
Priority Assignment for Real-Time Wormhole
Communication in On-Chip Networks

Zheng Shi and Alan Burns
Real-Time Systems Research Group, Department of Computer Science

University of York, UK, YO10 5DD
{zheng, burns}@cs.york.ac.uk

Abstract—Wormhole switching with fixed priority preemption
has been proposed as a possible solution for real-time on-chip
communication. However, none of current priority assignment
policies works well in on-chip networks due to some inherent
properties of the protocol. In this paper, a novel heuristic
branch and bound search algorithm is introduced to explore the
possible priority ordering. Differing from the traditional exhaust
algorithm which costs exponential complexity, our algorithm can
effectively reduce the search space. In addition, this algorithm
can ensure that if a priority ordering exists that makes the
traffic-flows schedulable, this priority ordering will be found by
the search algorithm. By combining with schedulability analysis,
a broad class of real-time communication with different QoS
requirements can be explored and developed in a SoC/NoC
communication platform.

I. INTRODUCTION

On-chip networks (NoCs) [1], [2], has emerged as a new
design paradigm to overcome the limitation of current bus-
based communication infrastructure [3], and has had an in-
creasing importance in today’s System-on-Chip (SoC) designs.
The typical architecture of on-chip networks consists of mul-
tiple intellectual property (IP) modules connected through an
interconnection network. This architecture offers a general and
fixed communication platform which can be reused for a large
number of SoC designs.

As an emerging design paradigm, NoC has some new
features [4]: better wire utilization through sharing reduces
the traffic congestion and power consumption, a segmented
architecture enables parallelism through pipelining and has
high scalability, the computation decoupled from communi-
cation leads to IP module reusage and interconnections to be
designed separately.

Multiple IP-cores based design using NoC allows multiple
applications to run at the same time. These applications
execute the data processing and exchange information through
the underlying communication infrastructure. Some of applica-
tions have very stringent communication service requirements,
the correctness relies on not only the communication result
but also the completion time bound. A data packet received
by a destination too late could be useless. These critical
communications are called real-time communications. For a
packet transmitted over the network, the communication dura-
tion is denoted by the packet network latency. The maximum
acceptable duration is defined to be the deadline of the packet.

A traffic-flow is a packet stream which traverses the same route
from the source to the destination and requires the same grade
of service along the path. For hard real-time traffic-flows, it
is necessary that all the packets generated by the traffic-flow
must be delivered before their deadlines even under worst case
scenarios. In another words, the maximum network latency
for each packet can not exceed its deadline. A set of real-time
traffic-flows over the network are termed schedulable if all the
packets belonging to these traffic-flows meet their deadlines
under any arrival order of the packet set.

As a popular switching control technique, wormhole switch-
ing [5] has been widely applied for on-chip networks due to
its greater throughput and smaller buffering requirement [6].
However, routing packets in a wormhole network is partially
non-deterministic because of the contention in communication.
These contentions cause possible delay and jitter, leading
to the violation of the timing constraints of the packets. In
order to make it possible to predict the maximum network
latency for each packet, it is possible to schedule the real-time
communications using a priority-based approach [7]–[9] that
allows the serving of traffic-flows with higher priorities before
the traffic-flows with lower priorities. One novel schedulable
analysis approach [10] has been proposed recently to predict
whether all the real-time packets can meet their timing prop-
erties at the static design phase. By evaluating diverse inter-
relationships and service attributes among the traffic-flows,
this approach can predict the packet transmission latency
for a given traffic-flow based on two quantifiable different
delays: direct interference from higher priority traffic-flows
and indirect interference from other higher priority traffic-
flows.

One of the common problems that need to be solved in
the development of priority-based communication is, how
to assign priority to each traffic-flow so that all the traffic-
flows loaded on the network will meet their time constraints.
The main purpose of this paper is to explore the priority
assignment policy in real-time on-chip networks. We present
at the beginning a case to show that none of current priority
assignment policies works well in wormhole switching net-
works. Then a heuristic branch and bound search algorithm
is introduced to find the possible priority ordering. Differing
from the traditional exhaust algorithm which costs exponential
complexity, our algorithm can effectively reduce the search



space. In addition, our algorithm can ensure that if a priority
ordering exists that makes the traffic-flows schedulable, this
priority ordering will be found by the search algorithm. By
combining with schedulability analysis, a broad class of real-
time communication with different QoS requirements can
be explored and developed in a SoC/NoC communication
platform.

The rest of this paper is organized as follows: section II in-
troduces the related works and their drawbacks. The real-time
communication model and associated schedulablility analysis
are reviewed in section III. Section IV describes a group
of novel heuristic algorithms for searching the assignment
of priorities in real-time on-chip networks. In section V, by
experiments based on simulation, the evaluation results of our
algorithms are presented. Finally, section VI concludes the
paper.

II. RELATED WORKS AND DRAWBACKS

Priority assignment policies for fixed priority scheduling
on single-processor system have been studied widely. The
early work, proposed by Liu and Layland [11], introduced the
Rate Monotonic (RM) priority assignment policy, such that
the task with shortest period is given the highest priority.
However, RM policy requires a restrictive system model,
deadline and period must be identical for each task in the
system. Later, Lenug and Whitehead [12] lifted this constraint
and showed the Deadline Monotonic (DM) priority assignment
policy, allowing a task’s deadline to be less than the period;
where the shorter deadline the task has, the higher priority
value is assigned. Audsley in [13], [14] designed a general
assignment technique with polynomial time complexity that is
guaranteed to find a schedulable priority ordering if one exists
in a system. Recently, Zuhily and Burns [15] introduced the
Deadline minus Jitter Monotonic (D-JM) priority ordering for
a task set with non-zero release jitter.

