Towards a File System Interface for Mobile
Resources in Networked Embedded Systems

N.C. Audsley, R. Gao and A. Patil
Department of Computer Science
University of York
York, United Kingdom
neil, rgao, appatil@cs.york.ac.uk

Abstract— Networks for real-time embedded systems are a key
emerging technology for current and future systems. Such
networks need to enable reliable communication without
requiring significant resources, and provide an easy
programming interface. This paper considers a file-system
interface across all resources in a networked embedded system,
ie. an application can access local, remote and mobile resources
using a file interface. The approach is based on Styx [1, 2], part of
the network protocol of the Inferno/ Plan 9 OS [1]. The Styx
protocol provides file system level abstractions for ease of
developing and management at an application layer. To this, we
have added limited fault-tolerance and potential mobility for
resources. To ensure applicability in a low-resource context, we
have defined and implemented a (hardware) Styx IP-core
Module', removing the need for a CPU and software overhead.

1. INTRODUCTION

A key emerging issue in embedded systems is the provision
of suitable networks that are low resource, and enable
applications to be programmed easily. This paper considers a
file-system interface to all resources within an embedded
network. Such an interface is easy to program, and provides a
uniform namespace across all resources, even if they are
mobile. An example of such a network is a sensor network,
containing a large number of sensor nodes. To design and
manage these sensor nodes and associated applications is a
multi-dimensional research issue [3], including network
topology [4, 5], communication protocol [6, 7], fault tolerance
[8], power consumption [9, 10] and cost. In this paper, we
extend the Styx protocol [11] to provide file system
abstractions across mobile resources; and provide a low-
resource hardware implementation.

A file system abstraction, through which the resources on
remote sensor nodes are presented as files, is unconventional —
usual Operating Systems (OS) do not allow remote control of
resources except via local proxy servers. Styx allows such
control, reducing the need for complex OS on remote nodes, a
distinct advantage for low-resource remote sensors / actuators
(eg. as seen in sensor networks, or smart buildings).
Applications see only a file system interface. For example, a
remote sensor can be represented by two files on the file-like
interface: “/sensor_1/control” and “/sensor 1/data”. Writing a
command to the “/sensor_1/control” file results in appropriate
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actions, such as turn on/off the sensor. Reading from the
“/sensor_1/data” file obtains data from the sensor. Resources
can be flexibly managed by “mount” and “unmount” to/from
the different nodes (views) in the namespace, according to
users application. Hence, the file system abstraction introduces
flexibility to application development.

In order to effectively utilise the Styx protocol in embedded
networks, two issues need to be addressed. Firstly, Styx needs
to be extended to cope with mobility; secondly, a low-resource
version is required. Styx is originally developed as a network
protocol in Inferno OS, and it brings a considerably amount of
overhead for small (especially low-power) devices. In previous
work [13], a hardware Styx protocol stack has been developed
as IP-cores for SoC. It is delivered in standard interface and
proven to work with a wide range of devices, such as, CPU
cores, robot servo controllers, voice synthesisers, etc., and
popular wireless communication stacks, such as, WIFI [14],
Bluetooth [15], and Zigbee [16]. In this paper, we present a
power-area-optimised Styx IP-core.

The rest part of the paper is organised as follows. Section II
gives the technical background. Section III describes the design
of the Styx IP-core based low-power nodes. In section IV, we
illustrate extensions to Styx for mobile resources in the context
of sensor nodes in a wireless sensor network environment.
Section V describes the further implementation and evaluation,
with section VI providing conclusions.

II.  BACKGROUND

A.  Styx Protocol

Styx was developed for the Inferno OS, designed by Bell
Labs and now is a product of Vita Nuova [17]. It is an
application layer protocol that working over protocols such as
TCP/IP [18], ATM [19], PPP [20], etc. Styx merely requires
the underlying network provides an in-order and reliable data
channel to send /receive data packet.

