
A Schedulability Compatible Multiprocessor
Resource Sharing Protocol - MrsP

A. Burns and A.J. Wellings
Department of Computer Science,University of York,York, YO10 5GH, UK

Abstract—Lock-based resource sharing protocols for single
processor systems are well understood and supported in pro-
gramming languages and in Real-Time Operating Systems. In
contrast, multiprocessor resource sharing protocols are less well
developed with no agreed best practice. In this paper we propose
a new multiprocessor variant of a protocol based on the single
processor priority ceiling protocol. The distinctive nature of the
new protocol is that tasks waiting to gain access to a resource
must service the resource on behalf of other tasks that are waiting
for the same resource (but have been preempted). The form of
the protocol is motivated by the desire to link the protocol with
effective schedulability analysis. The protocol is general purpose,
but is developed in this paper for partitioned fixed priority
systems with the sporadic task model. Two methods of supporting
the protocol are described, as is a prototype ‘proof of concept’
implementation for one of these schemes.

I. INTRODUCTION

Multiprocessor platforms are becoming more common and
are currently the subject of much scrutiny from the real-
time academic community [9]. Although there has been some
success in determining the necessary support for scheduling,
the issue of how best to support multiprocessor lock-based
resource control protocols is far from clear. New results are
emerging; indeed, there is a plethora of proposed schemes (see
Section II); a consensus is, however, far from being realised.

In this paper, we take a somewhat different stance on the
seemingly insurmountable problem of resource control on
multiprocessor platforms. We first develop a schedulability-
focussed viewpoint to motivate what properties should be
provided by a resource sharing protocol for multiprocessor
systems. An abstract architecturally neutral protocol is then
defined that meets these requirements. Two potential imple-
mentation schemes for the protocol are then described. For
one of these, a prototype implementation on a 4 core platform
has been developed and is outlined in the final main section
of the paper.

The paper is structured to follow the above argument.
Initially, however, a review of existing protocols is provided
(this is adapted from [13]), and then in Section III the system
and task models are defined. Following the main sections of
the paper, conclusions are provided in Section IX.

II. MULTIPROCESSOR RESOURCE CONTROL PROTOCOLS

Resource control policies for single processor systems are
well understood. In particular:

Priority Inheritance Protocol (PIP) [18] – defined for pre-
emptive fixed priority-based (FP) systems but also can be used

with any system with static task-level measures of execution
eligibility.

Priority Ceiling Protocol (PCP) [18] – defined for FP
systems but also can be used with any system with static task-
level measures of execution eligibility.

Non-preemptive Critical Sections (NCS) – can be used with
any dispatching policy.

Stack Resource Policy (SRP) [3], [2] – defined as an
extension to PCP for EDF systems but can be used with any
static job-level execution eligibility. The SRP when applied
to FP systems is sometimes called Priority Ceiling Emulation
(PCE). Here we will use the acronym PCP/SRP.

Our approach is an extension of PCP/SRP and hence a
short review of this scheme will be given in Section IV.
Here we review the resource control protocols that have been
defined for multiprocessors systems and extract their main
characteristics.

With lock-based resource control protocols, locks can be
suspension-based or spin-based. With suspension-based lock-
ing, if the calling task cannot acquire the lock, it is placed
in (usually) a priority-ordered queue and waits for the lock.
To bound the blocking time, priority inversion avoidance
algorithms are typically used. With spin-based locking, if the
calling task cannot acquire the lock, it busy-waits for the lock
to become available. To bound the blocking time, the thread
often spins non-preemptively (i.e, at the highest priority) and
is placed in a FIFO or priority-ordered queue. The lock-owner
may also run non-preemptively.

A. MPCP and DPCP

There have been several versions of the Multiprocessor Pri-
ority Ceiling Protocol (MPCP) that extend the single processor
PCP. Tasks are fully partitioned amongst processors. Initially,
Rajkumar et al.’s [16] proposed that all global resources were
assigned to a single synchronization processor. This was then
generalized in the same paper to allow multiple synchroniza-
tion processors, but again each resource was assigned to one
synchronization processor1. A task that wishes to access a
global resource migrates to the synchronization processor for
the duration of its access. With the basic MPCP, there was a
single synchronization processor and nested resource accesses
are allowed. The protocol ensured deadlock free access. With
the generalized MPCP, nested resources are not allowed.

1The work by Lozi et al. [14] essentially adopts the same approach to help
improve performance when legacy code is moved to a multicore architecture.

Later, Rajkumar et al. [17], [15] renamed the above proto-
col as the Distributed Priority Ceiling Protocol (DPCP) and
clarified the remote access mechanism. Hence, the protocol
was targeted at distributed shared memory systems. For the
globally shared memory systems, the need for remote access
is removed and all global resources can be accessed from all
processors.

B. MSRP

The Stack Resource Policy, proposed by Baker [3], em-
phasizes that: “a job is not allowed to start executing until its
priority is the highest among the active jobs and its preemption
level is greater than the system ceiling.” If allowed to lock
any resource, the current executing job must be running at the
ceiling of the resource. Once a jobs starts, all its resources will
be available. With this approach, all the tasks in the system can
use the same run-time stack (hence the name of the policy).

In order to preserve this property, Gai and Lipari [11]
proposed the Multiprocessor Stack Resource Policy (MSRP)
for partitioned EDF scheduling. Resources are divided into two
groups: local and global. Local resources are only accessed by
tasks which execute on the same processor. Global resources
are those which can be accessed by tasks running on differ-
ent processors. Unlike SRP, global resources have different
ceilings: one for each processor. Furthermore, each processor
has its own system ceiling. On processor k, tasks are only
allowed to execute global resources at the processor ceiling
priority, which is the highest preemption level of all the tasks
on processor k.

Global resources are shared across processors in a FIFO
manner. In order to acquire a global resource, a task must
be running at the processor ceiling which makes it non-
preemptive. In order to maintain the ability for all tasks on
a processor to share the same stack, it is necessary to non-
preemptively busy-wait for the resource.