Priority assignment in wormhole switching networks was
firstly addressed by Mutka [16], which is based on the RM
approach. Li and Mutka [17] later presented Laxity Mono-
tonic (LM) priority assignment policy and a related run-time
adjustment method. The laxity is defined as the difference
between the deadline and maximum basic network latency,
which corresponds to the amount of blocking a packet can
tolerate. Priorities are assigned based on laxity with the
highest priority going to the traffic-flow with the smallest
laxity. Hary’s approach [8] improved the original LM and RM
algorithms by accounting for the numbers of hops a traffic-
flow travels. The priority of a traffic-flow which travels a long
distance is increased.

However, none of these priority assignment polices is re-
ferred to as optimal. An optimal priority assignment approach
means it can provide a schedulable priority ordering whenever
such an ordering exists. The following case shows that none of
RM, DM or LM can produce a schedulable priority ordering
corresponding to a set of traffic-flow with relationships illus-

Fig. 1. A Case of Real-Time Traffic-Flows

trated in Figure 1 and attributes in Table I. The time units are
not necessary in this case as long as all the traffic-flows use
the same base.

Real-Time Traffic-Flow Basic Network Latency Period Deadline
τ1 1 2 2
τ2 1 2.5 2.5
τ3 1.5 3.25 3.25

TABLE I
TRAFFIC-FLOWS DESCRIPTION

The priority orderings produced by RM, DM or LM policies
is exactly the same in this case, τ1 gets the highest priority,
then τ2; τ3 is assigned the lowest priority. The analysis
method given in [10] (outlined in section III-C) calculates
the worst case network latency of τ1, τ2 and τ3 as 1, 2, 3.5
respectively. Flow τ3 misses its deadline and so the system
is unschedulable with this priority ordering. If these priority
assignment policies are optimal then we should not be able to
find another priority ordering which results in all the deadlines
being met. However if we assign the traffic-flows with the
following priority ordering, priority τ2 > priority τ1 > priority
τ3, then the corresponding worst case network latency for each
traffic-flow are 1 for τ2, 2 for τ1 and 2.5 for τ3. All the traffic-
flows are now schedulable. This case shows the current priority
assignment policies are not optimal for the priority-based real-
time on-chip communication.

III. NETWORK MODEL AND SCHEDULABLILITY ANALYSIS

This section gives an outline of the real-time on-chip
network’s structure, the network characteristics and traffic
pattern models that are needed to formulate the schedulability
analysis.

A. Priority-based wormhole switching

Wormhole switching is a very popular cut-through switching
strategy for on-chip networks [6]. The packets arriving at
an intermediate node are immediately forwarded to the next
node without buffering. Each packet in a wormhole network
is divided into a number of fixed size flits [5]. The header flit
takes the routing information and governs the route. As the
header advances along the specified path, the remaining flits
follow in a pipeline way. If the header flit encounters a link
already in use, it is blocked until the link becomes available.
In this situation, all the flits of the packet will remain in the



router along the path and only a small flits buffer is required
in each router.

In order to support a real-time communication service, we
employ the flit-level preemption method implemented by using
virtual channels, which has similar structure as in [8], [18].
The arbitration with priority method uses priority preemption
to provide delivery guarantees for hard deadline packets. We
assume there are as many virtual channels as priority levels at
each router’s port. Each virtual channel is assigned a different
priority. The traffic-flows loaded in the wormhole network
have priorities associated with them. Each packet generated by
a traffic-flow inherits the corresponding priority of the traffic-
flow. A packet with priority i can only request the virtual
channels associated with priority value i. At any time the
packet with the highest priority always gets the privilege to
access the output link. In addition, a higher priority packet can
also preempt a lower priority packet during its transmission
but not while an actual flit is being communicated. If the
highest priority packet can not send data because it is blocked
elsewhere in the network, the next highest priority packet can
access the output link.

B. Traffic-flow model

A wormhole switching real-time network Γ comprises n
real-time traffic-flows Γ ={τ1, τ2, . . . τn}. Each traffic-flow τi
is characterized by attributes τi = (Pi, Ci, Ti, Di, J

R
i , J

I
i ). We

assume that all the traffic-flows which require timely delivery
are periodic or sporadic. The lower bound interval on the time
between releases of successive packets is called the period Ti
for the traffic-flow τi. The maximum basic network latency
Ci is the maximum transmission latency when there is no
traffic-flow contention [10]. Each traffic-flow τi has a priority
value Pi, Pi > Pj means τi has higher priority than τj . The
priority assignment for each traffic-flow is the main topic of
this paper and the related details will be discussed in section
IV. Each real-time traffic-flow has a deadline Di constraint
which means all the packets belonging to this traffic-flow have
the restriction that they should be delivered from a source
router to a destination router within this delay bound even in
the worst case situation. Our model has the same restriction
as [7], [9], [18] that each traffic-flow’s deadline must be less
than or equal to its period, Di ≤ Ti for all τi ∈ Γ. JRi is
the release jitter [19] and denotes the maximum deviation of
successive packets releases from its period. If a packet from τi
is generated at time a, then it will be released for transmission
by time a+ JRi and have an absolute deadline of a+Di. JIi
is interference jitter which denotes the maximum deviation of
successive packets start service time (see section III-C2).