A Styx-enabled system can choose to be a client (to connect)
or a server (to be connected). Fig.1.a shows the exchange of
various Styx messages between a Styx client and server in
order to establish an initial connection. The client sends a
“Tversion” message containing its Styx  protocol
implementation version number. After verification, the Styx



server responds by sending an “Rversion”. The T/Rversion
message also gives server/ client the information about the
maximum length of a Styx message that the client/ server is
capable of handling. The client then sends a “Tauth” message
containing the user name and password required to connect to
the Styx server. This information may also be encrypted using
any encryption standard agreed upon by both client and server
during implementation. The server verifies the username and
password and responds with an “Rauth” message on success.
Finally, the client issues a “Tattach” message requesting the
server to attach it to the server’s namespace. The server
responds with a “Rattach” message that contains a handle, QID,
which contains the unique identification to the root node of its
namespace. Once the client receives a “Rattach” message from
the server, it is then ready for communication (read/ write files)
with the devices connected to the server.
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Figure 1. The Styx Protocol Basic Operations

Fig.1.b describes the Styx messages exchanged between
client and server depicting a file-write operation by a Styx
client. The client issues a “Twalk” message to navigate to the
file that it wants to write to. The server changes the client’s
working location to the requested node if such a file exists and
the client has sufficient permissions to access it. On success,
the server acknowledges the client by sending an “Rwalk”. The
client then issues the “Topen” message containing the
identification number (FID) of the file to be opened. This FID
is unique and local to every client. On the server side, the FID
is associated to a QID in its namespace. Thus, on the client end,
it is possible that two or more FIDs point to the same QID on
the server side. This is how every client has its own copy of the
namespace by using their own FIDs and manipulating them as
per their requirements. On receiving Topen message, the server
associates the client’s FID to the device files QID and replies
with an “Ropen” message.

To write data (either command to the associated device, or
mere data) to the opened file, the client now issues a “Twrite”
containing the data to be written. It is possible for the client to
issue more than one “Twrite” message if the length of data to
be written is greater than the maximum Styx message length,
which is implementation dependent. Each such message is
tagged by a message identification to provide information to
the server about the order in which it has to write the data to the
file. The server may not literally write the data it receives. It
will decode the data field for commands and carry out the

required operation(s) on the actual device accordingly. If
appropriate the server now changes the information present in
the device’s status file. The server sends an “Rwrite” message
containing the information about the number of bytes written to
the file for verification. When there were multiple “Twrite”
messages sent by the client, the server also replies in equal
number of “Rwrite” message carrying the same message tags.

Finally, if required, the client issues a “Tclunk” message to
close the opened file. The server carries out the required
operations (e.g. disabling a device, putting it to sleep, etc.) on
the device and replies with an “Rclunk” message. For any error
encountered by the server during its operation, a “Rerror”
message is sent to the client describing the error.

B.  Remote Access via the Styx File System Abstraction

Remote access via file system abstractions has been utilised
in many OSs. However, this is conventionally restricted to true
data files rather than devices. In typical Unix style
implementations (e.g. SunOS, Linux, BSD [21, 22]) and
Windows (i.e. Samba [23]), devices are not exported and hence
are not available to remote applications via the virtual file
system. The usual work around is the construction of local
applications (or kernel level) servers to handle remote accesses
to devices. In contrast, Styx represents each device/ resource
on the network as a single or multiple file(s), so providing
distribution transparency over all resources to applications.
Remote clients can open / close / read / write remote devices
represented by files. For example: a device, A can access a
device/resource, R on the network in the form of file, F. The
device can then simply use the other device/resource as if it
were a local file. Any open/ read/ write/ close operations
performed by the device on file, F directly affect the actual
network device/resource, R.

Styx allows chaining device accesses across multiple nodes.
Thus, an application can access a device via an intermediary
node (acting as communication bridge). This feature removes
the need for total direct connectivity of all nodes (and
connected devices) in the system. Thus, if intermediary serves
the third device’s attached namespace via its Styx server, the
application can access the device files of third device (via the
intermediary) using the Styx protocol. Initially, it connects to
the intermediary and then starts using the device files of the
third device as its local files. The overhead is a two-level of
indirection, which is inevitable without total connectivity.

