
Optimality of (D-J)-monotonic Priority Assignment

A. Zuhily

May 9, 2006



Abstract

Release jitter of tasks may affect their schedulability. They may have more chances to miss their

deadlines if their priorities are assigned according to Deadline Monotonic(DM). (D-J)-monotonic is

given instead. It is proved in this report that (D-J)-monotonic is an optimal priority assignment

algorithm when the deadlines of tasks are less than or equal to their periods.



Introduction

Release Jitter, RJ, of a task is the maximum deviation of successive task releases from its period.

Tindell in his thesis[5] addressed the problem of RJ; it occurs when the shortest time between

successive releases of a task is shorter than the normal repeating time between arrivals of a task.

The following scenario is given to illustrate the problem:

Suppose there are, on different processors, two related tasks : periodic one j and sporadic

one i with same period (i.e. Tj = Ti). Task j calls i as soon as j has finished its execution.

For some reason, j has not finished its first execution till the end of its period; while it

executes at the very begining of its next period. So, i, in this case, is released twice

within its period instead of once (i.e the time between the two successive releases is less

than the usual minimum inter arrival time of the sporadic task i).

It is obvious that as a result of this scenario, the number of interference from task i would increase.

The two popular situations of the RJ problem are: when related tasks are executing on different

processors, and because of the granularity of the system timer.

It was found that neither deadline monotonic nor rate monotonic priority assignment are optimal

in case of jitter[5]. So, priorities could be assigned according to the optimal priority assignment

technique that depends on feasibility. Audsley[1], in his report, covered that technique, which is

explained, in summary, as following. For a task set φ = {τ1, τ2, ...τn}, first, attempt to find a task τA

that is feasible at priority level j = n. Next, find a feasible task at priority j = n − 1. Successively,

feasible tasks will be found at priorities n to 1. If a feasible task, at priority level i, could not

be found, no feasible priority assignment function exists. Full details can be found in Audsley’s

report[1].

However, Burns, Tindell and Wellings[3] mentioned that priorities should be assigned according

to (D-J)-monotonic as DM is no longer optimal. No proof of the optimality of (D-J)-monotonic has

been subsequently provided. This report gives a proof of the optimality of (D-J)-monotonic priority

assignment, when D ≤ T .

1



Notations that are Used

Ri - Worst-case response time of the ith task.

Ci - Worst-case execution time of the ith task.

Di - Deadline of the ith task.

Ti - period of the ith task.

Ji - Release jitter of the ith task.

Pi - Priority of the ith task.

(D−J)−monotonic Priority assignment where the task that has lower value of D-J will take higher

priority. In other words

Di − Ji < Dj − Jj ⇒ Pi > Pj .

n - number of tasks in the system.

Feasibility Analysis

Exact worst case response time analysis, that is introduced by Joseph and Pandya[4], is used to

prove the schedubility of a system. Audsley and his colleagues [2], in 1993, improved the analysis

and gave a simple way to solve these equations using a recurrence relationship.

Ri = Ci + (

j=i−1∑

j=1

d
Ri

Tj

eCj)

The previous equation means that Worst Case Response Time (WCRT) of a task is the execution

time of that task added to the interferences from all higher priority tasks. Where number i=1

represents the highest priority, followed by i=2, ...and so on until i=n which represents the lowest

priority.

However, when tasks suffer from release jitter, the response time equation is enhanced to include

release jitter. Equation (1) represents the response time formula when tasks suffer from release jitter

Ri = Ci + (

j=i−1∑

j=1

d
Ri + Jj

Tj

eCj) (1)

2



Optimality of (D-J)-monotonic

Theorem

(D-J)-monotonic priority assignment is optimal in the sense that if any task set, Q, is schedulable

by priority scheme, W, is also schedulable by (D-J)-monotonic.

Proof

To prove the optimality of (D-J)-monotonic, the priorities of Q (as assigned by W) will be trans-

formed until the ordering is (D-J)-monotonic while preserving schedulability. Let i and j be two

tasks with successive priorities in Q such that under W: Pi > Pj and Di − Ji > Dj − Jj . Define

scheme W ′ to be identical to W except that tasks i and j are swapped. Schedulability of all tasks

that have higher priorities than i or less priorities than j are not affected by swapping the two tasks

i and j. Moreover, schedulability of task j will also not be affected by the swap since it will have

higher priority than before and therefore, it will suffer less interference. So, what is left is to show

that task i is still schedulable under W ′ .

Let RW
j be the response time of task j under W scheme, and RW ′

j be the response time of task

j under W ′ scheme. It can be seen that RW
j ≤ Dj − Jj because j is schedulable and in the worst

case may not be released until t = Jj . In addition, it is given that Dj − Jj < Di − Ji ≤ Di ≤ Ti.