In addition, some dependency relationships also exist among
the set of traffic-flows. Kim et al [18] introduced two kinds of
interferences to deal with the relation between the traffic-flows,
direct interference and indirect interference, and corresponding
direct and indirect interference sets SDi and SIi of the observed
traffic-flow τi, SDi and SIi ∈ Γ . The direct interference

relation means the higher priority traffic-flow has at least
one physical link in common with the observed traffic-flow.
Thus, these traffic-flows will force a direct contention with the
observed one. With the indirect interference relation, on the
contrary, the two traffic-flows do not share any physical link
but there is (are) intervening traffic-flow(s) between the given
two traffic-flows. SIi includes all the higher priority traffic-
flows that do not share any links with τi but share at least one
link with a traffic-flow in SDi .

C. Schedulablility analysis

In this paper, we make use of the simple schedulability
analysis approach for real-time communication in wormhole
switching on-chip networks which is given by Shi and Burns
[10]. The schedulability test is based on computation of the
worst case network latency for each traffic-flow. If the worst
case network latency R of a flow is no more than its deadline,
Ri ≤ Di, then the traffic-flow is schedulable. If all the traffic-
flows loaded on a network are schedulable, then the traffic-flow
set is called schedulable.

The worst case network latency occurs when the following
two conditions are met:

• All the traffic-flows release packets at their maximum
rate and all the packets experience their maximum basic
network latency.

• When the packet from the observed traffic-flow is re-
leased at the same time, all the higher priority packets
finish waiting and start to receive service.

To determine the upper bound of network latency for a
real-time traffic-flow, the maximum basic network latency and
contention interference need to be computed. The maximum
basic network latency can be calculated by static analysis of
traffic-flow pattern and the network features. The interference,
under the fixed priority preemption policy, is determined by all
the higher priority traffic-flows and their resource competing
relationships. Shi and Burns give an approach to quantify
the analysis based on two distinguishing interferences: direct
interference and indirect interference.

1) Direct higher priority interference: When only direct
higher priority traffic-flows exist, the worst case network
latency can be iteratively computed by using the following
equation:

Ri =
∑
∀τj∈SD

i

d
Ri + JRj

Tj
eCj + Ci (1)

where SDi is the set of direct higher priority traffic-flow
of τi. We assume the packet from the observed traffic-flow
is released simultaneously with all the packets from higher
priority traffic-flows, this triggers the conditions of worst case
network latency. The packet from τi may be blocked by more
than one packet from each τj , τj ∈ SDi , since the packet

releases are periodic. The dRi+J
R
j

Tj
e is the maximum number



of packets a higher priority traffic-flow can release before τi
completes.

2) Indirect higher priority interference: The observed
traffic-flow may suffer interference when indirect higher prior-
ity traffic-flow exists, even when they do not share any physical
link. The reason is that when the competition occurs between
the indirect and direct higher priority packets, the latter will
experience an unexpected deferral. This deferral between a
packet being generated and being served is modelled as
interference jitter. The interference jitter induces the practical
minimum arrival interval between successive packet arrivals of
a higher priority traffic-flow which is shorter than the original
assumption T . This phenomenon will introduce an extra delay
upon the observed traffic-flow. Thus, the worst case network
latency for τi needs to take this extra delay into account when
indirect interference exists. Eq.(2) denotes this relation (see
[10] for this derivation):

Ri =
∑
∀τj∈SD

i

d
Ri + JRj + JIj

Tj
eCj + Ci (2)

We notice that this possible extra delay only occurs if Ri +
JRj + JIj > Tj and the amount is no more than Cj . The
interference jitter of a traffic-flow can be obtained by finding
the maximum deviation between two successive packets start
service time. Consider the minimum and maximum of packet
start service time are 0 and Rj − Cj , the upper bound of
interference jitter is:

JIj = Rj − Cj (3)

IV. EFFICIENT PRIORITY ASSIGNMENT

Wormhole switching with the fixed priority preemption has
been proposed as a solution for real-time on-chip communi-
cation. Therefore, an efficient priority assignment policy is
desirable. In this section, we explore the possible method
of priority assignment, such that this assignment ensures
schedulability.

A. Properties of the model

Assuming that priorities have been assigned to each traffic-
flow, the schedulability of a traffic-flow set can be determined
by worst case network latency analysis shown in the last
section. During the analysis process, we notice some special
properties. These properties can help us reason about the effect
of changing priority ordering of traffic-flows.

Corollary 1. The network latency of traffic-flow is not depen-
dent on lower priority traffic-flows.

Theorem 1. The network latency of a traffic-flow is dependent
on the higher priority traffic-flows and their relative priority
ordering.

Proof: In priority-based preemption scheduling model,
the observed traffic-flow τi suffers two different interferences,

interference from direct higher priority traffic-flows and in-
terference from indirect higher priority traffic-flows. For any
traffic-flows τj meets the conditions: τj ∈ SDi and Pj > Pi,
τj can force a direct competing interference. For any traffic-
flows τk meets the conditions: τk ∈ SIi and Pk > Pi, τk can
force an indirect competing interference. Thus, the interference
suffered by the observed traffic-flow is determined by the set
of all the higher priority traffic-flows. In addition, it is not
hard to find if we swap two higher priority traffic-flows, the
indirect interference relation may be changed. A typical case
has been shown in Figure 1, with priority descending ordering
τ1, τ2 and τ3, τ3 has direct competition with τ2 and indirect
competition with τ1. However, if we swap priority of τ1 and
τ2, τ3 in this situation only suffers direct interference from τ2.
Thus, the priority ordering of higher priority traffic-flows also
determines the network latency of lower priority traffic-flows.