C. Styx Hardware Implementation

A hardware implementation of the basic Styx protocol has
been developed as a SoC component in previous research [13].
It has a simple command set to enable control by a CPU, using
a register / interrupt interface. A lightweight variant of the Styx
SoC component was developed to interface to devices directly.
This allows remote clients to interact with the device via a Styx
namespace without any CPU and software overhead.

III. DESIGNING LOW-RESOURCE REMOTE NODES

This section describes the design of low-resource remote
nodes that utilize the Styx approach. As an example, sensor-
nodes are considered.



A.  Low-Resource Sensor Networks

A data centric sensor network processes the acquired data
on central processors, while the sensor nodes only handles data
acquisition, sensor management and transmit/ receive [24, 25].
This is illustrated in Fig. 2, comprising: sensor/ Analog-to-
Digital converter (AD), sensor controller/ namespace, Styx
server, transceiver and power unit. The AD converter feeds the
digitised data collected from the sensor to the sensor controller,
which may use a RAM-based data buffer if the sensor node
requires large amount data storage. These data are presented as
a file on the Styx server’s namespace, for example
“/sensor_1/data”. Other resources are also mapped to the Styx
server, and presented as files to the remote client. For example,
the sensor controller and status register can be mapped as
“/sensor_1/control” and “/sensor_1/status”, respectively. Thus,
the Styx server establishes a connection with file system
abstraction, and do not require CPU, OS, and software.

The Styx server has three main features that contribute to
low-power sensor management. Firstly, a hardware
implementation requires less resources than software solutions.
We note the hardware Styx server can be run at a lower clock
frequency to achieve comparable performance a CPU; and will
require less power. Secondly, RAM is only needed when the
sensor requires data buffer, e.g. for an image / voice sensor, a
fast-sampling sensor, etc. In most cases, the sensor only
produces a small amount of data that can be buffered in FIFO,
registers, or even sent by the transceiver in real-time. In the
above case, the sensor node requires no RAM at all; therefore,
the power consumption of RAM chip can be eliminated.
Finally, the sensor, AD and sensor controller can be turned off
from the power unit. This cuts the power dissipation from those
devices, and the Styx server remains in idle mode, which only
uses a small amount of power. In the extreme case (a timed
sleep mode), even the transceiver and the Styx server itself can
be powered off, leave only the real-time clock running to wake
up the sensor node after a certain period. However, unlike a
woken-up CPU, which boots and subsequently executes the
software code, the Styx server needs only a few clock cycles to
initialise devices, i.e. transceiver, A2D and sensor.
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Figure 2. Conventional Sensor Node

B.  Sensor Nodes for Distributed Sensor Networks

A distributed sensor network processes the acquired data on
the sensor nodes [26]. Subsequently, it sends the results to the
data centre or discards invalid data. Compared to data centric

sensor node, distributed sensor nodes require more flexibility
for data processing algorithm, e.g. Fast Fourier Transmission
(FFT) [10], data compression, Motion Estimation (ME) [26],
etc. Therefore, the sensor node still requires a general-purpose
processor or corresponding architectures, e.g. a hardware FFT
engine, to perform data processing. In this case, Styx IP-core
can also provide further performance gain and power reduction.
The low-power sensor node using Styx server is shown in Fig.3.
The data acquired and the processing results can be presented
in files, ie. “/sensor 2/data” and “/sensor 2/results”,
respectively. The status read and sensor management can also
be achieved by reading from ‘/sensor 2/status” file, and
writing command to “/sensor 2/control”, respectively.
Interestingly, the CPU and RAM resources can also mapped to
the namespace of the Styx server to allow debug and direct
RAM management, such as remote debug.

Once the data to be transmitted is ready, the CPU simply
writes data to the Styx server as a standard bus slave device,
which subsequently sends the data via network transceiver.
Upon the reception of a new message from the remote client,
the Styx server notifies the CPU by interrupts or status registers,
which is frequently checked by the CPU. Hence, there is only a
small amount of software overhead of using a hardware Styx
component on the CPU-based sensor nodes to provide file
system abstraction and extra flexibility, ie. CPU/ RAM
management and debug on the fly.

