SRP). This protocol has become the defacto
policy to use with EDF to gain effective control over the use of shared resources’.

In this paper we propose an alternative protocol for EDF scheduled systems.
Rather than assigning a preemption ceiling to each shared resource (as SRP does),
a deadline floor is computed. And rather than raise the priority of a task to the
ceiling level when it accesses a resource (as PCP does), the task reduces its current
deadline to reflect the floor value of the resource. We show that this Deadline
Floor inheritance Protocol (DFP) has all the key properties of SRP, and leads to the
same worst-case blocking. However, DFP is arguable much easier to understand
and more efficient to implement. It is, at the very least, an alternative scheme that
implementors should evaluate when supporting EDF in real-time operating systems
or languages.

'Over 850 citation for these two papers are recorded in Google Scholar.



In the remainder of this paper we first introduce a system model in Section
2, resource sharing policies are reviewed in Section 3 and a review of scheduling
analysis is included in Section 4. DFP is defined, and its key properties explored, in
Section 5. Section 6 then addresses the implementation of DFP. A brief considera-
tion of mixed EDF and fixed priority scheduling is given in Section 7. Conclusions
are contained in Section 8.

2 System Model

A hard real-time system comprises a set of n real-time tasks {7;, 2, ..., 7, } execut-
ing on a uniprocessor, each task consists of a potentially unbounded stream of jobs
which must be completed before their deadlines. Let 7; indicate any given task of
the system, and let j; indicate any given job of 7;. Each task can be periodic or
sporadic. Tasks do not suffer release jitter (although this can easily be incorporated
into the model [22]).

All jobs of a periodic task have a regular inter-arrival time 7;, we call 7T; the
period of 7;. If a job for a periodic task arrives at time ¢, then the next job of 7;
must arrive at t + 7.

The jobs of a sporadic task arrive irregularly, but they have a minimum inter-
arrival time also denoted as T;, we again call 7} the period of 7;. If a job of the
sporadic task 7; arrives at time ¢, then the next job of 7; can arrive at any time at or
after t + T;.

Each job of task 7; requires up to the same worst-case execution time which
equals the task’s worst-case execution time C;. Each job of 7; has the same rela-
tive deadline which equals the task’s relative deadline D;; each D; could be less
than, equal to, or greater than 7;. These three cases being referred to as con-
strained deadlines, implicit deadlines and unconstrained deadlines. For uncon-
strained deadline tasks (and hence all tasks) it is assumed that no two jobs from the
same task are ever active at the same time. For this reason the term task will also
be used to refer to the current job from that task.

The smallest relative deadline in the system is denoted by D,,;,; the largest
by Dpqz- If a job of 7; arrives at time £, the required worst-case execution time
C; must be completed within D; time units, and the absolute deadline of this job
(referred to by lower case d;) is t + D;. The term deadline refers to an absolute
deadline of some job in the system.

Let U; denote the utilization of 7; (ie. U; = C;/T;), and define U to be the total
utilization of the task set, computed by U = > " | U;.

Contained within the system are m shared resources (!, ..., ™). Tasks may
access (under mutual exclusion) these resources, but we make no assumption as to



when each job accesses these shared resources during its execution. We do assume
however that tasks do not self-suspend whilst accessing a resource. The worst-
case execution time of task 7; when using resource rJ is denoted as C’f . Note that
C’ij = 0 implies that the task does not access the resource. The worst case execution
time for each task includes the time it takes executing with the resources it accesses
(so the quantity Z}"Zl CY is included in the parameter C;).

The set of tasks that may access resource 77 is denoted by A(r7). When a task
has access to a resource, the resource is said to be held, otherwise it is freez. In
contexts where there is only a single resource the symbol r (without a superscript)
will be used.

The inclusion of shared resources in the system model implies that tasks may
suffer blocking — which must be taken into account in the scheduling analysis.

According to the EDF scheduling algorithm, in the absence of blocking, the job
with the earliest absolute deadline has the highest priority and will be executed on
the processor. If more than one job has the same deadline then they are scheduled
in FIFO order; the one that has been in the system the longest time will execute
first. At any time, a released job with an earlier absolute deadline will preempt
the execution of a job with a later absolute deadline. When a job completes its
execution the system chooses, for execution, the oldest pending (released) job with
the earliest deadline.

3 Resource Sharing Policies

There are a number of protocols existing for accessing shared resources under the
EDF scheduling environment, for example: Stack Resource Policy (SRP) [2, 1],
Dynamic Priority Ceiling [8], Dynamic Priority Inheritance (DPI) [18], and Dy-
namic Deadline Modification (DDM) [11]. This last approach is closest to the one
proposed in this paper as it also involves changing the deadlines of jobs that ac-
cess resources. A comparison of DDM and DFP is given later in the paper (see
Section 5.4).

As indicated above, the SRP was proposed for accessing shared resources as
a generalisation of the Priority Inheritance Protocol (PIP) [16] and the Priority
Ceiling Protocol (PCP) [16]. It has the advantage that it can be integrated into
the EDF scheduling framework. Under PIP a task is blocked at the time when it
attempts to enter a critical section, while under PCP and SRP a task is blocked at
the time when it is released and attempts to preempt a lower priority task. This

2We do not use the terms locked and unlocked as actual operating system locks are not necessary
to ensure mutual exclusive access.



property of SRP reduces context switches and stack usage (hence the name of the
protocol).

As SRP is the most popular protocol to use with EDF we now describe in more
detail SRP for EDF-based systems. An example of the use of the protocol is also
provided. Note that SRP, as introduced by Baker, is a more general protocol that
can deal with other forms of dispatching urgency and resources with alternative
synchronisation constraints. Here we are only concerned with its use for EDF
scheduled systems and resources requiring mutual exclusion synchronisation.