Theorem 1 proves the priority ordering is the major factor
in the analysis of worst case network latency for real-time
on-chip communications. Obviously, the general priority as-
signment policies of Audsley [13], [14] which require that
the response time is not dependent upon the higher priority
ordering, are unfortunately not applicable in this case.

B. Lower and upper bounds of worst case network latency

There is no known efficient algorithm for finding a schedu-
lable assignment of priorities that takes less than exponential
time. Consider a set of n real-time traffic-flows, each traffic-
flow is mapped to a unique priority level by some priority
assignment policy. There are n! distinct priority orderings over
this set. Except for a very small size of traffic-flow set, we can
not check all the possible orderings because of exponential
time complexity. However, we notice an interesting property
that not all the traffic-flows can meet their deadlines with
the specific priority level. Let us revisit the case shown in
Figure 1. If τ2 is assigned the lowest priority, no matter
what the ordering of τ1 and τ3, τ2 is determinately not
schedulable. If we can find these ‘unsuitable’ traffic-flows at
the corresponding priority, we can reduce the search space
significantly.

Two useful concepts: lower bound and upper bound of worst
case network latency are introduced. The lower bound of worst
case network latency R

′

i is the network latency of a traffic-
flow τi at some priority level when only direct interference is
considered. On the contrary, the upper bound of worst case
network latency R∗i can be obtained for a traffic-flow τi when
maximum interference jitter is considered. Actually, the real
network latency can not be worked out before we know the
priority assignment for all the traffic-flows (Theorem 1). But
the possible range can be evaluated aforehand.

The proposed priority assignment algorithm starts from the
lowest priority and moves up to highest priority. During the
process of priority assignment, we use an assignment status to
mark each traffic-flow, namely, assigned or unassigned. Thus,



all the assigned traffic-flows have lower priorities and all the
unassigned traffic-flows are assumed to be higher priorities
than the assigned ones. When we try to assign priority k to an
unassigned traffic-flow τi, the lower bound of network latency
can be obtained by the following approach:

1) Except for the assigned traffic-flows, all the unassigned
traffic-flows which share resource link with τi are in-
serted into set SDi .

2) Utilizing recurrence relation Eq.(4) to find the lower
bound of worst case network latency.

R
′

i =
∑
∀τj∈SD

i

d
R

′

i + JRj
Tj

eCj + Ci (4)

Here, all the unassigned traffic-flows which have a resource
competing relationship with τi are treated as direct interfer-
ences.

Additionally the upper bound of network latency also can
be obtained by a similar approach:

1) Except for the assigned traffic-flows, all the unassigned
traffic-flows which share resource link with τi are in-
serted into set SDi .

2) For any traffic-flow τj ∈ SDi , if an unassigned traffic-
flow τk is found which is in common with τj and not in
common with τi, τj will produce an interference jitter.
Here we consider the fact that the interference jitter JIj is
no more than Dj−Cj in the worst case, so JIj ≤ Dj−Cj
is true.

3) Utilizing the following relation Eq.(5) to find R∗i

R∗i =
∑
∀τj∈SD

i

d
R∗i + JRj +Dj − Cj

Tj
eCj + Ci (5)

Here we evaluate the network latency based on worst case
interference jitter scenario and obtain the upper bound of Ri.

Theorem 2. The worst case network latency evaluated by
Eq.(1) and Eq.(2) for τi is never less than its lower bound,
Ri ≥ R

′

i is always true.

Proof: For a set of n traffic-flows Γ ={τ1, τ2, . . . , τn}
loaded on the network, we assume that priority level between
n, . . . , k+ 1 have been assigned and k is the available lowest
priority. Let priority k be assigned to τi . After that, all the
unassigned traffic-flows will be allocated priorities between
k − 1, . . . , 1 in non-particular order, but have higher priority
than τi. Thus all the unassigned traffic-flows which share
resource link with τi will force a direct competition upon
it; Eq.(1) shows this situation. Besides that, some unassigned
traffic-flows also have relation of indirect interference with τi.
This can force an extra ‘hit’ on τi. The worst case network
latency can be achieved in this situation by Eq.(2) which takes
both direct and indirect interferences into account. On the
contrary, the lower bound of network latency only considers
the direct interference. Thus, the network latency evaluated by
Eq.(1) and Eq.(2) for τi is never less than its lower bound.

So for a flow τi, if its network latency lower bound is greater
than its deadline, R

′

i > Di, then Ri > Di is a reasonable
conclusion. By evaluating the lower bound of network latency,
Theorem 2 gives an approach to eliminate all the ‘unsuitable’
traffic-flows where R

′

i > Di at the specific priority. Next we
will use the upper bound of worst case network latency to find
the traffic-flow which is guaranteed for schedulablility at the
specific priority.

Theorem 3. If a traffic-flow τi is assigned the lowest priority
and satisfies the condition R∗i ≤ Di, then if a schedulable
priority ordering exists for Γ, a schedulable ordering also
exists with τi assigned the lowest priority.