In common with the data centric sensor node, we note that
most of the devices, including sensor, AD, processor and RAM
can be powered off. Compared to conventional CPU sleep
mode, where the CPU checks for events periodically, the
device power-off mode is more power-efficient. Once an event
has occurred (a new message is received), the Styx server
powers on the CPU, and while boot up the software, it can
simultaneously respond to most requests, e.g. status check,
acknowledgment, etc., because the Styx component works
parallel to the processor. The timed sleep mode, in which the
transceiver and Styx server are further turned off, is also
supported to achieve maximum power save when the sensor
node is not used.
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Figure 3. Low-power Sensor Node for Distributed sensor Network

C. Cluster Head for Sensor Network

The cluster architecture is an example architecture in sensor
networks [5, 27]. A Cluster Head (CH) is a more complicated



sensor node that may be responsible for managing a group of
similar sensor nodes and locally carry out data processing.
Similar to other sensor nodes, the cluster head has processor,
RAM, transceiver, Styx server and maybe a senor, as shown in
Fig.4. Compared to ordinary sensor nodes, it requires more
processing power and flexibility. In order to connect to the
sensor nodes in the cluster for management, the CH also has a
Styx client IP-core connected through a shared bus. Both Styx
client and server are memory mapped to the processor, which
instructs the Styx client/ server by macro commands, e.g.
mount, read, write, etc. The actual Styx messages are hidden
from the sensor managing programs that are run by the cluster
head. If the transceiver requires software protocol stack, it can
also be connected to the system bus to exchange data with the
processor, as shown by the dash-line arrow in Fig.4.
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Figure 4. Cluster Head

D. Performance-cost Trade-off

Ideally, the Styx-server IP-core is fabricated in the
transceiver’s ASIC to give maximum performance with lowest
power consumption. However, it is often expensive to build
such an ASIC, nevertheless the dedicated Styx server is a tiny
device that can be fitted into a small low-power FPGA or even
a CPLD. This gives a cost-effective solution to low-power
sensor nodes. For data centric sensor nodes, such a
FPGA/CPLD with sensor controller can be used instead of an
embedded CPU. For data distribution sensor networks, such a
FPGA/CPLD can be used along with an embedded CPU, such
as SA-1110 [28], Geode GX1 [29], or a built-in CPU core,
such as MicoBlaze [30].

IV. MOBILITY IN STYX-BASED NETWORKS

The Styx hardware component supports a number of
different sensor network architectures and modes of operation.
In this section a number of modes of operation for a cluster
based architecture are described to show how a basic cluster-
head style architecture can function using Styx; how faulty
cluster heads can be tolerated; how mobiles sensors can be
incorporated by changing their cluster head allocation.

A.  Architecture

In Fig.6, a basic sensor network configuration is given. The
data center (DC) executes the application that processes the
sensor data returned by the sensors via the cluster heads (CH).
The intention of the CH nodes is to enable a single CH to
interact with a number of sensor nodes via low-power wireless
links, enabling the sensors themselves to turn off between
reading the environment (where this is deemed necessary by
the application). The CH nodes themselves can connect to the
DC using higher-powered wireless links, and are intended to be
active (or at least not completely powered down) for the
duration of system execution. The DC itself is intended to be
mains powered.

In terms of Styx nodes, the DC is a client; the CH nodes are
client / server nodes; all sensors are servers. The system
initiates by the DC interacting with the CH nodes via
“Tversion” messages, with the CH nodes returning “Rversion”
messages. Likewise, the CH nodes send “Tversion” messages
to nodes, the nodes replying with “Rversion”. All CH nodes are
able to mount the namespace of their connected sensors (using
a “Tattach” message). This namespace can be exported in turn
to the DC. As far as the application is concerned, it is able to
read sensors by merely reading appropriate files in its local
filesystem.