C. FMLP

The Flexible Multiprocessor Locking Protocol (FMLP) pro-
posed by Block et al. [4] supports both global and partitioned
systems. Resources under FMLP are divided by the program-
mer into long and short resources. The protocol introduces
the notion of a Resource Group, which can contain either
short or long resources but not both. A group containing
short resources is protected by a non-preemptive FIFO queue
lock. A group containing long resources is protected by a
semaphore lock. Groups contain resources that are nested, so
that a task can hold more than one resource at a time. Non
nestable resources are grouped individually. Group locks have
the unfortunate side effect of reducing parallelism and are an
impediment to composability.

D. OMLP

The O(m) locking protocol (OMLP) is a suspension-based
resource sharing protocol proposed by Brandenburg et al. [5].
The algorithm is proposed to reduce the interference from
further priority inversion in FMLP caused by suspended tasks

being blocked by long resources. Resources are either global
or local. OMLP can be used in either global or partitioned
systems. Here, we consider only partitioned systems.

Partitioned OMLP uses contention tokens to control access
to global resources. There is one token per processor, which is
used by all tasks on that processor when they wish to access a
global resource. Associated with each token there is a priority
queue PQm. There is only one queue per global resource; a
FIFO queue FQk, again of maximum length m. In order to
acquire a global resource, the local token must be acquired
first. If the token is not free, the requesting task is enqueued
in PQm. If free, the token is acquired, its priority is then
raised to the highest priority on that processor, and the task is
added to the global FQk and, if necessary, suspended. When
the head of FQk finishes with the resource, it is removed from
the queue, releases its contention token, and the next element
in the queue (if any) is granted the resource.

Recently, Brandenburg and Anderson [6] have developed
a new resource sharing scheme for clustered multiprocessor
systems based on OMLP. The aim is to limit multiple repeated
priority-inversion blocks that occur with a simple priority
boosting scheme. Essentially, a high priority thread donates
its priority to a lower priority thread to ensure that the lower
priority thread is scheduled when holding a resource. Such a
donation can, however, only be performed once.

E. SPEPP

This protocol, Spinning Processor Executes for Pre-
empted Processor, was proposed by Takada and Sakamura in
1997 [19]. It is an example of a helping protocol; in which
a task waiting to get a resource will execute the resource’s
critical section on behalf of another waiting task. Resources are
accessed in FIFO order with the resource operations executed
non-preemptively. However, the designers of SPEPP did not
want the waiting tasks to also spin non-preemptively as this
reduces schedulability for high priority (short deadline) tasks.

F. M-BWI

The Multiprocessor BandWidth Inheritance protocol (M-
BWI) [10] is an extension of the single processor BWI. This is
developed for soft or open real-time systems in which tasks are
executed within execution-time servers that limit the amount
of processor time each task can consume. To deal with the
problem that a task while holding a resource may run out
of budget [8] or is preempted, M-BWI allows the resource
holding task to use the budget from other tasks that are waiting
to gain access to the same resource. It does this by allowing the
lock holding task to migrate between servers. A task waiting
to access a resource is either busy-waiting (using its server’s
budget) or its server is being used by the migrated lock holding
task. Access to the resource is constrained to be FIFO.

G. Fiasco-SMP

Fiasco-SMP is a port of the Fiasco microkernel for the
multiprocessor-x86 architecture [12]. It shows how migrating
critical sections can be achieved efficiently.

H. Summary

This brief review has indicated that there has been a wide
variety of protocols proposed. Most are complex and may have
significant run-time overheads. Others impose restrictions such
as no nested resources.

The protocol developed in this paper is similar to MSRP
but has one crucial difference: tasks that busy wait can use
their ‘spin’ time to undertake computation on behalf of other
waiting tasks. In this way the protocol follows the approach
of SPEPP, but does not require non-preemptive execution of
resource operations. It can also be viewed as an adaptation of
the M-BWI or Fiasco-SMP.

The main contribution of this paper is a multiprocessor
protocol having all the desirable properties of the single pro-
cessor PCP/SRP (see Section V). We refer to the protocol by
the acronym MrsP (Multiprocessor resource sharing Protocol);
using some lower case letters to help distinguish it from similar
acronyms (e.g. MSRP).

III. SYSTEM AND TASK MODEL

Our aim is to develop a general purpose protocol that is ap-
plicable to partitioned, semi-partitioned and globally scheduled
systems using fixed priorities, EDF or any other designation
of urgency. In this paper, however, we restrict consideration
to fully partitioned systems where tasks are scheduled using
fixed priorities. We employ the general sporadic task model.
Each task (τi) in the system is characterised by its period, Ti,
deadline, Di and worst-case computation time, Ci; it can give
rise to a potentially unbounded sequence of jobs. Deadlines
are unconstrained, but no two jobs from the same task can be
active (executable) at the same time. The priority of task τi is
Pri(τi) (Pri will also be used to give the ceiling priority of
a resource).

The execution platform consists of m identical processors,
numbered p1 to pm.

Resources (r) are shared between sets of tasks. They must
be accessed under mutual exclusion. The code associated with
a resource is termed a critical section. Tasks and resources are
related by the two functions: G(rj) returns the set of tasks
that use resource rj , and F (τi) is the set of resources used by
task τi. The worst-case execution time of resource rj when
accessed by task τi is in general denoted by cji . However,
for ease of presentation we assume that this value is not
dependent on the actual task accessing the resource, and hence
the parameter cj is used throughout. None of the analysis
presented is fundamentally altered by this simplification. It
would be straightforward to define a set of interfaces for each
resource and to have tasks call different interfaces; indeed a
single task may call the same resource a number of times using
different interfaces. Each interface could be given a distinctive
worst-case execution time.

As a property of the static partitioning of the tasks, we have
a function map that takes a set of tasks and returns the set of
processors onto which the tasks have been allocated. We shall
make use of the entity ej which is an execution time parameter

of resource rj ; it is defined by ej = |map(G(rj))|cj – where
|| gives the size of the set.

IV. PCP/SRP FOR SINGLE PROCESSOR SYSTEMS

All priority ceiling protocols, when applied to fixed pri-
ority single processor systems, assigns priorities to re-
sources based on the usage of the resource, so Pri(rj) =
maxτk∈G(rj) Pri(τk). At run-time, when a task accesses a re-
source, its priority is immediately raised to the ceiling priority
of the resource. The protocol has the following properties:
• A job is blocked at most once during its execution.
• This blocking takes place prior to the job actually exe-

cuting.
• Once a job starts executing, all the resources it needs will

be available.
• Deadlocks are prevented.