Proof: Let us assume that a schedulable priority ordering
exists over a traffic-flows set Γ with τi is assigned priority i.
Since τi meets the condition R∗i ≤ Di when it is assigned the
lowest priority, so we move τi to the bottom of the priority
ordering. The traffic-flows originally assigned priority i + 1,
. . . , n are promoted one level, Figure 2 shows this transfor-
mation process. Clearly, the traffic-flows assigned priority 1,
. . . , i−1 remain schedulable as nothing has changed to affect
their schedulability. The traffic-flows set which originally are
assigned priority i+1, . . . , n must remain schedulable because
the interference on them has decreased due to τi now is moving
to the lowest priority. Since τi is schedulable at the lowest
priority level, a schedulable ordering exists with τi assigned
the lowest priority.

Fig. 2. Transformation of Priority Ordering

Theorem 3 implied that when a traffic-flow satisfies the
condition R∗i ≤ Di at the lowest priority, there must be
a schedulable priority ordering with τi assigned the lowest
priority no matter what the ordering of the rest of the traffic-
flows. Each time when we find a traffic-flow meeting the above
condition we can assign this flow the lowest priority. We can
apply this process repeatedly and reduce the search space of
priority assignment.

The next Theorem will tell us how to determine unschedula-
blility before a full priority assignment is given. Let Θ(n, k)Γ

denote a partial priority ordering from priority n to k for a set
Γ with n traffic-flows. Θ(n, 1)Γ is a full priority ordering for
n traffic-flows.



Theorem 4. During the process of priority assignment, at the
priority level k, a priority assignment policy has produced
a partial priority levels ordering Θ(n, k − 1)Γ for a traffic-
flows set Γ. If no unassigned traffic-flow meets the condition:
R

′

i ≤ Di, τi ∈ Γ, at the priority level k, then no schedulable
priority ordering exists that assigns the same traffic-flows with
priority n to k as Θ(n, k − 1)Γ.

Proof: For any priority assignment policy, each priority
needs to map to a specific traffic-flow. During the process of
priority assignment, at the priority level k, there are k! distinct
priority orderings exist. Consider a unassigned traffic-flow τi,
there should be (k − 1)! priority orderings with τi at priority
level k. If τi can not meet the condition R

′

i ≤ Di, no matter
what the priority ordering of other unassinged traffic-flows, τi
is un-schedulable at the priority level k according to Theorem
2. If all the unassigned traffic-flows can not meet the condition
R

′

j ≤ Dj at the priority k, τj ∈ Γ, all the k! priority orderings
are all un-schedulable. Then, no schedulable priority ordering
exists that assigns the same traffic-flows with priority n to k
as Θ(n, k − 1)Γ.

The properties of Theorem 2, Theorem 3 and Theorem
4 help to reduce the possible search space for finding the
schedulable priority ordering. Therefore, we will use these
properties as guidelines while designing an algorithm for
priority assignment.

The intuition for the algorithm is as follow. At each priority
level k, if any traffic-flow τj exists which R∗j ≤ Dj , then
assign τj to level k; otherwise compute the set of traffic-flows
with R′ ≤ D. If this set is empty, level k can not be assigned
a flow. If the set is non-empty, choose one member τi using
a heuristic and assign τi to level k. If this choice does not
lead to a schedulable system, try the other members of the
set. Repeat for all priority levels.

C. Heuristic Priority Assignment

1) Heuristic search algorithm: We give a heuristic search
algorithm (HSA) to find a schedulable priority assignment
if it exists. The search algorithm proceeds by performing a
heuristic guided search to produce a possible priority ordering.
When this priority ordering is completed, the schedulability
analysis presented in section III-C is executed to test this
ordering. If this priority ordering passes this test, we have
found a schedulable priority assignment. If not, the algorithm
backtracks to generate another one.

The priority search algorithm starts from the lowest priority.
The upper bound of worst case network latency for each
unassigned traffic-flow is evaluated at the current priority P
(line 10), P = n at the beginning. The unassigned traffic-flows
which meeting the condition R∗i ≤ Di is assigned priority
P (lines 4 - 8). At the specific priority, if no traffic-flow
with the condition R∗i ≤ Di exists (line 9), the algorithm
starts calculating the lower bound of worst case network
latency (line 12). We construct n prioritized candidate lists

Priority P CandidateList, 1 ≤ P ≤ n, each list is related
to a priority level P . Initially, each candidate list is empty.
Theorem 2 implies only the traffic-flows which meet the
condition R′i ≤ Di might be potentially schedulable at the
specific priority. All the unassigned traffic-flows meet the
condition R′i ≤ Di are inserted into corresponding priority
level P candidate list (lines 2 - 3). After that, if priority
P candidate list is not empty, an appropriate traffic-flow is
selected from the candidate list to assign to priority P and
it is removed from this list (lines 18 - 20). When more than
one traffic-flow is available at priority P , to make the search
more efficient, we select the “most promising” candidate first.
A set of heuristic functions is proposed, the details of which
are described below. The algorithm iterates this process at each
priority until P < 1 (line 21) which means all the traffic-flows
are assigned priority. Finally, the complete schedulable test is
called.