3.1 The SRP Algorithm

Under SRP each job j; of task 7; is assigned a preemption level 7(7;). Under
EDF scheduling, the preemption level of a job correlates inversely to its relative
deadline, ie. 7(7;) < 7(7;) < D; > D;.

Define !, 72, ..., 7™ to be the non-preemptable shared resources in the system.
Each resource, 7, is assigned a ceiling preemption level denoted as I1(r7) which
is set equal to the maximum preemption level of any job that may access it. Let 7
denote the highest ceiling of all the resources which are held by some job at any
time ¢, that is:

7 = maz{I1(r7) || 77 is held at time t}.

Baker [2, 1] showed that the Stack Resource Policy (SRP) has the following prop-
erties (expressed as a theorem).

Theorem 1 (/2, 1]) If no job j; is permitted to start execution until w(7;) > T,
then:

1. no job can be blocked after it starts;
2. there can be no transitive blocking or deadlock;

3. no job can be blocked for longer than the execution time of one outermost
critical section of a lower priority job;

4. if the oldest highest-priority (ie. shortest deadline) job is blocked, it will
become unblocked no later than the first instant when the currently executing
Jjob is not holding any non-preemptable resource.

As a result of these properties, a job j; released at time ¢ can start execution only
if:

o the absolute deadline of this job (¢t + D;) is the earliest deadline of the active
requests in the task set; and



e the preemption level of j; is higher than the ceiling of any resource that is
held at the current time (ie. 7(7;) > 7).

This two stage test is in contrast to the single test required in DFP (see later
discussions).

3.2 [Example usage of SRP

Consider a three task (71, T2, 73), one resource () system, defined in the table be-
low. Note the ‘Access Time’ in the table refers to the time each task takes in
accessing the resource 7 (it is the duration of its critical section). Note 7; does
not access the resource. The ‘Arrival Time’ is when the current job of each task is
released for execution.

Task | C | D | T | Access Time | Arrival Time
T 3 10|20 0 3
T 9 120 |30 1 2
T3 10 | 30 | 40 4 0

Table 1: Example task Set

As D1 < Dy < Ds, the preemption levels are related as follows: (1) >
m(72) > 7(73). Since only 75 and 73 access , the ceiling preemption level of this
resource is given by II(r) < m(72).

Assume the job of 73 arrives at ¢ = 0 and locks the non-preemptive resource r
at time ¢ = 1. The highest ceiling of a locked resource at this time is now given
by: # = II(r) = m(m2). Let the job of 72 be released at time, ¢ = 2 (while the
resource is still locked). This job is not allowed to preempt 73 as its preemption
level is not high enough. At time ¢ = 3, 7y is released and does preempt 73 as its
preemption level is high enough (7(71) > II(r)) and its deadline is earlier than
that of 73 (13 < 30) and 72 (13 < 22).

The job of 7 will execute from ¢ = 3 to, say, ¢ = 6 when it completes.
Now 73 can resume execution. It will execute until £ = 8 at which point is frees
the resource and as a result 75 can preempt and continue its execution. At some
point it will access r but it is now guaranteed to be available. When the job of
To terminates, 73 can continue. See Figure 1 for a simple representation of the
execution timeline of these three jobs. Note the darker shared boxes represent the
execution of a job while holding the resource.
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In this example execution, 72 suffers blocking of duration 3 (ie. this is the
interval during which a task with a later deadline is executing). The worst-case
occurs when this task is released just after 73 locks the resource. In this situation
the blocking time would be 4.

4 Review of EDF Schedulability Analysis

This section 3 describes the previous research results on exact schedulability anal-
ysis for EDF scheduling with arbitrary relative deadlines (ie. D unrelated to T'). In
1980, Leung and Merrill [12] noted that a set of periodic tasks is schedulable if and
only if all absolute deadlines in the interval [0,max{s; }+2H] are met, where s; is
the start time of task 7;, min{s;} = 0 and H is the least common multiple of the
task periods. In 1990, Baruah et al [4] extended this condition for sporadic task sys-
tems, and showed that the task set is schedulable if and only if: V¢ > 0, h(t) < ¢,
where h(t) is the processor demand function given by:

- t — D,

h(t) ; max{0,1 + L T

Using the above necessary and sufficient schedulability test, the value of ¢ can
be bounded by a certain value, we refer to this value as the upper bound for task
schedulability. The following theorem introduces one of these upper bounds (note
the total utilisation of the task set has to be strictly less than 1).

J}Cz’- ey

Theorem 2 ([20]) An arbitrary deadline task set with U < 1 is schedulable if and
only if
Vit < Lo, h(t) <t,
where
> i (T — Di)Uz‘}
1-U ’

La:max{(Dl_Tl)a"'v(Dn_Tn)v (2)

3The review material presented in this paper is adapted from [22].



As the processor demand function can only change at the absolute deadlines of
the tasks, only the absolute deadlines require to be checked in the upper bounded
interval.

In 1996, Spuri [17] and Ripoll et al [9] derived another upper bound (L;) for
the time interval which guarantees we can find an overflow (ie. deadline miss)
if the task set is not schedulable. This interval is called the synchronous busy
period (the length of the first processor busy period when all tasks are released
simultaneously at the beginning of the period). However, Ripoll et al [9] only
considered the situation where D; < T;. The length of the synchronous busy
period can be computed by the following process [17, 9]:

W =%, 3)

n wm
m+1 __ .
w —ZLJQ, )
=1
the recurrence stops when w” ! = w™, and then L; = w™*!.

