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Abstract— Networks for real-time embedded systems are a key 
emerging technology for current and future systems. Such 
networks need to enable reliable communication without 
requiring significant resources, and provide an easy 
programming interface. This paper considers a file-system 
interface across all resources in a networked embedded system, 
ie. an application can access local, remote and mobile resources 
using a file interface. The approach is based on Styx [1, 2], part of 
the network protocol of the Inferno/ Plan 9 OS [1]. The Styx 
protocol provides file system level abstractions for ease of 
developing and management at an application layer. To this, we 
have added limited fault-tolerance and potential mobility for 
resources. To ensure applicability in a low-resource context, we 
have defined and implemented a (hardware) Styx IP-core 
Module1, removing the need for a CPU and software overhead.  

I. INTRODUCTION  
A key emerging issue in embedded systems is the provision 

of suitable networks that are low resource, and enable 
applications to be programmed easily. This paper considers a 
file-system interface to all resources within an embedded 
network. Such an interface is easy to program, and provides a 
uniform namespace across all resources, even if they are 
mobile. An example of such a network is a sensor network, 
containing a large number of sensor nodes. To design and 
manage these sensor nodes and associated applications is a 
multi-dimensional research issue [3], including network 
topology [4, 5], communication protocol [6, 7], fault tolerance 
[8], power consumption [9, 10] and cost. In this paper, we 
extend the Styx protocol [11] to provide file system 
abstractions across mobile resources; and provide a low-
resource hardware implementation.   

A file system abstraction, through which the resources on 
remote sensor nodes are presented as files, is unconventional – 
usual Operating Systems (OS) do not allow remote control of 
resources except via local proxy servers. Styx allows such 
control, reducing the need for complex OS on remote nodes, a 
distinct advantage for low-resource remote sensors / actuators 
(eg. as seen in sensor networks, or smart buildings). 
Applications see only a file system interface. For example, a 
remote sensor can be represented by two files on the file-like 
interface: “/sensor_1/control” and “/sensor_1/data”. Writing a 
command to the “/sensor_1/control” file results in appropriate 

actions, such as turn on/off the sensor. Reading from the 
“/sensor_1/data” file  obtains data from the sensor. Resources 
can be flexibly managed by “mount” and “unmount” to/from 
the different nodes (views) in the namespace, according to 
users application. Hence, the file system abstraction introduces 
flexibility to application development.  

In order to effectively utilise the Styx protocol in embedded 
networks, two issues need to be addressed. Firstly, Styx needs 
to be extended to cope with mobility; secondly, a low-resource 
version is required. Styx is originally developed as a network 
protocol in Inferno OS, and it brings a considerably amount of 
overhead for small (especially low-power) devices. In previous 
work [13], a hardware Styx protocol stack has been developed 
as IP-cores for SoC. It is delivered in standard interface and 
proven to work with a wide range of devices, such as, CPU 
cores, robot servo controllers, voice synthesisers, etc., and 
popular wireless communication stacks, such as, WIFI [14], 
Bluetooth [15], and Zigbee [16]. In this paper, we present a 
power-area-optimised Styx IP-core. 

The rest part of the paper is organised as follows. Section II 
gives the technical background. Section III describes the design 
of the Styx IP-core based low-power nodes. In section IV, we 
illustrate extensions to Styx for mobile resources in the context 
of sensor nodes in a wireless sensor network environment. 
Section V describes the further implementation and evaluation, 
with section VI providing conclusions.      

II. BACKGROUND 

A. Styx Protocol 
Styx was developed for the Inferno OS, designed by Bell 

Labs and now is a product of Vita Nuova [17].  It is an 
application layer protocol that working over protocols such as 
TCP/IP [18], ATM [19], PPP [20], etc. Styx merely requires 
the underlying network provides  an in-order and reliable data 
channel to send /receive data packet.  