Blocking is when a task is prevented from making progress due
to another task with a lower base priority having a current
higher active priority (as it is accessing a resource with a
higher ceiling priority).

Scheduling analysis, in the form of Response-Time Analysis
(RTA) [1] incorporates PCP/SRP via the following equation:

Ri = Ci + Bi +
∑

τj∈hp(i)

⌈
Ri
Tj

⌉
Cj (1)

where hp(i) is the set of tasks with priority greater than τi,
and Bi is the blocking term introduced by the priority ceiling
protocol. In general, the blocking term is the maximum of a
number of values derived from the application code and the
implementation of that code on a RTOS:

Bi = max{ĉ, b̂} (2)

where ĉ is the maximum computation time of all resources
that are used by at least one task with priority less than that
of τi and at least one task with an equal or higher priority;
and b̂ is the maximum non-preemptive execution time induced
by the RTOS.

All tasks make use of the API provided by the RTOS.
Although fine grain locking is usually provided by the RTOS,
each task will use some non-preemptive code; for example
the code used at job termination to place the task on a delay
queue and to switch the processor to the next eligible task
to execute. It follows from equation (2) that if ĉ < b̂ (the
worst-case blocking induced by the application is less than that
induced by the RTOS) then there is no benefit in using any
priority ceiling protocol. All resource accesses may as well be
non-preemptive. The fact that PCP/SRP is supported in most
RTOSs and real-time programming languages is testament
to the observation that, in general, ĉ > b̂. This observation
remains valid with multiprocessor systems.

Note we can also decompose the C parameters by noting:

Ci =WCET i +
∑

rj∈F(τi)

nic
j (3)

where WCET i is the worst-case execution time of the task,
ignoring the time it takes executing whilst accessing resources
(but including all time spend in the RTOS), and ni is the
number of times τi uses rj .

V. DESIRABLE PROPERTIES FOR MRSP

One of the consequences of executing a set of tasks on a
single processor is that the serialisation of the task’s execution
(due to there being only a single processor) ‘hides’ the
necessary serialisation over the use of other resources. As the
number of processors is increased, the need to serialise the
execution of the other resources is exposed. So, if there can be
n parallel (rather than just concurrent) accesses to a resource
rj , it is reasonable to expect the time it takes to gain access
to be (n− 1)cj (i.e. a FIFO queue of tasks waiting their turn
to use the resource). And hence the full cost of accessing the
resource to be ncj , (n−1 accesses from other processors plus
the task’s own execution). From a schedulability point of view,
the move to a multiprocessor platform is a tradeoff between
• a reduction in interference from other tasks, and
• an increase in the time it takes to access shared resources.

So, for example, a move from one processor to two will half
the contention for the processor but double the time it takes
to access shared resources. For any realistic software system,
the overall effect will be significantly positive.

The intuition underlying the proposed protocol is that the
schedulability analysis for a partitioned multiprocessor should
be identical to that of a single processor except that the cost
of accessing each resource is increased to reflect the need to
serialise access from potentially parallel access. In the system
model (section III), the entity e was defined. For any resource,
rj , the number of processors on which tasks that use the
resource can execute is given by |map(G(rj))|; each access
costs cj so the full execution time cost for the resource is
given by: ej = |map(G(rj))|cj . Note the value of ej is not
directly a function of the number of tasks that use the resource,
rather it just reflects the number of potential parallel accesses.
Consequently, if a resource is only used by tasks executing on
a single processor then ej = cj .

Under MrsP we incorporate the property, fundamental to
the PCP/SRP protocol, that once a task starts executing, its
resources will be logically available – but the execution time
required to use the resource is ej , not cj .

It follows from these intuitions that the Response-Time
Analysis for each task on a multiprocessor should take the
following form:

Ri = Ci + max{ê, b̂} +
∑

τj∈hpl(i)

⌈
Ri
Tj

⌉
Cj (4)

where hpl(i) is the set of local tasks with priority greater than
τi, and ê is the maximum execution time of a resource that is
used by a local task with priority less that than of τi and a local
task with an equal or high priority; b̂ is the implementation
induced blocking term used earlier – in equation (2).

The C parameter for each task is now:

Ci =WCET i +
∑

rj∈F(τi)

nie
j (5)

In addition, to be compatible with single processor
PCP/SRP, nested resource usage should be allowed and dead-
lock free execution ensured. We now develop a protocol
that will deliver this scheduling analysis for its worst-case
behaviour.

It is clear from the form of the schedulability equations
(4 and 5) that they will not capture the worst-case behaviour
of the system if suspension-based queueing for resources is
employed. With suspension-based protocols, queues could be
longer (as more than one task from the same processor can
be on the queue) and extra blocking terms must be included
– every time a task suspends it can be subject to priority
inversion if a lower priority task executes and accesses a
resource with a higher ceiling priority. We conclude that
some form of FIFO spinning must be used. But at what
priority should a task spin (and then when successful, use
the resource)? Two protocols are discussed in the literature:

1) Spin non-preemptively, or
2) Spin at local ceiling priority.

The first approach is modeled by equations (4 and 5) if all
resources are deemed to be used by the highest priority task on
each processor. But the result could be poor schedulability; the
highest priority task (with the shortest deadline) on each pro-
cessor must be able to cope with the largest blocking term on
its processor. On a single processor, non-preemptive resource
usage is not acceptable, rather some form of priority ceiling
is used. The same argument applies to multiprocessors, non-
preemptive execution is acceptable if the resulting system is
schedulable but it is not an adequate general-purpose protocol.

The second approach can, however, result in prolonged
blocking as the task with the resource lock could be locally
preempted leading to long delays for the other waiting tasks
on different processors. It, therefore, does not lead to the
worst-case behaviour captured by equations (4 and 5). But
spinning only at the local ceiling does have the advantage of
not inducing excessive blocking on the higher priority tasks.
The development of MrsP is motivated by the wish to spin
only at the local ceiling level, but to have bounded blocking
leading to the applicability of equations (4 and 5).