Since the calculation of Ly has an iterative form, compared with the low com-
plexity (O(n)) of the calculation of L,, we should avoid using L;, whenever
U # 1. Moreover, in extensive simulation studies [20, 21] it was nearly always
the case that L, < L.

4.1 Processor Demand Analysis for EDF+SRP
Baker [2, 1] provided a sufficient schedulability condition for EDF+SRP; a system

is schedulable if
—4+2E) <1
o (TR <

where By, is the maximum blocking time of 71; note for this equation the tasks are
indexed according to their relative deadline parameter.

This sufficient test requires that D; < T; for all tasks, and it is utilization
based; a set of experiments [21] showed that nearly all task sets which are ran-
domly generated cannot be accurately evaluated by such a test. Hence, an exact
schedulability analysis which is based on the processor demand analysis is needed
by the EDF+SRP scheduling framework.

Let b(t) be a function representing the maximum time a job j; with relative
deadline Dy, < t may be blocked by job j, with relative deadline D, > t in any
given time interval [0,t].



Spuri [17] showed that a condition for the schedulability of a task set is that for
any absolute deadline d; in a synchronous busy period:

h(d;) + b(d;) < d;.

The definition of b(t) given by Baruah [3] is more intuitive. Let C,, j denote
the maximum length of time for which task 7, needs to hold some resource that
may also be needed by task 7. Then b(¢) can be defined and calculated by:

b(t) = max {Cal|Da > t, Dy, < t}. )

Note that if ¢ is greater than the maximum relative deadline (ie. ¢ > D,42)
then the blocking term, b(t), is zero.

The maximum interval that must be consider for schedulability can again be
derived from the minimum of the two methods of obtaining the upper bound; ie.
L = min(Ly, L}) where the L, term has been modified as a result of the blocking
that can occur in the interval up to Dy, [22]:

LZ = maX{(Dl - Tl)a ) (Dn - Tn)v

MaXd, < Dyas {0(di)} + 205 (T — DZ-)U,-}

1-U '
In a given interval (eg. between O and L), there can be a very large number of abso-
lute deadlines that need to be checked. This level of computation has been a serious
disincentive to the adoption of EDF scheduling in practice. Fortunately a much less
computation-intensive test known as Quick convergence Processor-demand Anal-
ysis (QPA) [20] has recently been proposed. Extensive experiments [21] reported
that the required volume of calculations needed to perform an exact schedulability
analysis can be exponentially decreased by the use of QPA.

(6)

5 Definition of the Deadline Floor Protocol

For ease of presentation we first define the Deadline Floor inheritance Protocol
(DFP) for systems that do not have nested resource usage. This restriction is then
removed in Section 5.5.

5.1 [Initial Definition of DFP

Given an application defined by a set of tasks (7;, 72, ..., T), a set of resources
(r, 72, ...,r™) and the task-resource access relation, A, the Deadline Floor Proto-
col is defined as follows:



1. Each resource, 7%, has a relative deadline D’ given by:
D' = min{D; : 1; € A(r")}.

2. When a task 7; released at time s accesses resource r*attime t (so s < t) its
relative deadline is immediately reduced to D?, as a result its active absolute
deadline is also (potentially) reduced; that is d; < min{t + D", s + D;}.

3. When this task frees the resource its deadline immediately returns to its orig-
inal value, thatis d; < s + D,.

Note that a task accessing a resource close to its deadline may not have its
deadline reduced. For example, a task released at time 42 with an absolute deadline
of 84, that accesses a resource with a deadline floor value of 8 will have its deadline
reduced to 60 if it accesses the resource at time 52, but will stay with its deadline
of 84 if it accesses the resource at time 80.

The static absolute deadline of a job released at time ¢ is termed the job’s base
deadline. A task also has a dynamic active deadline. When accessing a resource
the task’s active deadline may be reduced to reflect the resource’s relative deadline
floor. When no resources are held, the active deadline of a job is the same as the
base deadline. Tasks are scheduled according to their active deadlines.

A comparison with the Priority Ceiling Protocol (PCP) for fixed priority (FP)
scheduled systems shows that the protocols are structurally equivalent. Under PCP
a resource has a priority equal to the highest priority of any task that uses it. On
entry to the resource the task’s priority is raised to the ceiling value, on exit its
priority returns to its previous value. As dispatching urgency is reflected by higher
priority under FP, and earlier deadline under EDF, the use of a ceiling value for the
former and a floor value for the latter is to be expected.

5.2 An example of the use of DFP

Before proving the significant properties of DFP, the example used earlier to illus-
trate SRP (see Table 1) will re-interpreted for DFP.

First the resource » must be given a deadline floor. It is used by 72 and 73, so
its relative deadline is given by D" < min(20,30) = 20. Att = 1, 73 (which was
released at ¢ = 0) accesses r and as a result its active deadline is reduced from 30
to 21. Att = 2, 7 is released with deadline 22, it will not preempt as its deadline
is later than 73’s current active deadline. Again at time ¢ = 3, 7 is released with
deadline 13, it will preempt (as 13 < 21). This job will execute until it completes
at which point 73 will continue until it releases the resource; its active deadline will
then change from 21 to 30 and as a result 7, will preempt (as 22 < 30).
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Note, in this example, the same order of execution of the tasks occurs for DFP
and SRP, however DFP only manipulates deadlines, SRP requires preemption lev-
els as well. Under DFP, like SRP, 75 suffers its blocking at its release before it
actually starts executing. Note also that, in general, the two protocols do not give
rise to the same execution sequences.

5.3 [Initial Properties of DFP

First we show that the protocol itself ensures mutual exclusive access to any re-
source. And that a task/job is never blocked once it starts executing.