A Styx-enabled system can choose to be a client (to connect) 
or a server (to be connected). Fig.1.a shows the exchange of 
various Styx messages between a Styx client and server in 
order to establish an initial connection. The client sends a 
“Tversion” message containing its Styx protocol 
implementation version number. After verification, the Styx 

1 This work is part of the DEMOS project undertaken by the AMADEUS 
Research Centre, University of York, York, UK 
(http://www.cs.york.ac.uk/amadeus) 



server responds by sending an “Rversion”. The T/Rversion 
message also gives server/ client the information about the 
maximum length of a Styx message that the client/ server is 
capable of handling. The client then sends a “Tauth” message 
containing the user name and password required to connect to 
the Styx server. This information may also be encrypted using 
any encryption standard agreed upon by both client and server 
during implementation. The server verifies the username and 
password and responds with an “Rauth” message on success. 
Finally, the client issues a “Tattach” message requesting the 
server to attach it to the server’s namespace. The server 
responds with a “Rattach” message that contains a handle, QID, 
which contains the unique identification to the root node of its 
namespace. Once the client receives a “Rattach” message from 
the server, it is then ready for communication (read/ write files) 
with the devices connected to the server.  
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Figure 1.  The Styx Protocol Basic Operations 

Fig.1.b describes the Styx messages exchanged between 
client and server depicting a file-write operation by a Styx 
client. The client issues a “Twalk” message to navigate to the 
file that it wants to write to. The server changes the client’s 
working location to the requested node if such a file exists and 
the client has sufficient permissions to access it. On success, 
the server acknowledges the client by sending an “Rwalk”. The 
client then issues the “Topen” message containing the 
identification number (FID) of the file to be opened. This FID 
is unique and local to every client. On the server side, the FID 
is associated to a QID in its namespace. Thus, on the client end, 
it is possible that two or more FIDs point to the same QID on 
the server side. This is how every client has its own copy of the 
namespace by using their own FIDs and manipulating them as 
per their requirements. On receiving Topen message, the server 
associates the client’s FID to the device files QID and replies 
with an “Ropen” message. 

To write data (either command to the associated device, or 
mere data) to the opened file, the client now issues a “Twrite” 
containing the data to be written. It is possible for the client to 
issue more than one “Twrite” message if the length of data to 
be written is greater than the maximum Styx message length, 
which is implementation dependent. Each such message is 
tagged by a message identification to provide information to 
the server about the order in which it has to write the data to the 
file. The server may not literally write the data it receives. It 
will decode the data field for commands and carry out the 

required operation(s) on the actual device accordingly. If 
appropriate the server now changes the information present in 
the device’s status file. The server sends an “Rwrite” message 
containing the information about the number of bytes written to 
the file for verification. When there were multiple “Twrite” 
messages sent by the client, the server also replies in equal 
number of “Rwrite” message carrying the same message tags. 

Finally, if required, the client issues a “Tclunk” message to 
close the opened file. The server carries out the required 
operations (e.g. disabling a device, putting it to sleep, etc.) on 
the device and replies with an “Rclunk” message. For any error 
encountered by the server during its operation, a “Rerror” 
message is sent to the client describing the error. 

B. Remote Access via the Styx File System Abstraction 
Remote access via file system abstractions has been utilised 

in many OSs. However, this is conventionally restricted to true 
data files rather than devices. In typical Unix style 
implementations (e.g. SunOS, Linux, BSD [21, 22]) and 
Windows (i.e. Samba [23]), devices are not exported and hence 
are not available to remote applications via the virtual file 
system. The usual work around is the construction of local 
applications (or kernel level) servers to handle remote accesses 
to devices. In contrast,  Styx represents each device/ resource 
on the network as a single or multiple file(s), so providing 
distribution transparency over all resources to applications.  
Remote clients can open / close / read / write remote devices 
represented by files. For example: a device, A can access a 
device/resource, R on the network in the form of file, F. The 
device can then simply use the other device/resource as if it 
were a local file. Any open/ read/ write/ close operations 
performed by the device on file, F directly affect the actual 
network device/resource, R.  

Styx allows chaining device accesses across multiple nodes. 
Thus, an application can access a device via an intermediary 
node (acting as communication bridge). This feature removes 
the need for total direct connectivity of all nodes (and 
connected devices) in the system. Thus, if intermediary serves 
the third device’s attached namespace via its Styx server, the 
application can access the device files of third device (via the 
intermediary) using the Styx protocol. Initially, it connects to 
the intermediary and then starts using the device files of the 
third device as its local files. The overhead is a two-level of 
indirection, which is inevitable without total connectivity. 