Fig. 3. Heuristic Search Algorithm

2) Heuristic Functions: The heuristic policy helps select the
most likely candidate when more than one traffic-flow meets
the condition R′ ≤ D. Our heuristic policy is based on an
assumption of tolerable additional interference, namely, how
much additional interference can be tolerated by a traffic-flow
at a priority level without missing the deadline. This is a quite
natural assumption, the more interference can be tolerated for



a traffic-flow, the lower priority level is assigned. This policy
leaves the chance for the traffic-flows which have less tolerable
additional interference to get higher priorities. How to quantify
the tolerable interference for each traffic-flow at a specific
priority is an issue.

Here we propose two different baseline evaluation schemes.
The first scheme H1 is the simple intuitive scheme which
considers the absolute difference between Di and R′i as the
tolerable interference for a traffic-flow τi. The traffic-flow with
largest difference value is selected from the corresponding
candidate list. Let Hi denote the heuristic value for τi.

H1 Heuristic Function:
Hi = Di −R′i (6)

The second baseline scheme H2 utilizes the sensitivity
analysis technique [20] to evaluate the maximum tolerable
additional interference. The sensitivity analysis can capture
the bounds within which a parameter (basic network latency
C in this case) can be varied without violating the timing
constraints. Let R′(C) denote the calculation function of lower
bound of worst case network latency, R′i = R′(Ci). If a traffic-
flow τi meets the condition R′i ≤ Di, utilizing the sensitivity
analysis, we can obtain maximum permissible increase of Ci
without violating system schedulability. Let ∆C denote the
tolerable increase.

H2 Heuristic Function:

Hi = max(∆C) where R′(Ci + ∆C) ≤ Di (7)

Besides this, we also consider the fact that the traffic-flow
which travels a long distance likely encounters more blocking
interference than the short distance. Thus the distance factor
also should be taken into account. The following two heuristic
functions are the improved versions of H1 and H2 which
consider the number of hops a traffic-flow travels.

H3 Heuristic Function:
Hi = (Di −R′i)/hops (8)

H4 Heuristic Function:

Hi = max(∆C)/hops where R′(Ci + ∆C) ≤ Di

(9)

The distance is inverse proportional to the tolerable addi-
tional interference so that the heuristic value calculated by
H3 and H4 decreases when a traffic-flow traverses more hops.
Accordingly, this traffic-flow has less possibility to be choosen
at the lower priority level, which is as desired. When traffic-
flow traverse a single hop, the heuristic value produced by
H3 and H4 is equal to the result calculated by H1 and H2
respectively.

Also, we notice that for any given flow τi, all the higher
priority traffic-flows in SDi will take a proportion of available
network communication capacity

∑
∀j∈SD

i
Cj/Tj . Thus, only

a fraction of the network service capacity 1-
∑
∀j∈SD

i
Cj/Tj

remains available to accommodate the current flow τi. The

flow with higher free network service capacity is a better
candidate to be served with lower priority. Thus the available
network capacity is also modelled as the heuristic metric. The
following two heuristic functions are the improved versions of
H1 and H2 which consider network service capacity.

H5 Heuristic Function:

Hi =
Di −R′i∑
∀j∈SD

i
Cj/Tj

(10)

H6 Heuristic Function:

Hi = max(
∆C∑

∀j∈SD
i
Cj/Tj

) where R′(Ci+∆C) ≤ Di

(11)

3) Backtracking policy: It is not difficult to see that the
search proceeds like a depth first search tree, each possible
priority ordering is a branch of the search tree. However, the
heuristic functions do not always select the right branch which
induces a schedulable priority assignment. Thus, backtracking
becomes an important part of the algorithm to help correct the
search path. During the search iteration process, backtracking
occurs at two possible places.

Middle unschedulable branch : Sometimes there is no
traffic-flow satisfying the condition: R′i ≤ Di at the priority
level P . In this situation, Theorem 4 implies that there is no
schedulable priority ordering based on the traffic-flows which
have been selected. The algorithm in this situation backtracks
its search process by unassigning the selected traffic-flow at
the priority P + 1 and tries to find another appropriate one,
pseudo code lines 13 - 19 describe this process. Therefore,
we prune some middle unschedulable branches to make the
search more efficient.

End unschedulable branch: When a complete priority
ordering has been found (line 21), the full schedulable test is
called. If the priority ordering does not pass the schedulability
test, the algorithm has to backtrack to find other appropriate
priority orderings by following the same procedure to the
middle unschedulable branch (lines 24 - 25).

Because of the restricted condition and pruning branch pol-
icy, only a small search space is produced compared with the
original n!. The algorithm utilizes the backtracking policy to
search all the possible priority orderings. Thus, if a schedulable
priority ordering for a set of traffic-flow loaded on the network
exists, our algorithm is assured to find this priority ordering.

V. EXPERIMENT EVALUATION

This section describes experiments that have been con-
ducted to quantify the performance of the heuristic priority
assignment search algorithms, HSA. Consider the fact that
a low dimensional mesh is quite common in current on-
chip networks [1], [2], so we conduct our evaluation based
on a 6 × 6 2D mesh. The dimension-order X-Y routing is
used because it is simple and can be applied to any on-
chip network without extra cost. Although we focus on the



architectures inter-connected by 2D mesh networks with X-Y
routing schemes, our algorithm can be adapted to other regular
architectures with different networks topologies or different
deterministic routing schemes.