Lemma 1 Whilst accessing a resource, a task cannot be preempted by any other
task that could access the same resource.

Proof. Assume task 7; accesses resource r (with deadline ceiling D") at time ¢.
Assume, to construct a contradiction, that task 75, preempts 7; (either directly or
preempts some other task that has preempted 7; etc.) at time ¢’ and then attempts
to access 7.

To preempt, d, < dj and t' > t. Att’, 7; hold r and hence d; = t + D". If
T € .A(?") then D" < Dy.Hencedy <t+ D" <t+ Dy, < t'+ D;, = dy,, which
provides the contradiction O.

Lemma 2 No task can be blocked after it starts executing.

Proof. Assume task 7; is released at time ¢, starts executing and will subsequently
access resource . Assume, to construct a contradiction, that task 7, released before
t holds r. As tasks cannot self-suspend, 7, must be runnable.

As both tasks access the resource, D" < min{D;, Dj}. Let 75, access the
resource at time ¢/, ¢’ < t. As 7, € A(r) then d, = t' + D". To preempt 7y, T;
must have an earlier deadline, d; < dj. Hence d; = t + D; < t' + D". But
t'+ D" <t'+D; <t+D;=dj;sod; < d; which provides the contradiction 0.

Next we note that when released at most one resource can be held.

Lemma 3 When released for execution at most one resource needed by the re-
leased task (7;) will be held by another task with a longer deadline than ;.

Proof. Assume task 7; is released at time ¢. Let a resource () be held by task 7,

with access time ¢’ and t < t. For a second resource to be accessed by another
task, 7,, released at time ¢”, it must preempt 75; so t’ < t” < .

11



To preempt, d,, = t"+D,, < t'+D" < t'+D; < t+D; = d;. So any task that
preempts another task that holds a resource needed by 7; cannot have a deadline
greater than 7;. This is a stronger property than that required by the Lemma O.

It is now possible to state, in the form of a theorem, the basic property of DFP.

Theorem 3 When any task 7; is released for execution at most one other task with
a base deadline greater than that of 7; will have an active deadline less than that

of 7.

Proof. Follows from the proof of the previous lemma O.

5.4 Comparing DFP and DDM

Having introduced DFP it is now possible to compare it with the protocol (DDM)
introduced by Jeffay in 1992 [11]. The formulation of DDM is very different, but
the effect for non-nested resources is similar. Under DDM a job is split into a
number of phases. Each phase involves the use of at most one resource. For each
phase a phase-specific deadline is computed based on the shortest deadline of all
the other jobs that use that phase’s resource. In effect this means that a deadline
floor value is computed for each resource. Under DDM each phase of a job has a
distinct deadline, under DFP each resource access has a distinct deadline. In mod-
eling terms these are equivalent; but in terms of practice, DFP by its association of
a deadline with the resource, provides an easy implementation scheme (see later
discussion) and allows complex program structures to be accommodated. For ex-
ample, branching structures where each branch accesses a different resource. More
significantly, DFP is defined to work with nested resource accesses (see next sec-
tion), DDM does not support phases within phases. Also the treatment of DFP in
this paper:

e Uses a different formulation and proof structure; one that is arguable more
straightforward to follow (the paper on DDM [11] does not include full de-
tails of the proofs for multiple phased tasks).

e Shows an equivalence between DFP and the optimal SRP.
e Shows how to compute the optimal blocking term for schedulability analysis.

e Shows how the protocol can be incorporated into a concurrent programming
language.

12



5.5 Nested Resource Usage

In a general system, resources can make use of other resources and hence nested
relationships are possible. This could lead to transient blocking and even dead-
locks. Here we show that DFP, like SRP, prevents these conditions from arising.
To achieve these useful properties, however, resources must be used in a strictly
nested way. So, for resources A and B:

access(A) access(B) ... release(B) release(A)
is acceptable, but
access(A) access(B) ... release(A) release(B)

is not.

To cater for nested resource usage the definition of the protocol must be modi-
fied slightly.

1. Each resource, r*, has a relative deadline D’ given by:
D' = min{D; : 1; € A(r")}.

2. When a task 7; accesses resource 7 at time ¢ its relative deadline is imme-
diately reduced to D?, as a result its active absolute deadline is also (poten-
tially) reduced; that is d; < min{t + D d;}. Its initial deadline (before
being reduced) is held in the variable d;-

3. When this task frees the resource its deadline immediately returns to its pre-
vious value, that is d; < d;-.

An OS implementation could store the d; values as part of the resource or on a
per-task stack (of maximum size equal to the depth of the resource nesting).

5.6 Further Properties of DFP

First we note that Lemma 1 and 2 hold for the extended definition of the protocol.
Lemma 3 needs to be reformulated. Where resource usage is nested we introduce,
following Baker, the term outermost resource to indicate the one that is called
directly by the task (not via another resource, or while the task is holding another
resource). Note the execution time within an outermost resource includes the time
spent executing within the inner resources.

13



Lemma 4 When released for execution at most one outermost resource needed by
the released task (7;) will be held by another task with a longer deadline than ;.

Proof. Assume task 7; is released at time ¢. Let an outermost resource (7°) be held
by task 75 with access time ¢’ with ¢’ < ¢. For a further resource to be accessed by
another task, 7,, released at time ¢, 7, must preempt 73; so ¢’ < ¢ < .

To preempt, d, =t + D, <t + D° <t + Dj < t+ D;j = d;. So any task
that preempts another task that holds an outermost resource needed by 7; cannot
have a deadline greater than 7;. This is sufficient to prove the Lemma O.

Next we show the protocol leads to behaviour that is free of transitive blocking
and deadlocks.

Lemma 5 The DFP protocol is free from transitive blocking and deadlocks.