C. Styx Hardware Implementation 
A hardware implementation of the basic Styx protocol has 

been developed as a SoC component in previous research [13]. 
It has a simple command set to enable control by a CPU, using 
a register / interrupt interface. A lightweight variant of the Styx 
SoC component was developed to interface to devices directly. 
This allows remote clients to interact with the device via a Styx 
namespace without any CPU and software overhead.      

III. DESIGNING LOW-RESOURCE REMOTE NODES 
This section describes the design of low-resource remote 

nodes that utilize the Styx approach. As an example, sensor-
nodes are considered. 



A. Low-Resource Sensor Networks  
A data centric sensor network processes the acquired data 

on central processors, while the sensor nodes only handles data 
acquisition, sensor management and transmit/ receive [24, 25]. 
This is illustrated in Fig. 2, comprising: sensor/ Analog-to-
Digital converter (AD), sensor controller/ namespace, Styx 
server, transceiver and power unit. The AD converter feeds the 
digitised data collected from the sensor to the sensor controller, 
which may use a RAM-based data buffer if the sensor node 
requires large amount data storage. These data are presented as 
a file on the Styx server’s namespace, for example 
“/sensor_1/data”. Other resources are also mapped to the Styx 
server, and presented as files to the remote client. For example, 
the sensor controller and status register can be mapped as 
“/sensor_1/control” and “/sensor_1/status”, respectively. Thus, 
the Styx server establishes a connection with file system 
abstraction, and do not require CPU, OS, and software.   

The Styx server has three main features that contribute to 
low-power sensor management. Firstly, a hardware 
implementation requires less resources than software solutions. 
We note the hardware Styx server can be run at a lower clock 
frequency to achieve comparable performance a CPU; and will 
require less power. Secondly, RAM is only needed when the 
sensor requires data buffer, e.g. for an image / voice sensor, a 
fast-sampling sensor, etc. In most cases, the sensor only 
produces a small amount of data that can be buffered in FIFO, 
registers, or even sent by the transceiver in real-time. In the 
above case, the sensor node requires no RAM at all; therefore, 
the power consumption of RAM chip can be eliminated. 
Finally, the sensor, AD and sensor controller can be turned off 
from the power unit. This cuts the power dissipation from those 
devices, and the Styx server remains in idle mode, which only 
uses a small amount of power. In the extreme case (a timed 
sleep mode), even the transceiver and the Styx server itself can 
be powered off, leave only the real-time clock running to wake 
up the sensor node after a certain period. However, unlike a 
woken-up CPU, which boots and subsequently executes the 
software code, the Styx server needs only a few clock cycles to 
initialise devices, i.e. transceiver, A2D and sensor.  
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Figure 2.  Conventional Sensor Node 

B.   Sensor Nodes for Distributed Sensor Networks             
A distributed sensor network processes the acquired data on 

the sensor nodes [26]. Subsequently, it sends the results to the 
data centre or discards invalid data. Compared to data centric 

sensor node, distributed sensor nodes require more flexibility 
for data processing algorithm, e.g. Fast Fourier Transmission 
(FFT) [10], data compression, Motion Estimation (ME) [26], 
etc. Therefore, the sensor node still requires a general-purpose 
processor or corresponding architectures, e.g. a hardware FFT 
engine, to perform data processing. In this case, Styx IP-core 
can also provide further performance gain and power reduction. 
The low-power sensor node using Styx server is shown in Fig.3. 
The data acquired and the processing results can be presented 
in files, i.e. “/sensor_2/data” and “/sensor_2/results”, 
respectively. The status read and sensor management can also 
be achieved by reading from “/sensor_2/status” file, and 
writing command to “/sensor_2/control”, respectively. 
Interestingly, the CPU and RAM resources can also mapped to 
the namespace of the Styx server to allow debug and direct 
RAM management, such as remote debug.  