One strength of Styx is the ability to provide different
namespace views to reflect differing aspects of the architecture.
This is shown in Fig.5 where three views are provided:
data/application; physical and control. Essentially, the
data/application view enables the DC application to open and
read sensor values via the directory /sensornet/data/ where
separate sensor directories exist, one per sensor: e.g.
/sensornet/data/SN_1 contains Data and Status files, the former
containing sensor readings, the latter current sensor status.

The physical view (/sensornet/phi/) provides ability to
directly access the hardware of the CH and sensors (registers /
memory). This is important for low-level status, debug or
potentially  upgrade.  Similarly, the control view
(/sensornet/control) provides access to the Styx internal
registers and memory for both the CH and sensors.

Data/Application View:
/sensornet/data/SN_1/Data
/sensornet/data/SN_1/Status

Physical View:
/sensornet/phi/SN_1/register
/sensornet/phi/SN_1/memory
/sensornet/phi/CH_1/register
/sensornet/phi/CH_1/memory

Control View:
/sensornet/control/SN_1/register
/sensornet/ control /SN_1/memory
/sensornet/control/CH_1/register
/sensornet/control /CH_1/namespace
Sensor Network

Figure 5. Different Views of Sensor Network Namespace

B.  Basic Operation

To enable low-power operation, a sensor needs to power-
down between successive readings. However, this is slightly
problematic with a file-based protocol such as Styx, which
needs the server to respond to client requests, rather than "come



alive" and asynchronously send a message to the server.
Therefore, when the Tread message is sent from DC (via CH)
to the sensor, it uses this as a key to sleep until the next time it
requires a sensor reading; when the time occurs, it wakes up,
makes the reading, and replies using a “Rread” message to the
DC via the CH. The DC responds by issuing the next Tread.
The sensor uses this as an acknowledgement that the DC has
received the message; and as initiation of the next request-reply
cycle of messages from the DC to the sensors. This is
illustrated in Fig.6, where sensors only need to exchange
messages with their allocated CH.

Cluster

Cluster

Normal

Sensors

Figure 6. Basic Operations

C. Coping with Faulty Cluster Head Nodes

Tolerating CH node failures is key to providing a reliable
sensor network [3, 8, 5]. The loss of a CH node (or the wireless
link to the CH from the DC) can be tolerated with little
additional overhead or change to the normal operation outlined
above. Essentially, the fault needs to be detected by both DC
and sensor(s), with the latter establishing contact with the DC
via a different CH — this is illustrated in Fig.7.

Fault detection is achieved either by the DC noting the lack
of Rread messages from a CH - a loss may indicate a faulty CH,
multiple losses almost certainly indicate a problem. In either
case, the DC can attempt to read the status of the CH, utilising
the physical namespace. The CH should respond immediately
unless it is faulty, or the communications link is down.

To recover from the fault, the sensor must also detect the
fault. This is relatively easy, as both potential faults are
apparent at the sensor when the DC does not acknowledge an
“Rread” from the sensor with the next Tread message. At this
point, the sensor notes that the route to the DC is faulty and
waits for communication to be established via a different CH
(if one is within communications range). From the DC, if a CH
is determined unavailable, it needs to instigate the set-up of a
new "route" to the sensor via a different CH. This proceeds by
appending the list of connected sensors for the chosen CH (or
CHs) with those of the failed CH. This results in the CH
attempting to initiate contact with the sensor via a Tversion
message (in the same manner as the normal operation detailed
above).

The faulty CH (or DC-CH link) is polled (“Tversion”
messages) to see if it recovers from a transient fault. If it does,
then sensors that have moved to a different CH as part of fault

recovery can be handed-back to the original CH via the
mechanism below for mobile sensor nodes.

Data Centre

Sensors

Figure 7. Coping With Faulty Cluster Head

D. Coping with Mobile Sensor Nodes

For sensor net architectures where sensor (and / or CH
nodes) are mobile [3, 9, 31], a degree of dynamic
reconfiguration of the network is required to ensure DC to
sensor data is not lost, or at least any loss is minimised. Normal
operation (described above) essentially has a fixed route from
DC to a given sensor via a specific CH. If the sensor moves out
of range of the CH (or vice versa), this route needs to be re-
configured. Problems with mobility can be solved using a
similar fault-tolerance mechanism to that outlined above.