Proof. In order to get transitive blocking or deadlock it must be the case that a task
gains access to a resource and then attempts to access another resource but that
resource is held by another task. Lemmas 2 and 4 shows that this situation cannot
occur 0.

The final property to note concerns a bound on the blocking suffered by the
most urgent task.

Lemma 6 [f the oldest earliest deadline job is blocked, it will become unblocked
no later than the first instant when the currently executing job is not holding any
resource.

Proof. Assume task 7; is released at time ¢. It is blocked by task 7, as 7, is holding
an outermost resource r° that it accessed at time ¢'. So, ¢’ < t, d; < t’ + Dy, but
d; > t' 4+ D° (as 7y is blocking 7;). Task 7, may be preempted by shorter deadline
tasks (that by the action of the protocol will not be accessing r*) but as some time
t” it will free the resource. At this time the deadline of 7, will return to its basic
value (' + Dy) and all blocked tasks (including 7;) will have deadlines earlier than
this value. The one with the shortest deadline will execute next. If there are a
number of tasks with the same (earliest) deadline then the one that has been in the
system the longest time (ie. the oldest job) will execute (unless a shorter deadline
job is released at the same instant) 0.
It is now possible to prove a theorem equivalent to the one for SRP.

Theorem 4 The Deadline Floor inheritance Protocol has the following properties

1. no job can be blocked after it starts;

14



2. there can be no transitive blocking or deadlock;

3. no job can be blocked for longer than the execution time of one outermost
critical section;

4. if the oldest earliest deadline job is blocked, it will become unblocked no
later than the first instant when the currently executing job is not holding
any resource.

Proof. Follows directly from Lemmas 1, 2, 4, 5 and 6 O.

5.7 Feasibility Analysis for EDF+DFP

Here we derive schedulability analysis for EDF+DFP by following the strategy
employed by Baruah for EDF+SRP [3]. The general approach is to postulate the
circumstances in which a deadline is missed, and then use this situation to derive a
worst-case bound for schedulability. We will show that this bound for EDF+DFP
is the same as that of EDF+SRP.

In order to concentrate on the blocking term, assume the task set under con-
sideration is schedulable if resource usage is ignored. That is, Vs : h(s) < s.
Assume a first deadline miss occurs at time t. So h(t) 4+ b(t) > t. The function
h(t) is defined by equation (1), we need a formula for b(¢) for DFP equivalent to
the one given earlier for SRP (equation 5).

Let ¢’ be the last time, before ¢, that there were no pending job executions
with arrival times before ¢’ and deadlines before or at t. So the processor is busy
between t' and ¢ with jobs that have deadlines at or before ¢. Without loss of
generality assume ¢’ is time 0. The maximum load on the system at time ¢ assumes
all tasks giving rise to jobs with deadlines at or before ¢ are released at time 0.

For b(t) > 0, a job released at or before 0 with a deadline after ¢ must have
accessed a resource before time O and inherited a deadline so that its deadline is
reduced to be at or before ¢. It follows from the properties of DFP discussed earlier
that there is at most one job with a deadline after ¢ that executes and accesses a
resource at or before time 0 and executes with the resource in the interval [0,t). A
formula for b(t) is therefore of the form:

b(t) = max{Cj},

where the max is taken over all tasks and all resources that can give rise to blocking
being experienced at the time (Z) a deadline is missed.

Let any job that can cause blocking come from task 7;. If 7; is released and
accessed resource r just before time 0 then blocking could occur at time ¢ if D; > ¢
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Figure 2: Case 1

(the deadline of 7; is 0 + D;) and D" < ¢ (the deadline of 7; will be reduced to
0 + D" when the resource is held).

However, this assumes that the resource is accessed at time 0. If it is accessed
earlier then its inherited deadline could have a smaller value and hence blocking
could occur for values of ¢ < D". For example, if D" = 10 and the resource is
accessed at time -6 then the active deadline of 7; would be 4. Nevertheless, we
will now show that accessing the resource at time O is the worst-case, and that this
leads to the result that the worst-case blocking of EDF+DFP is the same as that
for EDF+SRP. The notion of worst-case here means that if task 7; when accessing
resource r can cause a deadline to be missed before time D" then it will also cause
a deadline miss at D"; hence potential blocking times before D" do not need to be
considered.

Lemma 7 If a task 7; accesses a resource r at time 0 and there is no deadline miss
at or after D" then there will be no deadline miss before D" even if T; accesses r
before time 0.

Proof. Assume that the size of the blocking factor, the duration of the critical
section of resource r, is B,ie. b(D") = B = C7. Also assume that the resource 1 is
accessed at a before time O; ie. at time —a. To construct a counter example assume
that there is a deadline miss at time d,,;5s, With d,,;ss < D", but no deadline miss
at D".

The proof will be structured into three cases (the better to illustrate the intuition
behind the proof).
Case 1. Assume only 7; executes between the resource being accesses at time -a
and time O (see Figure 2 for a simple three task system that has this property). Let
B! be the duration of execution before time 0, and B? after, so B! + B2 = B.
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Figure 3: Case 2

To cause blocking at time d;,;ss the inherited deadline of 7; must be less than
or equal to dy;ss. Thatis, —a + D" < dyn;ss, implying —B!' 4+ D" < d,,;ss and
hence dyiss + B > D".

To cause a deadline miss at time d,,,;ss then

h(dmiss) + B2 > dmiss

hence

h(dmiss> + B2 + Bl > dmiss + Bl
giving

h(dmiss) + B > dmiss + Bl Z DT-
Now h(D") > h(dmiss) SO

h(D")+ B > D"

which implies a deadline miss at D" and provides the contradiction.