Once the data to be transmitted is ready, the CPU simply 
writes data to the Styx server as a standard bus slave device, 
which subsequently sends the data via network transceiver. 
Upon the reception of a new message from the remote client, 
the Styx server notifies the CPU by interrupts or status registers, 
which is frequently checked by the CPU. Hence, there is only a 
small amount of software overhead of using a hardware Styx 
component on the CPU-based sensor nodes to provide file 
system abstraction and extra flexibility, i.e. CPU/ RAM 
management and debug on the fly.  

In common with the data centric sensor node, we note that  
most of the devices, including sensor, AD, processor and RAM 
can be powered off. Compared to conventional CPU sleep 
mode, where the CPU checks for events periodically, the 
device power-off mode is more power-efficient. Once an event 
has occurred (a new message is received), the Styx server 
powers on the CPU, and while boot up the software, it can 
simultaneously respond to most requests, e.g. status check, 
acknowledgment, etc., because the Styx component works 
parallel to the processor. The timed sleep mode, in which the 
transceiver and Styx server are further turned off, is also 
supported to achieve maximum power save when the sensor 
node is not used.         
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Figure 3.  Low-power Sensor Node for Distributed sensor Network 

C. Cluster Head for Sensor Network 
The cluster architecture is an example architecture in sensor 

networks [5, 27]. A Cluster Head (CH) is a more complicated 



sensor node that may be responsible for managing a group of 
similar sensor nodes and locally carry out data processing. 
Similar to other sensor nodes, the cluster head has processor, 
RAM, transceiver, Styx server and maybe a senor, as shown in 
Fig.4. Compared to ordinary sensor nodes, it requires more 
processing power and flexibility. In order to connect to the 
sensor nodes in the cluster for management, the CH also has a 
Styx client IP-core connected through a shared bus. Both Styx 
client and server are memory mapped to the processor, which 
instructs the Styx client/ server by macro commands, e.g. 
mount, read, write, etc. The actual Styx messages are hidden 
from the sensor managing programs that are run by the cluster 
head. If the transceiver requires software protocol stack, it can 
also be connected to the system bus to exchange data with the 
processor, as shown by the dash-line arrow in Fig.4. 
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D. Performance-cost Trade-off 
Ideally, the Styx-server IP-core is fabricated in the 

transceiver’s ASIC to give maximum performance with lowest 
power consumption. However, it is often expensive to build 
such an ASIC, nevertheless the dedicated Styx server is a tiny 
device that can be fitted into a small low-power FPGA or even 
a CPLD. This gives a cost-effective solution to low-power 
sensor nodes. For data centric sensor nodes, such a 
FPGA/CPLD with sensor controller can be used instead of an 
embedded CPU. For data distribution sensor networks, such a 
FPGA/CPLD can be used along with an embedded CPU, such 
as SA-1110 [28], Geode GX1 [29], or a built-in CPU core, 
such as MicoBlaze [30]. 

IV. MOBILITY IN STYX-BASED NETWORKS  
The Styx hardware component supports a number of 

different sensor network architectures and modes of operation. 
In this section a number of modes of operation for a cluster 
based architecture are described to show how a basic cluster-
head style architecture can function using Styx; how faulty 
cluster heads can be tolerated; how mobiles sensors can be 
incorporated by changing their cluster head allocation. 

A. Architecture 
In Fig.6, a basic sensor network configuration is given. The 

data center (DC) executes the application that processes the 
sensor data returned by the sensors via the cluster heads (CH). 
The intention of the CH nodes is to enable a single CH to 
interact with a number of sensor nodes via low-power wireless 
links, enabling the sensors themselves to turn off between 
reading the environment (where this is deemed necessary by 
the application). The CH nodes themselves can connect to the 
DC using higher-powered wireless links, and are intended to be 
active (or at least not completely powered down) for the 
duration of system execution. The DC itself is intended to be 
mains powered. 

In terms of Styx nodes, the DC is a client; the CH nodes are  
client / server nodes; all sensors are servers. The system 
initiates by the DC interacting with the CH nodes via 
“Tversion” messages, with the CH nodes returning “Rversion” 
messages.  Likewise, the CH nodes send “Tversion” messages 
to nodes, the nodes replying with “Rversion”. All CH nodes are 
able to mount the namespace of their connected sensors (using 
a “Tattach” message). This namespace can be exported in turn 
to the DC. As far as the application is concerned, it is able to 
read sensors by merely reading appropriate files in its local 
filesystem. 