Therefore, task i only interferes once during the execution of j (under W). So, worst case response

time of task j can be split, under W scheme into

RW
j = Cj + Ci +

∑

k∈S

d
RW

j + Jk

Tk

eCk. (2)

Where, S is the set of tasks that have higher priority than i in the set under W (which is equal to

the set of higher priority than j under W ′).

Equation(2) can be written as

RW
j − Cj = Ci +

∑

k∈S

d
RW

j + Jk

Tk

eCk. (3)

3



Response time equation of the task i under W ′ scheme is given by

RW ′

i = Ci +
∑

k∈hp(i)

d
RW ′

i + Jk

Tk

eCk

hence,

RW ′

i = Ci + d
RW ′

i + Jj

Tj

eCj +
∑

k∈S

d
RW ′

i + Jk

Tk

eCk. (4)

Lemma 1

RW
j is a solution of equation(4).

proof

RW
j is going to be substituted in the right side of the equation(4).

Ci + d
RW

j +Jj

Tj
eCj +

∑
k∈S d

RW
j +Jk

Tk
eCk =

RW
j − Cj + d

RW
j +Jj

Tj
eCj =

RW
j − Cj + Cj =

RW
j

That is because of the Equation(3) and because task j is schedulable under W scheme, so RW
j <

Dj − Jj ; which means RW
j + Jj < Dj < Tj . So, d

RW
j +Jj

Tj
e = 1. �

Therefore, RW
j is a solution of the equation of RW ′

i ; which means that RW ′

i ≤ RW
j .

On the other hand, we have that RW
j ≤ Dj − Jj as well as Dj − Jj < Di − Ji.

Therefore,

RW ′

i < (Di − Ji)

which concludes that i is schedulable after swapping.

Now, priority scheme W ′ can be transformed to W ′′ by choosing two more tasks that are in

the wrong order for (D-J)-monotonic, and swapping them. Each such swap preserves schedulability.

Eventually, there will be no more tasks to swap and priority ordering will be exactly as (D-J)-

monotonic ordering. Hence, (D-J)-monotonic is optimal. �

Example

The following example shows how (D-J)-monotonic priority assignment improves the schedulability

of a system. Suppose a system with two tasks as in Table 1. It can be seen from that table that

4



Task C J D T D − J

τ1 6 3 13 14 10
τ2 3 12 20 25 8

Table 1: Tasks Description’s

assigning priorities according to DM leads to τ1 having higher priority than τ2 and τ2 misses its first

deadline. Figure 1 illustrates that situation.

release

arrive

25

miss deadline

meet deadline

2312

PSfrag replacements

τ1

τ2

Figure 1: execution of τ1 and τ2 according to deadline monotonic priority assignment

On the other hand, τ1 and τ2 will meet their deadlines, if (D-J)-monotonic priority assignment

is considered; where τ2 in that case will have higher priority than τ1. Figure 2 illustrates how both

tasks become schedulable in the case of (D-J)-monotonic priority assignment is considered.

release

arrive

25

miss deadline

meet deadline

2312

PSfrag replacements

τ1

τ2

Figure 2: execution of τ1 and τ2 according to (D-J)-monotonic priority assignment

Applying Equation(1) calculates WCRT of tasks τ1 and τ2, considering (D-J)-monotonic priority

assignment. Therefore, WCRT of τ2 is:

Rτ2
= 3.

While WCRT of τ1 is

Rτ1
= 6 + d 6+12

25 e3 = 9.

Rτ1
= 6 + d 9+12

25 e3 = 9.

So, Rτ1
= 9 which means τ1 is schedulable.

5



Conclusion

Deadline monotonic priority assignment is not optimal when tasks suffer release jitter. Priorities can

be assigned according to (D-J)-monotonic instead of DM. Proof of optimality of (D-J)-monotonic

is given in this report. The proof is given when deadlines of tasks are less than or equal to their

periods. So, schedulability of a system is improved when (D-J)-monotonic priority assignment is

employed.

6



Bibliography

[1] N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks with arbitrary

start time. Technical Report YCS 164, University of York, 1991.

[2] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying New Schedul-

ing Theory to Static Priority Preemptive Scheduling. Software Engineering Journal, 8(5):284–

292, September 1993.

[3] A. Burns, K. Tindell, and A. J. Wellings. Effictive analysis for engineering real-time fixed priority

schedulers. IEEE Transactions On Software Engineering, 21(5):475–480, 1995.

[4] M. Joseph and P. Pandya. Finding Response Times in a Real-Time system. The Computer

Journal, 29(5):390–395, October 1986.

[5] K.W. Tindell. Fixed Priority Scheduling Of Hard Real-Time Systems. PhD thesis, University of

York, 1993.

7


