
Getting Started with OMNI

1 Installing OMNI

OMNI is provided as a compiled java application. A compressed tar file
containing the package and supporting files has been tested on Ubuntu 16.4
and is available from:

colinpaterson.bitbucket.io/OMNI/.

In addition you will need to download the following third party software:

Software Description URL

HyperStar a phase type fitting tool www.mi.fu-berlin.de
PRISM A probabilistic model checker prismmodelchecker.org

Having downloaded the software make a note of the installation location
of PRISM and HyperStar and then extract the OMNI archive to a local
directory.

2 Creating an OMNI model file

To prepare a model for refinement a PRISM CTMC file must be annotated
to define the use of PHD holding times and their relationship to states within
the model.

If we consider a state transition statement in a PRISM CTMC file to be of
the form:

[] s=1 -> r_1:(s’=2);

where this means that we move from state 1 to state 2 after a time described
by an exponential with rate defined by the variable r 1.

1

www.mi.fu-berlin.de/inf/groups/ag-tech/projects/HyperStar/index.html
prismmodelchecker.org

Let us assume that state 1 mean that we are examining the rail arrivals
board and state 2 means we are executing a search query. We therefore
assign short names to the states to aid in readability as “arr” and “src”
respectively.

We may then rewrite the lines as:

<#arr>s=<?arr> -> (s’=<?bin>);

here the opening tag <#arr> indicates that when leaving this state the
holding times is as defined in the trace data for the “arr” component. Since
OMNI will add states to the model we also use state names rather than
explicit numbering. Therefore <?arr> may be read as “The state associated
with the arrivals component”.

A second more complex mapping from PRISM to OMNI is provided for
clarity.

Consider a PRISM line:

[] s=2 -> r_2 * p1:(s’=3) + r_2 * (1-p1):(s’=4);

This may be read as follows remain in state 2 for a time determined by
the exponential rate r 2 and then transition to state 3 with probability p1
otherwise move to state 4. Again we define short names to each state,

s=2 src - searching
s=3 loc - determine current location
s=4 dep - retrieve departure timetable

The OMNI line then becomes:

<#src> s=<?src> -> p1:(s’=<?loc>) + (1-p1):(s’=<?dep>);

Again the <#src> tag at the beginning of the line indicates that the tran-
sition timing is controlled by the trace data associated with the “src” com-
ponent.

2

Where a state in the model is not associated with a component, for example
and absorbing state, we use a slightly different syntax to describe the state.
So assuming the absorbing state has the label “complete” we write:

<#dep>s=<?dep> -> (s’=<!complete>);

3 Creating component trace files

Each component in an OMNI model is described by a set of observed tim-
ing data. This may be available through direct monitoring of component
performance or through the analysis of log files.

The timing data is stored in a set of text files with one file per component.
Each line of the text file then contains a single integer which is the time
associated with a single evocation of of the component.

A PRISM CTMC model assumes a time unit which is specified by the model
designer and the unit assumed in the timing data file is then 1000th of the
model time units. For our web services case studies time time unit is seconds
and hence timing data is provided in milliseconds. For the IT Support
System hours is assumed and timing data is provided as hour/1000.

4 Defining a refinement task

When OMNI is executed it expects to find a file called “config.xml” in the
same directory as the OMNI.jar file. This file contains all the information
OMNI needs to execute a refinement task.

4.1 Dependancies

Having installed HyperStar on your computer we need to tell OMNI where
the program is located. In addition a utility program (HyperStarToPrism.jar
) is provided with OMNI which converts the output from HyperStar into
PRISM format HyperErlang Models.

3

In the config.xml file the Tools section is used to defined where on your
machine these files are located. For example:

<Tools>

<Tool ID="HSLocation">/Users/.../HyperStar.jar</Tool>

<Tool ID="H2PLocation">HyperStarToPrism.jar</Tool>

</Tools>

4.2 File handling

Having created an annotated PRISM model as an input file for the refine-
ment process we specify it’s location using the Model tag as:

<Model>inputModel.prism</Model>

The models which are produced by the OMNI process are defined in the
OutFile tag where the character sequence “{P#}” is replaced with an ordinal
value representing the property evaluated.

<OutFile>WSModel_{P#}.prism</OutFile>

The Template tag is for internal use by OMNI and simply gives the name to
use for the intermediate file generated for model building. There is no need
for the user to amend this tag.

4.3 Delay modelling

If the delay associated with a component is very small then OMNI can be
told to omit the delay modelling stage of the refinement process. This can
be done in one of two ways. By setting the UseDelay tag you can enable or
disable delay modelling for all components:

<UseDelay>True</UseDelay>

4

Alternatively a value can be specified such that if the delay associated with
a component is less than value specified then delay modelling is omitted for
that component only.

<DelayCutoff>0.01</DelayCutoff>

4.4 Refinement Parameters

The parameters used to control the refinement process are defined in the
Criteria block of the config.xml file and are given as:

<Criteria>

<bCountLimit>30</bCountLimit>

<bLengthLimit>200</bLengthLimit>

<kStart>2</kStart>

<kInc>2</kInc>

<epsilon>0.1</epsilon>

<staticStepCount>3</staticStepCount>

</Criteria>

where:

bCountLimit: the maximum number of branches for a PHD fitting.
bLengthLimit: the maximum length of a branch for a PHD fitting.
kStart: number of branches and branch length for first fitting.
kInc: how much to increase the size by at each step
epsilon: the CDF-Difference termination value
staticStepCount: for how many steps must the improvement be within epsilon.

4.5 Property definition

The Properties section contains one entry per property to be evaluated:

<Properties>

5

<Property>P=? [true U<=T "close"]</Property>

<Property>P=? [(!"reopen" & !"suspended")

U<=T "close"]</Property>

</Properties>

It should be noted that it is necessary to encode the CSL property string to
make it XML safe and hence & becomes & whilst < becomes <

4.6 Component definition

The Components section includes one block per Component to be refined.
For each component a Module long name and short name are defined. These
are used as identifiers in the input model and the refined PRISM model. In
addition the TimingFile node provides the location of the component trace
file used to train the PHD model. Hence a complete component block is
given as:

<Component>

<ModuleName>Traffic</ModuleName>

<ModuleShortName>tra</ModuleShortName>

<TimingFile>tracesWS/traData.csv</TimingFile>

</Component>

5 Executing OMNI

Since OMNI makes use of PRISM to classify states within the model we need
to define the location of the PRISM library. Having extracted the OMNI
archive locate the launch.sh script file.

#!/bin/bash

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/local/cap508/Prism/lib/

echo $LD_LIBRARY_PATH

java -cp . -jar OMNI2.jar

For Linux you must then change to location of the LD LIBRARY PATH
variable to match the location where the PRISM library is located.

6

Then execute the script with the command:

./launch.sh

7

	Installing OMNI
	Creating an OMNI model file
	Creating component trace files
	Defining a refinement task
	Dependancies
	File handling
	Delay modelling
	Refinement Parameters
	Property definition
	Component definition

	Executing OMNI