Case 2. To bring the deadline miss even earlier, the resource must be accessed
earlier. This can only happen if 7; is preempted by a shorter deadline task (73) after
it has accessed the resource (after —a). In Case 2 we assume a single preempting
job from task 71 (see figure 3 for an illustration of this possibility in which 7 is
released at time — f with —f > —a).

If the releases of 7; and 75, are now postponed (moved to the right in the figure)
by the amount (D" — d,s5), Which can occur as D" — dn;ss < a, then the initial
processor demand at time d,,;ss Will be moved to time D”. Moreover there will
also be the additional demand coming from the (partial) executions of 7; and 7
moving beyond time O: this is equal to the duration of the release postponements
(D" — dyniss). It follows that

h(DT) + b(DT) 2 h(dmzss) + b(dmzss) + (DT - dmiss)7
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but as there is a deadline miss at d,,;ss, SO
h(dmiss> + b(dmzss> > dmiss

hence
h(Dy) + b(DT) > dmiss + DT - dmiss

implying
h(D") 4+ b(D") > D",
which implies a deadline miss as D" and provides the contradiction.

Case 3. Finally we now consider a number of jobs from any number of tasks
interfering with 7; before time 0 while it has hold of the resource. By the same
argument used in Case 2 if all the job executions before time 0 are postponed by
(D" — dyn;ss) then the deadline miss at d,,,;5s Will move to a deadline miss at D".

This completes the proof OI.

This lemma shows that the assumption that the resource is accessed by 7; just
before time O captures the worst-case. Moreover, the interval over which this task
can cause blocking is maximised by also assuming that 7; is actually released just
before time 0. It can then cause blocking at any point in the interval [D", D;). The
magnitude of the blocking term is determined by the action of 7; whilst accessing
resource 7. Let the blocking term identified as B in the above proof be represented
more precisely by C7 (the time task 7; is executing with resource r).

Returning to the deadline miss at time ¢. For this to occur there must be a
blocking value (b(t) > 0). To prevent a deadline miss the maximum blocking term
must be bounded by ¢ — h(t), ie b(t) < ¢t — h(t). As only one task can be causing
blocking, the maximum blocking term at time ¢ is given by:

b(t) = max {C}||D; > t,D" < t}, @)
where the max is taken over all tasks and all resources.

Theorem 5 The following condition is sufficient for guaranteeing that all dead-
lines are met under EDF+DFP:

t—D;

1

¥t >0:b(t)+ Y max{0,1+ { J}Ci <t, (8)
=1

where b(t) is computed by equation(7).

Proof. Follows directly from above O.
It is now possible to show that the blocking term for EDF+DFP is the same as
that for EDF+SRP. The protocols are therefore equivalent.
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Theorem 6 The worst-case processor demand for EDF+DFP is the same as that
computed by EDF+SRP.

Proof. Recall the definition of the blocking term for SRP given in Section 4.1
(equation 5).
VIR (t) = max {Cy x| Do > t, Dy, < t}.

where C, 1. denote the maximum length of time for which task 7, needs to hold
some resource that may also be needed by task 7 (with Dy < t).
For DFP the blocking term (using the same task names) is

bPEP (1) = max {C"|| D, > t, D" < t}.

If in H5BP (t) task 7 may access a resource, r, then the deadline floor of this
resource (D) must have the property: D" < Dy, < t. And hence b”*'P(t) would
also contain this term and C/, = C, . Similarly if a resource is contained in the
bPEP (t) term then there will be a corresponding task in b7 (¢). This completes
the proof 0.

Note that the above shows that the two protocols (DFP and SRP) are equivalent;
but they are not identical. They can give rise to different execution sequences
at run-time. Consider the example given in Table 1 (which resulted in identical
behaviour from the two protocols). Now change the relative deadline of the first
task to 18 (ie. D7 = 18) rather than 10. The execution sequence of SRP remains
the same (as depicted in Figure 1). But under DFP, 7; will not preempt 73 as its
deadline (21 = 3 + 18) is not strictly less that the current inherited deadline of 73
which is also 21. Nevertheless 73 will still complete before its deadline.

Observation

Although the worst case blocking occurs when the resource access occurs at the
same time as the task is released, this does not mean that there is an equivalent
protocol in which the deadline of the job, when accessing a resource, is reduced
to ‘job release time + deadline floor’ (rather than ‘now + deadline floor’). With
this protocol a job could be released ‘early’, be preempted by jobs with deadlines
greater than ¢ (the hypothesised time of the deadline miss) and then be allowed to
access the resource at time 0 (with an inherited deadline close to, or even before 0.
The blocking term would now have to be included for arbitrary small deadlines.

The DFP approach works because the deadline inherited value is only com-
puted at the time the resources is actually accessed. So simultaneously released
jobs with deadlines less that D" do not suffer blocking.
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6 Implementation of DFP

To implement EDF scheduling, the associated language run-time support system or
RTOS must keep a ready queue, ordered by absolute deadline, of all the runnable
tasks. When a task is released for execution (for example when a delay statement
expires) its absolute deadline must be computed and the task is then inserted at the
appropriate place in the ready queue. The task as the head of the queue has the
earliest deadline and is therefore chosen for execution.