Each traffic-flow is characterized by its period T , deadline
D, basic communication latency C and transmitting path.
Random source/destination nodes pairs are chosen for each
traffic-flow. The basic network latency C is chosen from
the range [16, 1024] time units with uniform probability
distribution function. Another important metric period T is
calculated by a random utilization variable ui. We employ
the uniform distribution algorithm [21] to generate a set of
uniform distributed random utilization variable. Utilizing this
utilization variable, each flow’s period is calculated as Ti =
Ci/ui. The traffic-flow deadline D is set to be T for all the
traffic-flows. For a set of generated traffic-flows, we ensure
the flow set does not violate predefined constraints: maximum
link utilization Umax or average link utilization Uavg . The link
utilization Ulinkj

for a single link j can be found by summing
the usages of all the m traffic-flows pass on this link.

Ulinkj =
m∑
i=1

Ci/Ti (12)

The maximum link utilization is the maximum number of
all the links in this network, Umax = max(Ulinkj

) where
∀linkj ∈ mesh. The average link utilization is given by:

Uavg = (
M∑
j=1

Ulinkj
)/M (13)

where M is the total number of links in the network.

Except for the evaluation with the varied size of flows set,
each time a generated test set contains 30 flows and each
investigation level on the result diagrams is the average of
1000 randomly generated flow sets.

A. Evaluation of different heuristic functions

The efficiency of the HSA algorithm depends heavily on its
heuristic search policy, so in this experiment, we examined the
performance of the six different heuristic functions. During the
heuristic search processing, if a promising candidate is found,
it will be assigned the current priority and search processing
moves to the higher priority level; otherwise, none of the
current flows meeting the condition, the search algorithm
backtracks to a lower priority level. So a reasonable metric
to compare the efficiency of different heuristic functions is
a measure of the number of priority assignments, namely,
how many priority assignment operations are required to
find a schdulable priority ordering. We design two groups
experiments, first we compare these heuristic functions with
the overall link utilizations variation. And then, we varied the
number of traffic-flows from 40 to 100 with a fixed link load.
All the experiment measures are taken under the maximum
and average link load schemes separately.

Fig. 4. The number of priority assignment operations under varied maximum
link utilization

Fig. 5. The number of priority assignment operations under varied average
link utilization

Figure 4 and Figure 5 show the average number of priority
assignment operations for several heuristic functions under
varied link load. As shown in both figures, all of the heuristic
policies perform comparatively well and find a schedulable
priority ordering quickly at the lower network load (no more
than 0.28 in average load or 0.5 in maximum load). This is
because in many cases, no matter what the priority ordering,
the traffic-flow set is always schedulable. However, with the
increase of network load, the iteration operation increases
rapidly. The difference among these heuristic functions be-
comes clear. As can be seen in both figures, there is a sig-
nificant reduction in average number of assignment operation
for heuristic algorithms with the sensitivity analysis technique
(H2, H4 and H6) than the intuitive ones (H1, H3, H5) which
consider the absolute distance between deadline and worst case
latency. The average operation numbers from H2, H4 and H6
sometimes are even no more than the half of the corresponding
H1, H3 and H5. Two considered heuristic factors, distance
and network service capacity, give comparable results. From
the observation, the operation numbers of H5 and H6 are
fairly reduced comparing with the baseline functions H1 and
H2 when the network service capacity is considered. But the
distance as heuristic factor (H3 and H4) does not present the



more advantage over H1 and H2.

Fig. 6. The number of priority assignment operations with varied number
of traffic-flows set under 55% maximum link utilization

Fig. 7. The number of priority assignment operations with varied number
of traffic-flows set under 32% average link utilization

Figure 6 and Figure 7 show the variation of priority as-
signment operations as the function of the size of traffic-flows
set for fixed link utilization scenarios. With the increase of
the flows set size, the gap between H1, H3, H5 and H2,
H4, H6 becomes progressively larger. It is evident that the
sensitivity analysis technique can achieve the better perfor-
mance under the flow set with bigger size. Finally, in all cases,
the experiment result shows that H6 scheme which combines
with sensitivity analysis technique and network load capacity
performs equally well and is highly effective in reducing the
number of heuristic search operations.

B. Evaluation of different priority assignment schemes

This experiment investigated the performance of different
priority assignment policies. Three existing schemes that are
compared with HSA are : RM(T) [16], improvements of RM
(RM(T/H) and RM(T/ln(e+H-1))) [8], [16]. The evaluation is
aimed at the question “is it worth undertaking the heuristic
scheme”. The comparison measure used in this part is pass
ratio, namely, the percentage of the number of traffic-flows set

that pass the schedulability test versus the number of original
traffic-flows set with different priority assignment policies.
Only if all the traffic-flows in a generated set pass the schedu-
lability test, do we say that the set is schedulable. H6 heuristic
function is choosed as the default for the HSA. For evaluation
reasons, we do not try to check all the possible branches but set
a stoping criteria for the HSA with the maximum number of
iterations. When the algorithm reaches the maximum iterations
without finding a schedulable priority ordering for a set, this
set is treated as unschedulable. In general, the more traffic-flow
sets meet their timing constraints, the higher performance for
the assignment policy.

Fig. 8. The pass ratio under varied maximum link utilization

Due to limited space, only the evaluation results under varied
maximum link load are shown. Similar trends can also be
observed under average link load. Figure 8 plots, for each
utilization level, the percentage of traffic-flow sets that were
schedulable according to each priority assignment schemes.
We find, as the link load increases, pass ratio decreases as
expected. The heuristic search algorithm significantly outper-
forms the RM and its related schemes under higher network
load. It still can find a schedulable priority assignment for
a set even when the network maximum link load reaches
0.6, comparing with RM which only gets 59.8% pass ratio
in Figure 8.