VI. DEFINITION OF MRSP

We start with non-nested resources. Of the existing pro-
tocols, the one that most closely matches our requirements
is the Multiprocessor Stack Resource Policy (MSRP) (see
Section II-B). However, it does not lead to the analysis outlined
above – as the time it takes to gain access to a resource can
be extended significantly by preempting tasks. Here we define
a variant of MSRP (which we term MrsP). The basic aspects
of the protocol are:

1. All resources are assigned a set of ceiling priorities, one
per processor (for those processors that have tasks that use the

resource); for processor pk it is the maximum priority of all
tasks allocated to pk that use the resource.

2. An access request on any resource results in the priority
of the task being immediately raised to the local ceiling for
the resource.

3. Accesses to a resource are dealt with in a FIFO order.
4. While waiting to gain access to the resource, and while

actually using the resource, the task continues to be active and
executes (possible spinning) with priority equal to the local
ceiling of the resource.

The first point is represented formally by:

Pri(rj , pk) = max
τi:τi∈G(rj) and map(τi)={pk}

{Pri(τi)}

where Pri(rj , pk) is the ceiling priority of resource rj on
processor pk.

The setting of the local ceiling for the resource and the rais-
ing of the accessing task’s priority to the ceiling level means
that each processor implements a local PCP/SRP protocol. As
a result, the following properties hold (there are expressed as
Lemmas).

Lemma 1: At most one task per processor can be attempting
to access any specific resource.
Proof Follows directly from the properties of PCP/SRP; if a
task is attempting to access an arbitrary resource rk it remains
active and can only be preempted by a local task if that task has
a higher priority than the resource’s ceiling. Such a task will
not access the resource and so at most one task per processor
can be accessing rk 2.

Lemma 2: The maximum length of the FIFO queue for
resource rk is |map(G(rk))|.
Proof Follows directly from the previous Lemma; only one
task per involved processor can be accessing or using the
resource 2.

Note that if the task only spins at its own priority, or a
suspension scheme is used then the maximum length of the
queue could be as high as |G(rk)|.

These properties of the protocol are not particulary novel.
However MrsP requires a further feature if its worst-case
behaviour is to match the proposed schedulability analysis.
To motivate this feature, first consider the behaviour of the
protocol if no requesting task is locally preempted. In this
situation it is clear that the maximum time it takes for some
task τi to progress through the FIFO queue associated with
resource rk is |map(G(rk))| times ck (including τi’s usage).
But if any participating task is locally preempted while it
should be using the resource then this time interval will be
increased. And indeed it could be increased by a significant
amount as it must include the total executing time of the
preempting job. For this reason, some protocols explicitly
require that resource accesses must be non-preemptive. In
effect this implies that all resources are ‘logically’ used by the
highest priority task on each processor. As noted above, the
resulting system may be schedulable, but in general it gives a
sub-optimal solution. The highest priority tasks (i.e., the ones
with the shortest deadlines) must be capable of dealing with
the longest blocking times in the system.

For MrsP, we take another approach; one employing the
idea of helping used in SPEPP, M-BWI and Fiasco-SMP –
see Section II. The protocol is completed by the following:

5. Any task waiting to gain access to a resource must be
capable of undertaking the associated computation on behalf
of any other waiting task.

6. This cooperating task must undertake the outstanding
requests in the original FIFO order.

Hence, for example, if a resource (rk) is accessed by two
tasks (τ1, τ2) from two distinct processors then the critical
sections associated with the two requests can be executed by
any of the two tasks. So if τ1 accesses the resource first, but is
locally preempted whilst it has the lock on the resource, then
if τ2 accesses rk it will first ‘take over’ the execution for τ1,
complete the critical section for τ1, and it will then execute
the critical code on its own behalf. When τ1 executes again it
will find its access to rk has been completed.

The key notion here is that a task is not spinning uselessly
while it is waiting to access the resource, rather it is prepared
to use its ‘wasted cycles’ to help other tasks make progress.
This is a significant property. We postpone until the next
section how this property can be implemented; first we show
that it gives the desirable worst-case behaviour.

Lemma 3: Each job can suffer at most a single local block,
and this blocking will occur before it actually executes.
Proof As a task will execute with the local resource ceiling
while waiting or accessing a resource, MrsP will behave
according to the behaviour of PCP/SRP. In particular, once
a job starts executing, no newly released job can preempt it
and then access any resource it might need. Moreover, the
job can only start executing if it has the higher priority, and
hence again no resource it may access can be locked (or indeed
accessed) at that time by a local task. 2.

Theorem 1: The worst-case response time of a task execut-
ing under MrsP is given by equations (4) and (5).
Proof Consider general task τi. Every time it accesses a
resource, in the worst-case, it will have to undertake the
execution for the resource on behalf of the maximum number
of requests in the FIFO queue. Even if τi is locally preempted
while waiting to gain access to the resource, when it next
executes it will still have (at most) the same work to do (in
the worst case). It follows that equation (5) captures the worst-
case execution time for the task.

The maximum blocking time induced by the application
code (as apposed to the RTOS) is the maximum time a lower
priority task will execute with an inherited ceiling priority
equal or higher than the priority of τi. This is exactly the
value used in equation (4) 2.

Note that one of the RTOS actions that may contribute to
the RTOS induced blocking term b̂ is the operation needed to
place a task at the back of the FIFO spinning queue.

Given that the protocol can be implemented efficiently we
have a scheme that is, intuitively, the same as PCP/SRP – the
cost for accessing a resource has increased but the response-
time framework that is ‘standard’ for the analysis of single
processor systems can be applied unchanged (i.e., equations

(4) and (5) are of the same structure as equations (1) and
(3)). As argued earlier, although the cost associated with
the resource has increased, this is heavily countered by the
reduction in contention for the processor(s). For partitioned
systems, there are a number of factors to consider when
deciding upon the scheme to use for generating the task to
processor mapping. Although beyond the scope of this paper,
it is clear that mappings that reduce the amount of parallel
contention for resources could be a useful metric to apply.

