
Extending A Task Allocation Algorithm For Graceful Degradation Of Real-Time

Distributed Embedded Systems ∗

Paul Emberson and Iain Bate

Department of Computer Science

University of York

York, YO10 5DD

{paul.emberson, iain.bate}@cs.york.ac.uk

Abstract

Previous research which has considered task allocation

and fault-tolerance together has concentrated on construct-

ing schedules which accommodate a fixed number of redun-

dant tasks. Often, all faults are treated as being equally

severe. There is little work which combines task allocation

with architectural level fault-tolerance issues such as the

number of replicas to use and how they should be config-

ured, both of which are tackled by this work. An accepted

method for assessing the impact of a combination of faults is

to build a system utility model which can be used to assess

how the system degrades when components fail. The key

challenge addressed here is how to design objective func-

tions based on a utility model which can be incorporated

into a search algorithm in order to optimise fault-tolerance

properties. Other issues such as how to extend the local

search neighbourhood and balance objectives with schedu-

lability constraints are also discussed.

1 Introduction

The reliability of computer based systems has become

more important as their use as key components of critical

systems has escalated. Examples of such systems are auto-

motive and avionic control system applications which are

both safety and mission critical. These systems are also

real-time, embedded and often distributed systems. In the

context of this work, real-time systems are considered to be

hard real-time where every task must meet its deadline. Due

to the severe consequences of these systems failing, it is es-

sential that they can provide an acceptable level of service

and system safety even when components have a permanent

fault. A system which can continue to run safely in the pres-

ence of faults but with a reduced level of service is referred

to as a gracefully degrading system [10].

There are a number of strategies which can be used to

allow a system to continue to function in the presence of

∗This work is funded by the Software Engineering By Automated

Search (SEBASE) program, EPSRC Grant EP/D050618/1.

faults. The most prevalent is replication. A system with

replication runs redundant versions of some or all of its

tasks and will usually require additional processors to do so.

Systems using replication can use cold, warm or hot back up

[7] strategies. The difference lies in whether all task replicas

are always running and being kept up to date to allow an al-

most instantaneous fail-over or if they are left dormant until

needed. This work assumes a hot backup strategy, com-

monly used in avionics [21].

The choice between dynamic or static redundancy also

distinguishes fault-tolerance mechanisms [7]. Static redun-

dancy uses redundant tasks to mask faults whereas a dy-

namically redundant system waits for the system to begin

to error or give an indication an error is about to occur be-

fore taking steps to recover. This paper is only concerned

with static redundancy which is commonly used in critical

systems [21] and is also complementary to the off-line na-

ture of the task allocation problem.

The task allocation problem is an exercise in deciding

how to assign tasks to processors so that timing require-

ments are met [14]. However, real-time scheduling not only

involves allocating tasks to processors but also the assign-

ment of scheduling attributes, such as priorities. This means

that for systems comprising a significant number of tasks,

only automated methods can feasibly be used to find solu-

tions which meet all constraints [20]. Real world task allo-

cation problems are often complex and impose many con-

straints which the solution must adhere to. This has led

to continuing research in developing new solution meth-

ods which consider a larger range of constraints and ob-

jectives. Examples include heterogeneous processors [22]

and design flexibility [2]. It has been noted that distributed

scheduling and fault-tolerance are not orthogonal [11] since

fault-tolerance schemes have a timing overhead. Therefore,

it is natural to extend task allocation algorithms with a fault-

tolerance objective.

In this paper, the TOAST task allocation tool, developed

by the authors and previously described in [2, 5], is ex-

tended to support fault-tolerance. The algorithm is capa-

ble of solving task allocation problems for heterogeneous

systems with precedence constraints. By allowing the al-

gorithm to vary the number of task replicas and their allo-

cations, it is able to alter the fault-tolerance properties of

the system. There are a number of challenges in doing this.