From the DC, the sensor appears to be faulty, in that an
“Rread” reply to the previous Tread does not return, even
allowing for the time between successive readings (during
which the sensor is powered down). However, the status of the
CH can be read by the DC and so it can imply that the CH and
CH to DC link is not faulty - this is different to the fault
scenario outlined in the section above. The DC now instigates a
reconfiguration of the sensor net (CH nodes and sensors) to
recover the "missing" sensors.

Essentially, a new route needs to be established between the
DC and sensor with minimal overhead or potential for lost data.
This can be achieved transparently (from the perspective of the
application on the DC) using Styx. This is illustrated in Fig.8,
where the sensor moves out of range of CHI1 (to which it was
originally allocated) and into the range of CH2. By a simple
exchange of namespace routing information between CH1 and
CH2 (potentially via DC if CH1 and CH2 cannot communicate
directly), the route is “handed-off” from CHI to CH2 without
having to re-initialise.

Note that both the CH nodes and the sensor are aware of the
loss of route. However, the sensor is not able to determine
whether the CH itself is faulty (as described in the previous
section) or that the route is being reconfigured. Therefore,
when the sensor notes the problem (i.e. timeout waiting for a
Tread message) it waits for the reconfiguration to complete.

Reconfiguration of the route from a CH node is achieved by
the CH writing the route into all other CH node route tables
(under the /sensornet/control namespace). The other CH nodes
interpret such a write as a need to send a Tread to the sensor.



The sensor, unless it has moved out of range of all CH nodes,
will receive at least one Tread (depending upon how many CH
nodes are within range). However, it will only respond to one,
establishing the route (which could be with the original CH if it
has moved back into the range of that sensor).

Note that to establish contact with a new sensor, the CH
could utilise a “Tversion” message, i.e. re-initialise connection.
However, this implies that the CH would have to instruct the
DC to unmount the namespace associated with the missing
sensor, and then re-mount it (i.e “Tattach”) via the new CH.
Whilst this is feasible within Styx and the architecture
described above, the alternative and more efficient approach
presented above, that is CH nodes exchanging Styx route
configuration data, enables the namespace to be served by the
new CH without the need for re-mounting by the DC. This
implies that the reconfiguration is transparent as far as the
application is concerned — noting that at most one sensor
reading should be lost, i.e. the “Rread” message that was sent
by the sensor, but never received by the (out-of-range) CH.
Clearly, a simple resend by the sensor could circumvent this
problem.

Clearly, this mechanism for handing-off namespace serving
between CH nodes is powerful, and can cope with many
scenarios, e.g. load-balancing between CH nodes.

Data Centre
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Figure 8. Coping with Mobile Sensor Nodes

E.  Coping with Faulty Sensors

To cope with permanent and / or transient faults at a sensor
node, the mechanisms described above can be utilized. From
the CH and DC perspective, an excessive time is taken by the
sensor to reply to send the “Rread" message (even allowing for
the time the sensor is in low-power mode between successive
readings). At this point, the CH and DC cannot tell whether the
sensor has moved out of range, so requiring a reconfiguration
of the route, or is indeed faulty. Hence, the CH will presume

that the sensor has moved, and instigate a route reconfiguration.

However, to ensure that if the sensor fault is transient, and it
has not moved, the CH itself will send a Tread to the sensor (as
per the reconfiguration protocol above). Clearly, if no CH is
able to establish communication with the sensor, it is presumed
permanently failed. This is established by allowing each CH to
retry the Tread message a fixed number of times, with fixed
timeouts between (both figures being application dependent).

F.  Maintenance, Debug and Upgrade

In system development and operation, it is important that
sensor node functionality can be changed or upgraded whilst
sensors are in the field. Within the Styx sensor net architecture
model considered in above, this is relatively straightforward.
To change the operation of the sensor we can utilize the
physical view namespace to alter hardware registers and/or
memory.