Finally, in this section, we note that the proposed scheme
dominates those schemes that involve the accessing task spin-
ning at the local ceiling level. MrsP has the same behaviour
if there is no local preemption, and reduces waiting time if
there is preemption. It, therefore, always performs better for
the tasks actually involved in resource usage. Note also that
the use of a local ceiling is the minimum ceiling value to use
if the benefits of PCP/SRP are to be gained.

A comparison with a non-preemptive protocol inevitably
involves a trade-off between the impact on high and low
priority tasks. If a low priority task accesses a resource non-
preemptively then clearly the reaction time for the low priority
task is minimised. But any higher priority task suffers blocking
even when it is not contending for the resource. Even on a
single processor systems, if all tasks are schedulable when
all resources are accessed non-preemptively then this is a
sensible straightforward protocol to employ. The whole point
of any resource access protocol is, however, to constrain
priority inversion to where it is actually necessary; and thereby
increase the likelihood of obtaining a schedulable system.
MrsP will, therefore, always outperform a non-preemption
policy in the sense that it will have less (or at worst equal)
impact on higher priority tasks.

A. Nested Resource Usage

Now we move to nested resource usage (as supported
in [20]) and the issue of deadlock-free execution. These
are crucially important properties of PCP/SRP. For nested
resources, MrsP follows the same behaviour as PCP/SRP,
resulting in extra time spent executing with the resource.
We shall use an example to motivate the analysis for nested
resources usage. Consider a system with four tasks, τ1, ...,
τ4, executing on four different processors, and two resources,
r1 and r2, with execution times c1 and c2. Tasks τ1 and τ2,
access r1 directly, and τ3 and τ4, access r2 directly. In addition
r1 accesses r2; so, for example, when τ1 accesses r1 it will,
while holding r1 also access r2. The direct execution time for
τ1 will include c1 + c2.

Now consider the extended execution times required by
MrsP. Each access of r1 will, in the worst-case involve waiting
for first τ3 and then τ4 to complete their usage of r2. Hence
for τ1 and τ2 their call on r1 will cost 2(c1 +3c2). The outer
‘2’ as two processors are involved with r1, and the inner ‘3’ as
there could be two processors ahead of the caller in accessing
r2. For τ3 and τ4, their accesses of r2 would cost in the worst
case 3c2. Although there are four processors with tasks that

access r2, only one of τ1 and τ2 could be queued on r2, as
their accesses are serialised through r1.

Generalising from this example, we can derive the required
formulas for the time it takes each task to access a, potentially
nested, resource. First, we note that if one resource (ra)
accesses another (rb) then at most one task from the set of
tasks that access ra can be waiting to access rb. As noted
above, ra serialises the accesses to rb as only one task can be
executing within ra. Define V (ri) to be the set of resources
that access ri; hence |V (ri)| is the number of such resources.
Each of these can give rise to a queuing task (on ri). Tasks
can also, of course, call ri directly (as in the non-nested case).
This means that the maximum size of the FIFO queue of
task waiting to access ri (including the task actually using
the resource) is |V (ri)|+ |map(G(rj))|. Each entry can give
rise to ci computation time and hence the total time spent
accessing the resource is given by:

ei = (|V (ri)|+ |map(G(ri))|)ci (6)

This is a safe upper bound. For a particular set of tasks and
resources, and allocations to processors, it may be possible to
reduce the size of this term.

Returning to the example, we noted that the cost of access
to r1 for τ1 and τ2 is 2c1+6c2, and to r2 for τ3 and τ4 is 3c2.
Now consider using a single group lock for both resources (as
a number of protocols do in order to prevent deadlock). For
τ1 and τ2 the cost is now just 2c1 +2c2; this comes from the
worst-case FIFO queue for the single group lock: τ1 and τ2
are accessing r1, and τ3 and τ4 are accessing r2. So the cost
of access is reduced. But for τ3 and τ4, the cost of their use
of r2 is now increased from 3c2 to 2(c1 + c2) + 2c2 because
there are four tasks (on four processors) accessing the group
lock. Hence there is a tradeoff between the use of nested or
only group locks. However, this is schedulability issue, group
locks are not required in MrsP for deadlock prevention.

On a single processor, the correct assignment of priori-
ties serialises access to resources so that circular chains of
hold/request accesses to resources do not arise at run-time,
and hence deadlocks cannot occur. On a multiprocessor, this
constraint must be ensured by extending the protocol. A
common deadlock prevention scheme is to statically order
resources and to only allow access to resources with an
order number greater than that of any currently held resource.
Although this may be considered a restriction on the expressive
power of the computational model (and open to issues with
legacy code), it is more expressive than those protocols that
ban nested usage or require a group lock – that has the same
impact as non-nesting. In a programming domain the use of
exceptions for ‘out of order’ requests allow robust programs
to be developed. We have investigated the use of nested
but ordered locks for general multiprocessor resource control
protocols elsewhere [13] (though not for MrsP). The adoption
of ordered locking for MrsP is straightforward, though not
covered further in this paper.

VII. REALISING MRSP

In this section we describe two possible approaches for
implementing MrsP. The first uses thread migration, the second
uses parallel execution. The key to both schemes is that a
processor that has a busy-waiting task can undertake work for
any (or indeed all) of the other tasks waiting to gain access to
the same resource.

A. A Task Migration Approach

Although the scheme developed in this paper is focussed
on partitioned systems, the ability for a task to migrate from
one processor to another at run-time is a common property of
multiprocessor operating systems. This provides a straightfor-
ward means of implementing MrsP. If a task, τa, is preempted
whilst accessing a resource, ri, (by a higher priority local
task) then τa can migrate to any processor on which a task
is spinning waiting to gain access to the same resource. On
this new processor τa is given the priority one higher than
the spinning task so that it preempts the spinning task. This
simple scheme is sufficient but does require that the priority
values one above resource ceilings is unused (i.e. no tasks or
resources are given this priority value). But as a consequence,
the requirement of the protocol: that any spinning task can
take over the resource access on behalf of any other task is
satisfied. The spinning task just gives way to the migrating
task as the new task has a slightly higher priority2. In practice,
the supporting RTOS must be aware that there is a separate
priority associated with each processor in the thread’s affinity
set.