Figure 9 shows the pass ratio variation with the increase
in the traffic-flows set size. HSA shows its robustness and
achieves the highest pass ratio. In addition, the number of flow
sets does not greatly affect HSA performance, and the pass
ratio remains nearly constant. By comparison, RM and related
policies perform poorly and their performances are sensitive
to the size of flow set. When the number of flow set increases
from 40 to 100, the average pass ratio falls almost 35% for
RM related policies.

VI. CONCLUSION

Wormhole switching with fixed priority preemption has been
proposed as a significant solution for real-time on-chip com-
munications. One of the problems involved in the development



Fig. 9. The pass ratio with varied number of traffic-flows set under 55%
maximum link utilization

of priority-based communication is: how to assign priority to
each traffic-flow so that all the traffic-flows loaded on the
network will meet their time constraints. In this paper, we in-
troduce the heuristic branch and bound search algorithm to find
the possible priority ordering. Differing from the traditional
exhaust algorithm which costs exponential complexity, our
algorithm can effectively reduce the search space. In addition,
our algorithm can assure that if a priority ordering makes a
set of traffic-flows schedulability, this priority ordering will be
found by the search algorithm. By combining with schedula-
bility analysis, a broad class of real-time communications with
different QoS requirements can be explored and developed in
a SoC/NoC communication platform.

REFERENCES

[1] W. J. Dally, “Route packets, not wires: On-chip interconnection net-
works,” Proceedings of the 38th Design Automation Conference (DAC),
pp. 684–689, 2001.

[2] L. Benini and G. D. Micheli, “Networks on Chips: A New SoC
Paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[3] S. Furber and J. Bainbridge, “Future trends in SoC
interconnect,” in IEEE International Symposium on VLSI Design,
Automation and Test, 2005, pp. 183– 186. [Online]. Available:
http://www.imit.kth.se/ãxel/papers/2002/rvk-2002.pdf

[4] T. Bjerregaard and J. Spars, “Implementation of guaranteed services
in the mango clockless network-on-chip,” IEE Proceedings: Computing
and Digital Techniques, vol. Vol. 153, (4), no. 217-229, 2006.

[5] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” Computer, vol. 26, no. 2, pp. 62–76, 1993.

[6] N. Kavaldjiev and G. Smit, “A survey of efficient on-chip communica-
tions for SoC,” in 4th PROGRESS Symp. on Embedded Systems, 2003,
p. 129140.

[7] S. Balakrishnan and F. Ozguner, “A priority-driven flow control mech-
anism for real-time traffic in multiprocessor networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 9, no. 7, pp. 664–678, 1998.

[8] S. L. Hary and F. Ozguner, “Feasibility test for real-time communication
using wormhole routing,” IEE Proceedings - Computers and Digital
Techniques, vol. 144, no. 5, pp. 273–278, 1997. [Online]. Available:
http://link.aip.org/link/?ICE/144/273/1

[9] Z. Lu, A. Jantsch, and I. Sander, “Feasibility analysis of messages for on-
chip networks using wormhole routing,” in ASP-DAC ’05: Proceedings
of the 2005 conference on Asia South Pacific design automation, 2005,
pp. 960–964.

[10] Z. Shi and A. Burns, “Real-time communication analysis for on-chip net-
works with wormhole switching,” in Proceeding of the 2nd ACM/IEEE
International Symposium on Networks-on-Chip(NoCS), 2008, pp. 161–
170.

[11] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[12] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic real-time tasks,” Performance Evaluation, vol. 2,
pp. 237–250, 1982.

[13] N. C. Audsley, “Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times,” in YCS164, Dept.
Computer Science, University of York, 1991. [Online]. Available:
citeseer.ist.psu.edu/audsley91optimal.html

[14] N. C. Audsley, “On priority asignment in fixed priority scheduling,” Inf.
Process. Lett., vol. 79, no. 1, pp. 39–44, 2001.

[15] A. Zuhily and A. Burns, “Optimality of (dj)-monotonic priority assign-
ment,” Information Processing Letters, vol. 103, no. 1, pp. 247–250,
2007.

[16] M. Mutka, “Using rate monotonic scheduling technology for real-
timecommunications in a wormhole network,” in Proceeding of the
Second Workshop on Parallel and Distributed Real-Time Systems, 1994,
pp. 194–199.

[17] J. Li and M. Mutka, “Real-time virtual channel flow control,” J. Parallel
and Distributed Computing, vol. 32, no. 1, pp. 49–65, 1996.

[18] B. Kim, J. Kim, S. J. Hong, and S. Lee, “A real-time communication
method for wormhole switching networks,” in ICPP ’98: Proceedings of
the International Conference on Parallel Processing, 1998, pp. 527–534.

[19] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell, and A. J.
Wellings, “Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Engineering Journal, vol. 8, pp. 284–292, 1993.
[Online]. Available: citeseer.ist.psu.edu/audsley93applying.html

[20] R. Racu, M. Jersak, and R. Ernst, “Applying sensitivity analysis in
real-time distributed systems,” in RTAS ’05: Proceedings of the 11th
IEEE Real Time on Embedded Technology and Applications Symposium.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 160–169.

[21] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time System Journal, vol. 30, no. 1-2, pp. 129–154,
2005.