One strength of Styx is the ability to provide different 
namespace views to reflect differing aspects of the architecture. 
This is shown in Fig.5 where three views are provided: 
data/application; physical and control. Essentially, the 
data/application view enables the DC application to open and 
read sensor values via the directory /sensornet/data/ where 
separate sensor directories exist, one per sensor: e.g. 
/sensornet/data/SN_1 contains Data and Status files, the former 
containing sensor readings, the latter current sensor status.  

The physical view (/sensornet/phi/) provides ability to 
directly access the hardware of the CH and sensors (registers / 
memory). This is important for low-level status, debug or 
potentially upgrade. Similarly, the control view 
(/sensornet/control) provides access to the Styx internal 
registers and memory for both the CH and sensors. 
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Figure 5.  Different Views of Sensor Network Namespace 

B. Basic Operation 
 To enable low-power operation, a sensor needs to power-

down between successive readings. However, this is slightly 
problematic with a file-based protocol such as Styx, which 
needs the server to respond to client requests, rather than "come 



alive" and asynchronously send a message to the server. 
Therefore, when the Tread message is sent from DC (via CH) 
to the sensor, it uses this as a key to sleep until the next time it 
requires a sensor reading; when the time occurs, it wakes up, 
makes the reading, and replies using a “Rread” message to the 
DC via the CH. The DC responds by issuing the next Tread. 
The sensor uses this as an acknowledgement that the DC has 
received the message; and as initiation of the next request-reply 
cycle of messages from the DC to the sensors. This is 
illustrated in Fig.6, where sensors only need to exchange 
messages with their allocated CH. 
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Figure 6.  Basic Operations 

C. Coping with Faulty Cluster Head Nodes 
Tolerating CH node failures is key to providing a reliable 

sensor network [3, 8, 5]. The loss of a CH node (or the wireless 
link to the CH from the DC) can be tolerated with little 
additional overhead or change to the normal operation outlined 
above. Essentially, the fault needs to be detected by both DC 
and sensor(s), with the latter establishing contact with the DC 
via a different CH – this is illustrated in Fig.7. 

Fault detection is achieved either by the DC noting the lack 
of Rread messages from a CH - a loss may indicate a faulty CH, 
multiple losses almost certainly indicate a problem.  In either 
case, the DC can attempt to read the status of the CH, utilising 
the physical namespace. The CH should respond immediately 
unless it is faulty, or the communications link is down.  

To recover from the fault, the sensor must also detect the 
fault. This is relatively easy, as both potential faults are 
apparent at the sensor when the DC does not acknowledge an 
“Rread” from the sensor with the next Tread message. At this 
point, the sensor notes that the route to the DC is faulty and 
waits for communication to be established via a different CH 
(if one is within communications range). From the DC, if a CH 
is determined unavailable, it needs to instigate the set-up of a 
new "route" to the sensor via a different CH. This proceeds by 
appending the list of connected sensors for the chosen CH (or 
CHs) with those of the failed CH. This results in the CH 
attempting to initiate contact with the sensor via a Tversion 
message (in the same manner as the normal operation detailed 
above). 

The faulty CH (or DC-CH link) is polled (“Tversion” 
messages) to see if it recovers from a transient fault. If it does, 
then sensors that have moved to a different CH as part of fault 

recovery can be handed-back to the original CH via the 
mechanism below for mobile sensor nodes. 
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Figure 7.  Coping With Faulty Cluster Head 

D. Coping with Mobile Sensor Nodes 
For sensor net architectures where sensor (and / or CH 

nodes) are mobile [3, 9, 31], a degree of dynamic 
reconfiguration of the network is required to ensure DC to 
sensor data is not lost, or at least any loss is minimised. Normal 
operation (described above) essentially has a fixed route from 
DC to a given sensor via a specific CH. If the sensor moves out 
of range of the CH (or vice versa), this route needs to be re-
configured. Problems with mobility can be solved using a 
similar fault-tolerance mechanism to that outlined above.  