The act of migrating a task has a run-time overhead that
must be taken into account when evaluation this means of
implementing MrsP. The cost of two migrations must be less
than the added interference from the high priority tasks that
are delaying the resource requesting task (perhaps on another
processors). Also a migrating task is likely to suffer from an
execution time penalty as its local cache can not be utilised.
However, a preempted task is also likely to have its data in
cache overwritten by the time it executes again.

To give an example of the migration approach. Assume r1 is
used by tasks on three processors: p1, p2 and p3. At some time
t, a task (τa) on p1 executes and gains access to r1 in doing
so its priority is raised to Pri(r1, p1). Slightly later, task τq
on processor p2 attempts to gain access to the resource. It first
has its priority raised to Pri(r1, p2) and it then spins at this
priority. Then τa is locally preempted by τh as this task has
just been released and Pri(τh) > Pri(r1, p1). A migration
then takes place; τa could potentially move to p2 or p3, but
there is only a spinning task on p2. Hence, τa migrates to p2
where it will execute with priority Pri(r1, p2)+1. It will stay
on this processor unless it is again preempted, it which case
it may move back to p1 (or to p3 if a request has been made
from that processor). When τa has completed its use of the

2For protocols that are based on suspension, Brandenburg and Bastoni [7]
have suggested that priority inheritance algorithms should include processor
affinity mask inheritance as well. This effectively allows a task holding a
resource to migrate.

resource it will migrate back to its original processor (p1) to
continue it normal execution at its base priority. At that time
τq will gain access to the resource and execute on processor
p2.

A prototype implementation of a scheme based on migration
is included in Section VIII. It uses affinities to control the
migrations necessary.

B. A Duplicated Execution Approach

A more speculative implementation approach is possible
if resource critical sections have the property of also being
atomic actions, in the sense that the resource has internal
state (S) and the code of the resource takes ‘input’ and state
and produced output and updated state with no side effects:
(input, S)⇒ (output, S′). This is the assumption used in the
SPEPP protocol (see section II-E).

With this structure it is possible for all ‘waiting’ tasks to
actually execute the code for each request, and to do that in
parallel with other resource users (on other processors). The
first to finish actually updates S and produces the output. Later
finishers have a null commit on the resource.

VIII. PROTOTYPE IMPLEMENTATION OF MRSP

In this section we describe a proof of concept implementa-
tion of the first of the two schemes outlined in the previous
section. We focus on an actual implementation rather than a
simulation (as many other paper do, for example M-BWI) as
the theoretical properties of MrsP are clear. What is important
is to demonstrate that the scheme is a viable one when real
overheads are encountered.

The basis of the implementation is to dynamically associate
a set of affinities with each resource. An attempt to lock a
resource adds a processor to the resource’s affinities. While
accessing the resource, the task inherits the resource’s affinities
and hence it can execute on any processor that has a waiting
(spinning) task. The FIFO queue is implemented as an array
of spin locks (one per resource). The following pseudo code
outlines the implementation; in this code R is the resource, t
is the accessing task and p is the processor from which the
lock request is being made (i.e. t is executing on p). The code
also keeps track, in R(t), of the id of the task that currently
holds the lock (if there is one, otherwise R(t) is null). When
the request to lock R is made, the protocol raises the priority
of t to the local ceiling and sets the affinity of the resource
to include its own affinity. If the resource is already locked, it
sets the current lock-holder’s affinity to be that of the resource
and spins at the next available position in the FIFO queue. The
task continues to spin until it is released (by the action of some
other task calling Unlock).

Note this pseudo code does not contain the additional
synchronisations required to ensure that certain sequences of
actions are atomic. The actual code uses a simple spinlock per
resource to achieve this atomicity.
Lock (R, t, p) ->
raise priority of t to local ceiling of R
Affinities(R) := Affinities(R) + p
if already locked

get current resource user R(t)
Affinities(R(t)) := Affinities(R)
obtain FIFO lock on R and spin

else
Affinities(t) := Affinities(R)

end if
set current lock holder to self
raise priority of t by 1
-- use R

Unlock(R, t, p) ->
Affinities(R) := Affinities(R) - p
Release next task in FIFO queue (if there is one)
Affinities(t) := p
lower priority of t to its base value

It should be noted that all code is run at the ceiling priority
of the resource, and hence the protocol does not contain any
non-preemptive sections.

A. Experimental Results
Our experiments are performed on an Intel(R) Core(TM)

Quad CPU i7-3770 running at 3.40GHz. Each core supports
hyper-threading, but this is turned off for our experiments.
The four cores are numbered 0, 1, 2 and 3. We run Linux
kernel 3.5.4, which supports real-time priorities, affinities,
preemption and FIFO scheduling within priority. We use the
Ada 2005 compiler from AdaCore and set affinities of threads
by dropping into C and calling the Linux API directly. Ada
handles the priority settings and changes.

The Linux OS ensures that if a task is locally preempted it
will migrate to any other core in its affinity set if it would be
the highest priority task on that core. It was not possible on
the experimental test-bed to give this task a different priority
on each core, and hence ceilings were chosen so that, for each
resource, the local ceiling was the same on each core. In future
work, we will modify the Linux kernel to provide more direct
support for the MrsP protocol.

A number of experiments are performed to demonstrate that
the scheme is implementable, to show that it can outperform
other protocols and to give some indication of the overheads
likely with the scheme.

Throughout this section, we consider three protocols all
based on spinning when the resource is already allocated. The
first is the protocol developed in this paper. The second is
a simple non-preemption protocol where the accessing task
raises its priority to the maximum value and then spins on a
FIFO queue to gain access. The third protocol again uses a
FIFO queue to access to the resource but the client task now
spins at the local resource ceiling. With this single resource
experiment, this third protocol behaves in an identical way to
MrsP except that there is no migration and is identical to the
non-preemption protocol except in the priority used. The use
of non-preemption and ‘spinning at ceiling’ cover the two most
distinctive features of the existing protocols (see Section II).

Each experiment is performed 500 times and the results are
shown at the 95% confidence level.