When task and message replicas are added to the system,

they must also be allocated and scheduled, increasing the

size of the problem. In addition to this, the optimisation

algorithm now has an additional axis of variation in deter-

mining how many replicas should be used. Pure task allo-

cation for hard real-time systems is a constraint satisfaction

problem where any solution in which all deadlines are met

is acceptable. In order to assess fault-tolerance qualities of

a system, a fault-tolerance objective function needs to be

developed. This is non-trivial since there are many ways

in which a system can fail. In particular, a system can de-

grade in different ways for increasing numbers of faults and

the preferred degradation behaviour will differ according to

system requirements. Therefore, objective functions which

can be adapted to different situations are needed.

The chosen method of evaluation of fault-tolerance qual-

ity uses a measure of system utility designed by Shelton

[19]. This metric does not assume that the system has failed

after all versions of a task have failed but instead provides a

measure which describes the reduced level of service. Shel-

ton provides some examples of systems which exhibit this

behaviour. One of these is a braking system which has par-

tially failed. Its usefulness depends on which of the four

wheel brakes are working and the way in which the system

degrades will depend on the order in which they fail. This

example is included as part of the evaluation in section 6.

Fault-tolerant systems are designed with the aim of being

t-fault-tolerant and/or having a certain mean time between

failure (MTBF)[18]. A t-fault-tolerant system is one that

can withstand t faults before failure. Objective functions

are built upon the system utility measure to support both

the t-fault-tolerant and MTBF paradigms.

To summarise, the primary aims of this paper are:

• Extend the search algorithm in the TOAST tool so that

the number of task replicas can be varied in addition to

configuring their allocation and scheduling attributes.

• Investigate the additional complexity of including task

replicas and also the balance between fault-tolerance

objectives and schedulability constraints.

• Creation of objective functions which use Shelton’s

system utility model and are suitable for a range of

system fault-tolerance requirements

The structure of this paper is as follows. Section 2 de-

scribes related research. Sections 3 and 4 describe the ex-

isting system model and task allocation search algorithm.

The extensions to the previous work which deal with fault-

tolerance issues are given in section 5. These are evaluated

in section 6 before conclusions are drawn in section 7.

2 Related Work

Previous work combining automated real-time task al-

location with fault-tolerance has tended to concentrate on

modifying the scheduling analysis to accommodate the

overheads needed for fault tolerance [6, 11, 15]. Often the

work will be specific to a computational model such as a

static cyclic schedule and optimise this schedule so that the

system can handle a single processor failure [6, 15]. The

emphasis of this work is in making higher level architectural

decisions, in particular the number of replicas to use and

where they will be allocated. Previous work on static redun-

dancy and task allocation has been concerned with a fixed

number of processor faults, and often just a single fault. To

our knowledge, this is the first piece of work which deals

with task allocation in the context of a gracefully degrading

system and has the ability to differentiate systems which can

handle the same numbers of faults before complete failure

but degrade differently.

Oh and Son [11] discuss the need to consider schedu-

lability and fault-tolerance simultaneously. They prove that

finding a schedule to handle a single processor failure is NP-

hard and give an algorithm to solve this problem. The sys-

tem model is non-preemptive and does not include prece-

dence constraints.

Girault et al. [6] give an approach similar to ours in that

they adapt an algorithm which generates distributed static

schedules to handle processor failures with fail-stop be-

haviour. However, the number of replicas is pre-determined

and allocated by making a copy of task sets on existing pro-

cessors to redundant processors. Qin and Hong [15] build

on the work of Girault et al. The system model includes

precedence constraints and a more heterogeneous environ-

ment. They introduce the concept of performability which

is a combination of schedulability and fault-tolerance. They

allow for reliability heterogeneity by including a failure rate

for processors in their model.

Echtle and Eusgeld [4] also use search, specifically a ge-

netic algorithm, to find fault-tolerant system designs. How-

ever, the approach is not aimed at real-time systems and

schedulability is not taken into account. Of some interest

is the fitness function used by the search algorithm. It con-

siders how combinations of faults lead to failures and in

this sense has some commonality with the utility model in-

troduced in section 5. Bicking et al. [3] take a similar ap-

proach to [4], also using a genetic algorithm, but once again

the system model is not targeted at real-time.