To extend this implementation scheme to incorporate DFP is straightforward.
Each resource access requires a pre and post protocol that manipulates the deadline
of the client task. The primitive to change the task’s deadline is already present in
the RTOS (if it supports EDF at all). On exiting a resource the post protocol must
return the task’s deadline to the value stored during the pre protocol. This simple
scheme clearly deals with nested resource usage as long as the relationship between
the resources is one of strict nesting. The following gives pseudo code (using Ada)
that would need to be executed in the RTOS kernel for these pre and post protocols:

—-— pre protocol:
D := Get_Deadline; —— read the absolute deadline of the task
New_Deadline := Clock + Deadline_Floor;
if New_Deadline < D then

Set_Deadline (New_Deadline); —-- set new absolute deadline
end if;

—-— code for accessing the resource

—— post protocol:
Set_Deadline (D); —-—- re-set old absolute deadline

The constant Deadline_Floor holds the deadline floor value for the resource
(it would be initialised at the beginning of the program). The subprograms Get _
Deadline, Clock and Set _Deadline deliver the behaviours implied by their
names.

The overheads of the protocols are simply the cost of reading the local real-
time clock plus the cost of two deadline changes to the executing task. Note the
first deadline change, as it is to the executing task and is a deadline reduction,
cannot lead to a context switch. Only the re-setting of the old deadline could result
in a task switch (if a more urgent task had been released during the execution of the
resource’s code) and this is a task switch that would occur anyway. The re-setting
of a task’s deadline could be accommodated efficiently by retaining a link to the
original or previous ‘position’ of the task in the ready queue. No sorting of the
ready queue or expensive insertion is required.

The implementation of DFP is no more complex than the priority ceiling proto-
col for fixed priority scheduling which is available via many RTOSs and program-
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ming languages such as Java and Ada. By comparison, under SRP a task must
have a deadline and a consistent preemption level. The Ada programming lan-
guage has implemented SRP as part of its support for EDF scheduling [6]. To give
a complete implementation for SRP a programming language must specify what
happens to tasks that are released but which do not preempt the currently executing
task. For example, a task could chain through a set of nested resources, during this
time a number of other tasks could be released with different preemption levels
and deadlines. To ensure that the right order of execution is maintained Ada uses
ready queues at each preemption level. The protocol is not intuitive; indeed an
early version of the protocol was shown to be incorrect [19]. Moreover, an initial
implementation of the run-time was shown to be inconsistent with the language
rules[10].

The correct rule for preemption is defined by the following text in the reference
manual for Ada [5]: A task T is placed on the ready queue for priority level P (note
a resource is represented by a protected object in Ada), where P is defined by

the highest priority P, if any, less than the base priority of T such that
one or more tasks are executing within a protected object with ceiling
priority P and task T has an earlier deadline than all such tasks and
all other tasks on ready queues with priorities strictly less than P.

Of course this quote is without its context, nevertheless it illustrates the complexity
of embedding SRP into the semantics of a programming language. By comparison
the priority ceiling protocol (for fixed priority scheduling) is straightforward to
define.

6.1 Preliminary Evidence

It has not been possible to modify an existing operating system (or language run-
time support system) to implement DFP. Nevertheless some preliminary experi-
mentation has been possible using the Marte [14] run-time system for Ada* (which,
as noted above, supports SRP).

To give an indication of the overheads involved in supporting SRP and DFP a
simple program is executed involving a single task repeatedly entering and leaving
a simple resource. The resource chosen for the experiments is a shared integer
variable that is updated by the task. The experiments were undertaken on a Pentium
4 board with a single 2.4GHz processor. Both elapse time and execution time
were measured as Ada provides an API for both of these metrics (for a single task
program these values should, and indeed were, almost identical).

4 Available from http://marte.unican.es/.
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The experiment had three phases, all used EDF scheduling. First, the resource
is encapsulated in an unprotected procedure, this gives a base-line cost for the be-
haviour of the program. Second, the resource in encapsulated in a protected object
that implements SRP (as defined by the Ada language). Finally, the unprotected
procedure is augmented by the pre and post protocols outlined in the pseudo code
above. This implements DFP at the application-level.

The program (included in the Appendix) was run a number of times, leading
to results being presented to four significant figures. Table 2 has these results. All
times are in seconds and are for 1,000,000 calls on the resource.

Phase Elapse Time | Execution Time
Procedure | 0.008607 0.008607
SRP 2.094 2.094
DFP 1.555 1.555

Table 2: Experimental Results

These results indicate that SRP and DFP lead to similar timings. Both give
rise to execution costs significantly greater than that of the standard procedure call.
For these experiments DFP is approximately 75% of the cost of SRP. This is a
significant gain. If DFP was directly supported by the RTOS it is expected that
its overhead would be much lower as a significant proportion of the cost in the
experiments is involved in converting the reading of the hardware clock into a
value of the appropriate application-level type. If the protocol were executed in
kernel mode these cost would not arise.

There are also further costs involved with implementing SRP within a pro-
gramming language’s semantics. Although in theory a task should never access
a resource with an active priority higher than the ceiling, at run-time a test must
be made to check that this is indeed the case (as programs cannot be assumed to
be correct). If the priority is too high then an exception could be raised or a error
return value used to identify the error. This test has a cost. With DFP no equivalent
test is needed as a task can enter a resource with an active deadline shorter than the
floor value. In this situation all that occurs is that the task’s active deadline is not
reduced — a saving in overhead.

The results presented above are however preliminary and involve a single Ada
implementation. Nothing more is claimed than that DFP has the potential to have

>To be reliable, this code must not be preempted between reading the clock and setting the new
deadline. This cannot be guaranteed for application-level code but would be easy to implement in
the kernel of an RTOS or language run-time support system.
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much lower overheads than SRP.

In terms of understandability, it is difficult to argue that one protocol is intrinsi-
cally easier to understand than another. However the experience of supporting SRP
within the Ada language did show that SRP is open to misinterpretation. Moreover,
in an educational context within courses on scheduling, the intuition behind SRP
does seem to be difficult for students to grasp, particularly with nested resource
usage.