Basic Protocol Overheads
MrsP: For Lock: a priority change to the ceiling; a spinlock

to gain access to the resource’s data structure; the setting of

two affinity masks (one for the locking holding task, the other
for the resource); spinning in a FIFO queue if the resource is
locked. For Unlock: a spinlock to gain access to the resource’s
data structure; releasing any queued task; the setting of two
affinity masks (one for the locking holding task, the other for
the resource); priority change to base priority.

Non-preemption: For Lock: a priority change to execute
non-preemptively; a spinlock to gain access to the resource’s
data structure; spinning in a FIFO queue if the resource is
locked. For Unlock: a spinlock to gain access to the resource’s
data structure; releasing any queued task; priority change to
base priority.

Ceiling: For Lock: a priority change to the ceiling; a spin-
lock to gain access to the resource’s data structure; spinning in
a FIFO queue if the resource is locked. For Unlock: a spinlock
to gain access to the resource’s data structure; releasing any
queued task; priority change to base priority.

In our experiments, all the protocols are implemented at the
application-level using the basic Linux API for setting affinity
and setting priority. Hence, each of these operations requires
a system call. If the protocols were integrated into, say, the
Linux mutex access protocols then there would be a significant
reduction in the number of system calls. The key differences
between the run-time costs of the protocols is that MrsP will
result in tasks migrating. On our system, the typical cost of a
task being migrated is around 8 microseconds.

The first experiment is designed to show the overall prop-
erties of MrsP and contrast its performance with the non-
preemption and local ceiling approaches. The experimental
setup is that on core 1 we have a high priority task that
requires no resource access, and a low priority task that
shares a resource with another low priority task on core 3.
The experiment is run on an otherwise unloaded system; any
interrupt handling for general Linux is performed on core 0.
Only interrupts to support scheduling occur on cores 1 and 3.

The high priority task is effectively released immediately
after the low priority task (that is allocated to its machine) has
acquired the resource. It simply performs some computation
in a loop, as shown below. The number of cycles of the loop
can be set to determine the amount of computation performed.
Each cycle takes approximately 25.7ns.
for i in 1 .. Number_Of_Cycles_In_HP loop
-- a series of calculations

end loop;

The low priority tasks are identical on cores 1 and 3. They
are released at the same time. However, the one on core 1 is
pre-allocated the lock. Once released (and the lock has been
obtained if not pre-allocated), they perform some computation,
unlock the resource and terminate. The computation performed
with the lock is structured similarly to the above (although the
the execution time for each cycle is significant less at 0.47ns).

In Figures 1 to 3, we show the response times of the low
priority task on core 3 and the low priority task on core 1. All
figures show the response times for the three protocols in the
order (left to right): Non-preemptive, MrsP, Ceiling. Note the
response time of the low priority task is considered to be when

13

15

17

19

Response Time in

Milliseconds

Response Time of Low Priority Task on Machine 3

with 9000 Resource Access Time Cycles

Non Preemption

7

9

11

50 100 200 300 400

Milliseconds

Execution Time of High Priority Task on Machine 1 (Execution Cycles)

Mrs P

Ceiling

Fig. 1. Response Time of the Low Priority Task

it finishes accessing the resourse. Of course, it would then
need to migrate back to its original core to fully terminate. We
are concerned with trends here rather than absolute execution
times.

For the low priority task, our expectation is that the non-
preemption algorithm should outperform the others; as, in
the worst case, the LP task on core 3 has only to wait for
the other LP task to finish with the resource before it can
acquire the resource and finish. With the simple FIFO ceiling
spinning protocol, we expect poor results. The LP task on core
3 must also wait for the HP task to finish (as it will preempt
the other LP task). We expect MrsP to outperform the FIFO
ceiling spinning algorithm, as the resource holding LP task
can migrate to core 3 when it is preempted by the HP tasks.

The results in Figure 1 confirm this. The resource access
time in this experiment is high (9000 resource cycles) and we
consider the response time against varying high priority exe-
cution times. As expected, when using the ceiling algorithm,
the response time of the low priority task is dominated by
the execution time of the high priority. Hence, the higher this
becomes, the worst the response times are. These experiments
show little difference between the MrsP and non-preemption
protocols.

For the high priority task, in contrast to the previous
experiment, we now expect the non-preemption algorithm to
perform badly as the HP task cannot execute when released
as the LP task is non-preemptive. We expect the FIFO ceiling
spinning and MrsP algorithms to be approximately the same as
each HP task can preempt the resource holding LP task. Again
this is confirmed by the results in Figure 2. Here we consider
a high priority task with only 1500 execution cycles and vary
the resource access time. Now there is a noticeable difference
between the performance of MrsP and the Ceiling protocol due
to the overheads of the protocol. As the resource access time
decreases, eventually the non-preemption algorithm performs
better than MrsP, as illustrated in Figure 3.

In our final experiment we consider the impact of two mi-
grations. Here we consider three cores. Identical high priority
tasks run on cores 1 and 2, and identical low priority tasks
run on cores 1, 2 and 3. The low priority tasks share a single
resource. The execution of the three low priority tasks are
contrived so that they request the resource in the order low

41

42

43

44

45

46

Response Time in

Milliseconds

Response Time of High Priority Task on Machine

1 with 1500 Execution Cycles

Non Preemption

37

38

39

40

41

3000 6000 9000 12000 15000

se o ds

Resource Access Time of Low Priority Task

(Resource Access Cycles)

p

Mrs P

Ceiling

Fig. 2. Response Time of the High Priority Task (1)

Response Time of High Priority Task on Machine 1 with

39

1500 Execution Cycles

38.5

38
Response Time in

Milliseconds
Non Preemption

37

37.5
Mrs P

Ceiling

36.5

50 100 500 1000 1500

Resource Access Time of Low Priority Task

(Resource Access Cycles)

Fig. 3. Response Time of the High Priority Task (2)

priority task on core 1, low priority task on core 2 and low
priority task on core 3. We again consider the response time
of the low priority task on core 3. As can be seen, in Figure
4, using the FIFO ceiling algorithm the response time reflects
the execution of the two high priority tasks on cores 1 and
2. With MrsP, the response time remains constant. However,
now there is a more noticeable difference between MrsP and
Non-preemption due to the extra migrations.