V. IMPLEMENTATION AND EVALUATION

A.  General Implementation Results

In order to verify the architecture and demonstrate the
performance of the sensor node, a prototypeof the data centric
network node was implemented featuring full Styx I/O support,
i.e. file open, close read and write, small in size and standard
parallel interface. The implemented sensor node is based on
“9P2000” version Styx protocol, which is used in the current
Plan9 / Inferno OS. It supports up to four files in a 32-byte
register-based namespace. It only used 70% of the macro cells
and 48% of the I/O pins of a 1.8V, 384-cell Xilinx
CoolRunner2 CPLD (XC2C384-6-TQ144) [32]. It has been
interfaced with a Zigbee transceiver to allow remote access
from a client. It has been tested in both standard Inferno OS
environment and standalone Styx software libraries on
Windows / Linux environment. The results show the
implemented Styx IP-core can provide file system abstraction
to sensor nodes.

B.  Performance Evaluation

In order to evaluate the performance of the Styx IP-core
over the Styx software component, we conducted the following
test cases on both the software (standalone) as well as hardware
[P-core Styx components:

e use an Inferno shell running on a different machine
connected to the test machine on serial line to connect
to the Styx server. Typically, we use the command —
“mount /dev/eia0/n/remote” to connect to a Styx server.
This command makes the client send “Tversion” and
“Tattach” messages to the server. The Styx server on
authentication replies with the corresponding
“Rversion” and “Rattach” messages.

e next we traverse through the mounted remote
namespace and write to a file. This action makes the
client generate “Twalk”, “Topen”, “Twrite” and
“Tclunk” messages. Thus, the server needs to carry out
any required action and reply the client with
corresponding “R” messages. For better comparison
we wrote to the file twice — initially with a short data (8
bytes) and then with considerably large data (256
bytes).

We record the time taken by the Styx server to decode each
of the “T” messages from client and time taken to encode a
reply (“R”) message. The choice of the above test cases is
particularly because they make the Styx component generate
almost all the possible Styx messages allowing for detailed
analysis. Comparing against the Styx standalone software



component gives us precise measures of the performance
improvements gained by the hardware implementation of Styx.

1) Styx Software Component
This was implemented on a 300MHz Geode GXI
embedded processor with 64MB SDRAM memory. The design
and implementation of this software component is exactly
similar to the hardware Styx IP-core described in the previous
sections. When compiled, the standalone Styx component is
59KB in size.

TABLE I. PERFORMANCE OF STYX SOFTWARE COMPONENT (US)
Message Length Decode | Encode | Misc. | Total
Type (bytes) Time Time | Time | Time
(T/R)version | 19(T)/19(R) 491 8.47 3.35 16.73
(T/R)attach | 24(T)/20(R) 5.42 6.77 3.07 15.26
(T/R)walk 17(T)/35(R) 50.22 7.77 441 62.40
(T/R)open 12(T)/24(R) 3.5 8.37 3.08 14.95
(T/R)write
(8 bytes) 33(T)/11(R) 657.35 5.22 1.65 | 664.22
(T/R)write
(255) bytes 281(T)/11(R) | 7315.4 7.34 1.19 | 73239
(T/R)clunk | 11(T)/11(R) 2.93 4.30 2.16 9.39

Table I shows the decode/encode time taken by the
software only solution. Every received “T” message from the
client must have a reply “R” message. Thus, each row in the
table describes one complete cycle from “T” to “R” messages.
The length field describes the lengths of the message received
(“T”) from client and the message sent (“R”) to the client. The
Decode time refers to the time taken by the server to decode the
received (“T”’) message including the time needed to carry out
the required operations (e.g. open/read/write a file/device). The
Encode time refers to the time taken by the server to encode
and prepare the reply (“R”) message. The Misc. field refers to
the time spent by the server in doing other miscellaneous
activities like book-keeping, device access, etc.

2) Hardware Styx IP-core
We tested the Styx IP-core-based sensor node described in
section IV.A, at 25SMHz. Applying the same test criteria to the
hardware Styx IP-core we obtained the results as shown in Tab.
II. The similar length of messages in both software and
hardware implementation confirms that it is compliant with the
Styx protocol.