7 Systems Combining EDF and FP

A comparison of EDF and FP (fixed priority) could reasonable conclude that EDF
has the advantage of optimal processor utilisation, whilst FP is more deterministic
and hence predicable in overload conditions. This leads to a hybrid scheduling
scheme in which a small number of high integrity tasks run under FP, but the bulk
of the tasks execute under EDF at a system priority below that of the FP tasks. This
type of scheme can by programmed in Ada and analysis has been provided for the
combined set of tasks [7].

In this work ([7]) tasks are divided into two sets (EDF and FP) but they are al-
lowed to share resources (protected objects in Ada). This sharing in managed by an
implementation of SRP. Under DFP a different approach could be defined in which
a protected object (PO) has both a priority ceiling and a deadline floor. As a task
enters a PO both its priority and deadline are changed to the PO’s ceiling/floor val-
ues. In this way the requirements of the EDF and FP protocols are simultaneously
satisfied.

8 Conclusion

In this paper we have introduced a new protocol for controlling access to shared
resources within the EDF scheduling framework. We have shown that this protocol
is equivalent to the Stack Resource Protocol which is the defacto protocol to use
with EDF. The new protocol requires all shared resources to have a relative dead-
line defined; this is the minimum (floor) of the relative deadlines of all tasks that
use the resource. When a task accesses a resource at time ¢ its absolute deadline is
immediately reduced to the value ¢+ the deadline floor of the resource. The result-
ing immediate deadline floor inheritance protocol is identified here by the shorter
title: Deadline Floor Protocol, DFP. It has an identical form to the immediate pri-
ority ceiling inheritance protocol (usually shortened to PCP) that is the standard
approach to use within the fixed priority scheduling framework.
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The Deadline Floor Protocol has all the effective properties of the Stack Re-
source Protocol. On a uniprocessor this means that tasks suffer at most one block
from a longer deadline task, this block occurs before the task actually starts execut-
ing, all resources are accessed under mutual exclusion without the need for further
locks, and the protocol itself ensures deadlock free execution.

The motivation for defining DFP is that it leads to a straightforward and effi-
cient means of implementation. The single notion of a task’s deadline is all that is
needed to define and support the protocol. By comparison, the Stack Resource Pro-
tocol requires deadlines and preemption levels, and these preemption levels must
be assigned in a manner consistent with the deadlines. The implementation must
then keep track of both deadlines (for EDF scheduling) and the maximum system
preemption level (for SRP control).

This paper has not consider multiprocessor systems. It is however possible to
envisage multiprocessor versions of the protocol in the same may that PCP has
give rise to a number of such multiprocessor protocols. The development of these
protocols for DFP is part of future work.
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Appendix - Code for the Experiments

The code used for the experiments discussed in Section 6.1 is as follows:
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pragma Task_Dispatching_Policy (EDF_Across_Priorities);
pragma Locking_Policy (Ceiling_Locking);
with Ada.Execution_Time; use Ada.Execution_Time;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Real_Time; use Ada.Real_Time;
with Ada.Dispatching.EDF; use Ada.Dispatching.EDF;
procedure DFP1 is

package Dur_IO is new Fixed_IO(Duration);

use Dur_IO;

task P is
pragma Priority(2);
end P;
New_Deadline, D : Time;
Deadline_Floor : Time_Span := Milliseconds (100);

procedure Work (X : in out integer) is

begin
X =X+ 1;
end Work;

procedure Work2 (X : in out integer) is

begin
D := Get_Deadline;
New_Deadline := Clock + Deadline_Floor;

if New_Deadline < D then
Set_Deadline (New_Deadline);
end if;
X 1= X + 1;
Set_Deadline (D) ;
end Work2;

protected Worker is

pragma Priority(12);

procedure Work3 (X : in out integer);
end Worker;

protected body Worker is
procedure Work3 (X : in out integer) is

begin
X =X+ 1;
end Work3;

end Worker;

task body P is
CPU, CPU_New : CPU_Time;
Start, Finish : Time;
V : integer;

begin
delay 1.0;
vV := 0;
Start := Clock; -- this is the real-time clock
CPU := Clock; —-- this is the execution time clock
Set_Deadline (Start + Seconds (20));
for I in 1 .. 1000000 loop
Work?2 (V) ;

27



end loop;

Finish := Clock; CPU_New :=
put (To_Duration (CPU_New-CPU)) ;

put (To_Duration (Finish-Start)); new_line;
put (V) ; new_line;

Clock;
new_line;

delay 1.0;
vV := 0;
Start := Clock; CPU := Clock;
Set_Deadline (Start + Seconds (20));
for I in 1 .. 1000000 loop
Work (V) ;
end loop;
Finish := Clock; CPU_New := Clock;
put (To_Duration (CPU_New-CPU)); new_line;

)
put (To_Duration (Finish-Start)); new_line;
put (V); new_line;

delay 1.0;

vV o:= 0;

Start := Clock; CPU := Clock;

Set_Deadline (Start + Seconds (20));

for T in 1 .. 1000000 loop
Worker.Work3 (V) ;

end loop;

Finish := Clock; CPU_New := Clock;

put (To_Duration (CPU_New-CPU)) ;
put (To_Duration (Finish-Start)); new_line;
put (V) ;
end P;
begin
put_line("Main_Started");
end DFP1;

new_line;

A typical output of the program is

Main Started
1.554598314
1.554600327

1000000
0.008607417
0.008607353

1000000
2.094458013
2.094458002

1000000

The measurements reported in this paper follow from a set of runs. Note that
occasionally the times obtained for the SRP measurements (2.094458 in the above)
were somewhat smaller (approximately half). This only happened rarely and no
explanation for the anomaly could be found.
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