80

100

120

140

160

Response Time in

Milliseconds

Response Time of Low Priority Task on Machine 3 with

9000 Resource Access Cycles

Non Preemption

0

20

40

60

50 100 200 300 400 500 1000 1500 2000 2500

Execution Time of High Priority Task on Machine 1 (Execution Cycles)

Mrs P

Ceiling

Fig. 4. Response Time of the Low Priority Task Following 2 Migrations

IX. CONCLUSIONS

In this paper we have motivated a resource control protocol
for multiprocessor systems that leads to effective schedulabil-
ity analysis that has an identical form to response-time analysis
for single processor systems. For each resource, the number
of possible parallel requests is computed. This parameter is
used to bound the impact of serialising access to the resource
over these parallel requests. This in turn leads to an extension
of the access time for these resources, but this must be
balanced by the benefits obtained from parallel execution of
the application’s tasks.

MrsP is a ‘busy waiting’ algorithm. A request for a resource
results in the priority of the requesting task being raised to a
local ceiling. Requests are then processed in a FIFO order.
The maximum length of the FIFO queue is bounded by the
number of processors on which requesting tasks can execute.
The key property of MrsP is that any task, while waiting to
gain access to a resource, can execute the requests of other
tasks (on other processors) that are ahead of it in the FIFO
queue. This property is essential as it prevents the degradation
of performance that would otherwise result if the task with the
resource lock were locally preempted.

Whilst motivated by a desire to define a protocol that has
the expected (and minimal) impact on schedulability, it is
important that the proposed protocol is implementable and
has, at least, the potential to have acceptable overheads in
practice. We have defined two possible means of realising
MrsP; one based on migration, the other on duplication (of the
critical section associated with the resource). For the migration
approach we have developed a prototype implementation. This
has demonstrated that the protocol is indeed implementable,
and that it performs as expected when compared with some
previously published schemes. In particular, it provides for
a bounded impact on both high and low priority tasks. For
low priority tasks sharing a resource there can be no better
protocol than non-preemption, but the impact on high priority
tasks can be significant. However, for protocols that involve
spinning at some ceiling level the impact on low priority tasks
can be unbounded as preemption from higher priority tasks
will prevent progress for low priority tasks executing on cores
where preemption has not occurred. MrsP proved a sensible
compromise between these two approaches. It does not impact
on higher priority tasks, and it bounds the impact on lower
priority tasks.

For a given application on a given platform there can
be no simpler resource control protocol that non-preemptive
FIFO spinning and execution. All RTOS induce some non-
preemptive blocking – the b̂ term from equation (2). If tasks
can be assigned to processors so that non-preemptive usage for
all resource (application and RTOS) leads to schedulability
then that is ideal. However, for many applications short
deadline tasks will not be able to cope with a long sequence of
application-induced non-preemptive sections that come from
low priority tasks sharing resources. A non non-preemptive
protocol is required, but one that does not excessively punish
low priority tasks. This is as true for multiprocessor systems

as it is for single processor systems where the use of a priority
ceiling protocol (rather than non-preemption) is standard. The
main contribution of this paper is to provide such a protocol.

Acknowledgements Richard Fuller for his help with the
Linux implementation. Jim Anderson and the group at UNC
for useful comments on MrsP and multiprocessor protocols in
general. Charlie Lin for his input into Section II of this paper.

REFERENCES

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings.
Applying new scheduling theory to static priority preemptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[2] T. Baker. A stack-based resource allocation policy for realtime processes.
In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 191–200,
1990.

[3] T. Baker. Stack-based scheduling of realtime processes. Journal of
Real-Time Systems, 3(1), March 1991.

[4] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson. A
flexible real-time locking protocol for multiprocessors. In 13th Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA ’07, pages 47–56. IEEE Computer Society, 2007.

[5] B. Brandenburg and J. Anderson. Optimality results for multiprocessor
real-time locking. In Real-Time Systems Symposium (RTSS), pages 49–
60, 2010.

[6] B. Brandenburg and J. Anderson. Real-time resource sharing under
cluster scheduling. In Proc. EMSOFT. ACM Press, 2011.

[7] B. Brandenburg and A. Bastoni. The case for migratory priority
inheritance in linux: Bounded priority inversions on multiprocessors. In
Proc. of the 14th Real-Time Linux Workshop (RTLWS 2012), Real-Time
Linux Foundation, pages 67–86, 2012.

[8] R. Davis and A. Burns. Resource sharing in hierarchical fixed priority
preemptive systems. In Proceeding IEEE Real-Time Systems Symposium
(RTSS), 2006.

[9] R. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Computing Surveys, 43(4):35:1 –35:44,
2011.

[10] D. Faggioli, G. Lipari, and T. Cucinotta. The multiprocessor bandwidth
inheritance protocol. In Proc. of the 22nd Euromicro Conference on
Real-Time Systems (ECRTS), pages 90–99, 2010.

[11] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
Proc. 22nd RTSS, pages 73–83, 2001.

[12] M. Hohmuth and M. Peter. Helping in a multiprocessor environment. In
Proc. of Second Workshop on Common Microkernel System Platforms,
pages 223–232, 2001.

[13] S. Lin, A. Burns, and A. Wellings. Supporting lock-based multipro-
cessor resource sharing protocols in real-time programming languages.
Concurrency and Computation: Practice and Experience, 2012.

[14] J. Lozi, G. Thomas, G. Muller, and J. Lawall. The remote core lock
(RCL): Can migrating the execution of critical sections to remote cores
improve performance? In EuroSys11, 2011.

[15] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[16] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Proc. 9th IEEE Real-Time Systems
Symposium, pages 259–269, 1988.

[17] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for shared memory multiprocessors. In Proc. of the 10th
International Conference on Distributed Computing, pages 116–125,
1990.

[18] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronisation. IEEE Transactions on
Computers, 39(9):1175–1185, 1990.

[19] H. Takada and K. Sakamura. A novel approach to multiprogramming
multiprocessor synchronization for real-time kernels. In Proc. 18th IEEE
Real-Time Systems Symposium, pages 134–143, 1997.

[20] B. Ward and J. Anderson. Supporting nested locking in multiprocessor
real-time systems. In Proc. of ECRTS, pages 223–232, 2012.