From the DC, the sensor appears to be faulty, in that an 
“Rread” reply to the previous Tread does not return, even 
allowing for the time between successive readings (during 
which the sensor is powered down). However, the status of the 
CH can be read by the DC and so it can imply that the CH and 
CH to DC link is not faulty - this is different to the fault 
scenario outlined in the section above. The DC now instigates a 
reconfiguration of the sensor net (CH nodes and sensors) to 
recover the "missing" sensors. 

Essentially, a new route needs to be established between the 
DC and sensor with minimal overhead or potential for lost data. 
This can be achieved transparently (from the perspective of the 
application on the DC) using Styx. This is illustrated in Fig.8, 
where the sensor moves out of range of CH1 (to which it was 
originally allocated) and into the range of CH2. By a simple 
exchange of namespace routing information between CH1 and 
CH2 (potentially via DC if CH1 and CH2 cannot communicate 
directly), the route is “handed-off” from CH1 to CH2 without 
having to re-initialise. 

Note that both the CH nodes and the sensor are aware of the 
loss of route. However, the sensor is not able to determine 
whether the CH itself is faulty (as described in the previous 
section) or that the route is being reconfigured. Therefore, 
when the sensor notes the problem (i.e. timeout waiting for a 
Tread message) it waits for the reconfiguration to complete. 

Reconfiguration of the route from a CH node is achieved by 
the CH writing the route into all other CH node route tables 
(under the /sensornet/control namespace). The other CH nodes 
interpret such a write as a need to send a Tread to the sensor. 



The sensor, unless it has moved out of range of all CH nodes, 
will receive at least one Tread (depending upon how many CH 
nodes are within range). However, it will only respond to one, 
establishing the route (which could be with the original CH if it 
has moved back into the range of that sensor).  

Note that to establish contact with a new sensor, the CH 
could utilise a “Tversion” message, i.e. re-initialise connection. 
However, this implies that the CH would have to instruct the 
DC to unmount the namespace associated with the missing 
sensor, and then re-mount it (i.e “Tattach”) via the new CH. 
Whilst this is feasible within Styx and the architecture 
described above, the alternative and more efficient approach 
presented above, that is CH nodes exchanging Styx route 
configuration data, enables the namespace to be served by the 
new CH without the need for re-mounting by the DC. This 
implies that the reconfiguration is transparent as far as the 
application is concerned – noting that at most one sensor 
reading should be lost, i.e. the “Rread” message that was sent 
by the sensor, but never received by the (out-of-range) CH. 
Clearly, a simple resend by the sensor could circumvent this 
problem. 

Clearly, this mechanism for handing-off namespace serving 
between CH nodes is powerful, and can cope with many 
scenarios, e.g. load-balancing between CH nodes. 
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Figure 8.  Coping with Mobile Sensor Nodes 

E. Coping with Faulty Sensors 
To cope with permanent and / or transient faults at a sensor 

node, the mechanisms described above can be utilized. From 
the CH and DC perspective, an excessive time is taken by the 
sensor to reply to send the “Rread" message (even allowing for 
the time the sensor is in low-power mode between successive 
readings). At this point, the CH and DC cannot tell whether the 
sensor has moved out of range, so requiring a reconfiguration 
of the route, or is indeed faulty. Hence, the CH will presume 
that the sensor has moved, and instigate a route reconfiguration. 
However, to ensure that if the sensor fault is transient, and it 
has not moved, the CH itself will send a Tread to the sensor (as 
per the reconfiguration protocol above). Clearly, if no CH is 
able to establish communication with the sensor, it is presumed 
permanently failed. This is established by allowing each CH to 
retry the Tread message a fixed number of times, with fixed 
timeouts between (both figures being application dependent).  

F. Maintenance, Debug and Upgrade 
In system development and operation, it is important that 

sensor node functionality can be changed or upgraded whilst 
sensors are in the field. Within the Styx sensor net architecture 
model considered in above, this is relatively straightforward. 
To change the operation of the sensor we can utilize the 
physical view namespace to alter hardware registers and/or 
memory. 