3) Performance Comparison

A comparison of the performance between the software and
hardware implementation of Styx protocol stacks describe in
the above two sections are given in Fig.9. It plots a graph of the
total cycle time values in tables and to assess the performance
of Styx software and the Styx IP-Core. It can be seen that
compared to the Styx software implementation, significant
improvement has been made by the hardware IP-Core in terms
of speed. For example, the total cycle time to “walk” to a file is
62.4us and 2.04us respectively for the software and hardware
versions. Also, it is clear from the performance tables in the
above sections that the Styx IP-Core outperforms the software
counterpart by several orders of magnitude in “Twrite”
message.

TABLE II. PERFORMANCE OF STYX HARDWARE COMPONENT (US)
Message Length Decode | Encode | Misc. | Total
Type (bytes) Time Time Time | Time
(T/R)version | 19(T)/19(R) 0.84 0.84 0.08 1.76
(T/R)attach | 24(T)/20(R) 1.04 1.04 0.08 | 2.16
(T/R)walk 17(T)/35(R) 1.00 0.96 0.08 | 2.04
(T/R)open 12(T)/24(R) 0.56 1.20 0.08 1.90
(T/R)write
(8 bytes) 33(T)/11(R) 1.40 0.52 0.08 1.90
(T/R)write
(255) bytes 281(T)/11(R) 11.32 0.52 0.08 | 11.92
(T/R)clunk | 11(T)/11(R) 0.52 0.45 0.08 1.05
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Figure 9. Comparison of Performance

C. Power Consumption Evaluation

The described sensor node is synthesised using Xilinx
CoolRunner2 CPLD technology. The integrated power tool,
XPower, gives the following power consumption results, as
shown in Tab. III. The results include the power consumption
in four different scenarios: worst case mode, normal mode, idle
mode and sleep mode. In the worst-case mode, we assume the
circuit has a 100% switch rate at 25MHz. Clearly, for sensor
nodes it represents the power consumption in full-processing
power peak. In the normal mode, we adopted 12.5% switching
rate, which is often used as a common benchmark for power
estimation. This could address the combinational power
consumption in a long-term operation. In idle mode, most parts
on the sensor node remain quiescent, leaving only the
transceiver interface to detect valid input from the transceiver.
Finally, in sleep mode, the sensor node is completely powered
off, except the real-time clock.

TABLE IIL POWER CONSUMPTION RESULTS
Power Consumption (mW)
Worst Case 150.87
Normal 37.53
Idle 11.59
Timed-sleep 0.04

We compared the power consumption of the proposed
Styx-IP based sensor node to a 3.3V 206 MHz Intel Strong
Arm embedded processor (SA-1110), as shown in Fig.9. The



average power consumption of the processor is from related
documents [33]. Also, note the power consumption in sleep
mode is considerably less then others, and cannot be visibly
represented in the figure. It can be seen that in the worst case,
the power consumption has been reduced to 15% (150/1000) of
the embedded processor solution. It has been reduced to 9.25%
(37/400) and 11% (11/100) of the embedded processor solution,
in the normal and idle mode, respectively.
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Figure 10. Comparison of Power Consumption

VI. CONCLUSION

This paper has described an approach for implementing
sensor networks based upon the Styx file protocol. Styx is a
powerful approach for sensor networks as it provides a simple
file namespace over the entire sensor network; and also
different views of that namespace to allow applications to deal
simply with sensor data; and the system infrastructure to
control faulty nodes, and provide facility for the architecture to
change — i.e. mobile sensors — without changing the simple
filesystem view of the sensor network by the application.

The paper describes a hardware implementation of Styx
that enables low-power sensors without the overhead of a CPU
and OS. The implementation results shows our hardware low-
power sensor node is several orders of magnitudes faster than
software implementations (11.92 : 7323.9, T/Rwrite 225-
byte,Tab.I and Tab.Il), and it only uses 9.25% (Fig.9) of the
power consumption of a conventional embedded processor
based sensor node.
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