V. IMPLEMENTATION AND EVALUATION 

A. General Implementation Results 
In order to verify the architecture and demonstrate the 

performance of the sensor node, a prototypeof the data centric 
network node was implemented featuring full Styx I/O support, 
i.e. file open, close read and write, small in size and standard 
parallel interface. The implemented sensor node is based on 
“9P2000” version Styx protocol, which is used in the current 
Plan9 / Inferno OS. It supports up to four files in a 32-byte 
register-based namespace. It only used 70% of the macro cells 
and 48% of the I/O pins of a 1.8V, 384-cell Xilinx 
CoolRunner2 CPLD (XC2C384-6-TQ144) [32]. It has been 
interfaced with a Zigbee transceiver to allow remote access 
from a client. It has been tested in both standard Inferno OS 
environment and standalone Styx software libraries on 
Windows / Linux environment. The results show the 
implemented Styx IP-core can provide file system abstraction 
to sensor nodes. 

B. Performance Evaluation 
In order to evaluate the performance of the Styx IP-core 

over the Styx software component, we conducted the following 
test cases on both the software (standalone) as well as hardware 
IP-core Styx components: 

• use an Inferno shell running on a different machine 
connected to the test machine on serial line to connect 
to the Styx server. Typically, we use the command – 
“mount /dev/eia0/n/remote” to connect to a Styx server. 
This command makes the client send “Tversion” and 
“Tattach” messages to the server. The Styx server on 
authentication replies with the corresponding 
“Rversion” and “Rattach” messages. 

• next we traverse through the mounted remote 
namespace and write to a file. This action makes the 
client generate “Twalk”, “Topen”, “Twrite” and 
“Tclunk” messages. Thus, the server needs to carry out 
any required action and reply the client with 
corresponding “R” messages. For better comparison 
we wrote to the file twice – initially with a short data (8 
bytes) and then with considerably large data (256 
bytes). 

We record the time taken by the Styx server to decode each 
of the “T” messages from client and time taken to encode a 
reply (“R”) message. The choice of the above test cases is 
particularly because they make the Styx component generate 
almost all the possible Styx messages allowing for detailed 
analysis. Comparing against the Styx standalone software 



component gives us precise measures of the performance 
improvements gained by the hardware implementation of Styx. 

1) Styx Software Component 
This was implemented on a 300MHz Geode GX1 

embedded processor with 64MB SDRAM memory. The design 
and implementation of this software component is exactly 
similar to the hardware Styx IP-core described in the previous 
sections. When compiled, the standalone Styx component is 
59KB in size.  

TABLE I.  PERFORMANCE OF STYX SOFTWARE COMPONENT (μS) 

Message 
Type 

Length 
(bytes) 

Decode 
Time 

Encode 
Time 

Misc. 
Time 

Total 
Time 

(T/R)version 19(T)/19(R) 4.91 8.47 3.35 16.73 
(T/R)attach 24(T)/20(R) 5.42 6.77 3.07 15.26 
(T/R)walk 17(T)/35(R) 50.22 7.77 4.41 62.40 
(T/R)open 12(T)/24(R) 3.5 8.37 3.08 14.95 
(T/R)write 
(8 bytes) 33(T)/11(R) 657.35 5.22 1.65 664.22 

(T/R)write 
(255) bytes 281(T)/11(R) 7315.4 7.34 1.19 7323.9 

(T/R)clunk 11(T)/11(R) 2.93 4.30 2.16 9.39 
 

Table I shows the decode/encode time taken by the 
software only solution. Every received “T” message from the 
client must have a reply “R” message. Thus, each row in the 
table describes one complete cycle from “T” to “R” messages. 
The length field describes the lengths of the message received 
(“T”) from client and the message sent (“R”) to the client. The 
Decode time refers to the time taken by the server to decode the 
received (“T”) message including the time needed to carry out 
the required operations (e.g. open/read/write a file/device). The 
Encode time refers to the time taken by the server to encode 
and prepare the reply (“R”) message. The Misc. field refers to 
the time spent by the server in doing other miscellaneous 
activities like book-keeping, device access, etc. 

2) Hardware Styx IP-core 
We tested the Styx IP-core-based sensor node described in 

section IV.A, at 25MHz. Applying the same test criteria to the 
hardware Styx IP-core we obtained the results as shown in Tab. 
II. The similar length of messages in both software and 
hardware implementation confirms that it is compliant with the 
Styx protocol. 

3) Performance Comparison 
A comparison of the performance between the software and 

hardware implementation of Styx protocol stacks describe in 
the above two sections are given in Fig.9. It plots a graph of the 
total cycle time values in tables and to assess the performance 
of Styx software and the Styx IP-Core.  It can be seen that 
compared to the Styx software implementation, significant 
improvement has been made by the hardware IP-Core in terms 
of speed. For example, the total cycle time to “walk” to a file is 
62.4μs and 2.04μs respectively for the software and hardware 
versions. Also, it is clear from the performance tables in the 
above sections that the Styx IP-Core outperforms the software 
counterpart by several orders of magnitude in “Twrite” 
message. 

TABLE II.  PERFORMANCE OF STYX HARDWARE COMPONENT (μS) 

Message 
Type 

Length 
(bytes) 

Decode 
Time 

Encode 
Time 

Misc. 
Time 

Total
Time 

(T/R)version 19(T)/19(R) 0.84 0.84 0.08 1.76 
(T/R)attach 24(T)/20(R) 1.04 1.04 0.08 2.16 
(T/R)walk 17(T)/35(R) 1.00 0.96 0.08 2.04 
(T/R)open 12(T)/24(R) 0.56 1.20 0.08 1.90 
(T/R)write 
(8 bytes) 33(T)/11(R) 1.40 0.52 0.08 1.90 

(T/R)write 
(255) bytes 281(T)/11(R) 11.32 0.52 0.08 11.92 

(T/R)clunk 11(T)/11(R) 0.52 0.45 0.08 1.05 
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Figure 9.  Comparison of Performance 

C.  Power Consumption Evaluation 
The described sensor node is synthesised using Xilinx 

CoolRunner2 CPLD technology. The integrated power tool, 
XPower, gives the following power consumption results, as 
shown in Tab. III. The results include the power consumption 
in four different scenarios: worst case mode, normal mode, idle 
mode and sleep mode. In the worst-case mode, we assume the 
circuit has a 100% switch rate at 25MHz. Clearly, for sensor 
nodes it represents the power consumption in full-processing 
power peak. In the normal mode, we adopted 12.5% switching 
rate, which is often used as a common benchmark for power 
estimation. This could address the combinational power 
consumption in a long-term operation. In idle mode, most parts 
on the sensor node remain quiescent, leaving only the 
transceiver interface to detect valid input from the transceiver. 
Finally, in sleep mode, the sensor node is completely powered 
off, except the real-time clock.     

TABLE III.   POWER CONSUMPTION RESULTS 

 Power Consumption (mW) 
Worst Case 150.87 

Normal 37.53 

Idle 11.59 

Timed-sleep 0.04 

 

We compared the power consumption of the proposed 
Styx-IP based sensor node to a 3.3V 206 MHz Intel Strong 
Arm embedded processor (SA-1110), as shown in Fig.9. The 



average power consumption of the processor is from related 
documents [33]. Also, note the power consumption in sleep 
mode is considerably less then others, and cannot be visibly 
represented in the figure. It can be seen that in the worst case, 
the power consumption has been reduced to 15% (150/1000) of 
the embedded processor solution. It has been reduced to 9.25% 
(37/400) and 11% (11/100) of the embedded processor solution, 
in the normal and idle mode, respectively.  
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Figure 10.  Comparison of Power Consumption 

VI. CONCLUSION 
This paper has described an approach for implementing 

sensor networks based upon the Styx file protocol. Styx is a 
powerful approach for sensor networks as it provides a simple 
file namespace over the entire sensor network; and also 
different views of that namespace to allow applications to deal 
simply with sensor data; and the system infrastructure to 
control faulty nodes, and provide facility for the architecture to 
change – i.e. mobile sensors – without changing the simple 
filesystem view of the sensor network by the application. 

The paper describes a hardware implementation of Styx 
that enables low-power sensors without the overhead of a CPU 
and OS. The implementation results shows our hardware low-
power sensor node is several orders of magnitudes faster than 
software implementations (11.92 : 7323.9, T/Rwrite 225-
byte,Tab.I and Tab.II), and it only uses 9.25% (Fig.9) of the 
power consumption of a conventional embedded processor 
based sensor node.   
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