Kany and Madsen have written a high quality study on

design optimisation for fault-tolerant real-time systems [8].

They use the WCDOPS++ [16] scheduling model which a

more recent form of the WCDOPS [12] algorithm used in

τ1,1

τ1,2
τ1,3 τ1,4

τ1,5

τ1,6

τ1,7
τ1,8

τ1,9
τ1,10 τ2,1

τ2,2
τ2,3

τ2,4
τ2,5

Figure 1. Example of two transactions

TOAST. Their fault-tolerant design choice is the decision

between trying to re-execute or a single task replication

to mask faults. This is in addition to selecting an alloca-

tion. Task priorities are pre-defined, unlike TOAST which

searches for a priority ordering in addition to allocation and

fault-tolerance decisions. The cost function is based upon

the difference between task response times and task dead-

lines under a number of fault scenarios. There is no notion

of how system utility reduces over increasing numbers of

failures.

In [10], as part of the RoSES (Robust Self-configuring

Embedded Systems) project, Nace et al. outline a frame-

work for providing graceful degradation using a combina-

tion of feature subsets, utility model and task allocation.

However the main results from the project provide only the

utility model [19], and it is generally assumed that each fea-

ture subset is resident on its own processor. In this paper we

combine our previous work with that of Shelton [19] to con-

tribute to the overall framework envisioned by Nace et al.

3 System Model

The distributed real-time system model used in this work

is as follows. Each task has a worst case execution time

(WCET), period and deadline. Precedence relations are

formed between tasks by way of sending and receiving

messages. The dependencies form directed acyclic graphs

called transactions as shown in figure 1. Each message has

a size, a period and a deadline. The period is set to be the

same as the task sending the message and the deadline is set

to be the same as the deadline of the task receiving it.

The hardware architecture is modelled as a set of pro-

cessors connected with network links. Each link has a com-

munication speed and latency which is used along with the

size of a message to determine the worst case communica-

tion time for a message. All processing nodes have a link to

themselves. This models any communication overhead for

intra-processor communication though this can be set to be

negligible. Figure 2 shows four processing nodes connected

with two network links and an additional four links for intra-

processor communication. The example hardware platform

in figure 2 shows that it is not necessary for all processors

to be directly connected to each other so the availability of

networks for message allocation is dependent upon where

the sending and receiving tasks are allocated.

The cost function and search algorithm, described in sec-

tion 4, base design decisions on response times generated

Figure 2. Example hardware architecture

by a form of distributed scheduling analysis. The analysis

used by toast is the WCDOPS (Worst Case Dynamic Off-

sets with Priority Schemes) method by Palencia and Har-

bour [12] which extends fixed priority scheduling analysis

to distributed systems.

4 Search Algorithm

The TOAST optimisation algorithm for finding solutions

to task allocation problems has evolved over the course of

previous research [2, 5, 13]. This section describes this al-

gorithm so that it can be built upon to address fault toler-

ance issues in the following section. Particular emphasis is

placed on the objective function which has undergone some

simplifications since that presented in [13].

In this work the task allocation problem is cast as a min-

imisation problem where the number of missed deadlines

must be reduced. The core of the search algorithm is an im-

plementation of the simulated annealing [9] meta-heuristic.

This is a local search algorithm with the ability to proba-

bilistically escape local minima. To make a local search

meta-heuristic appropriate to a particular problem, it is nec-

essary to instantiate it with a neighbourhood function and a

cost function.

4.1 Neighbourhood Function

The neighbourhood function, which describes how a new

candidate solution is generated by mutating the current so-

lution, acts on the configurable attributes of tasks and mes-

sages. The neighbourhood function, with equal probability,

selects between an allocation change and a priority change.

An allocation change randomly picks a schedulable object

(task or message) and moves it to a new processor or net-

work as appropriate. Message allocations are restricted to

those networks connected to a processor of at least one of

the source and destination tasks. Priority changes involve

selecting a new priority for a schedulable object and shuf-

fling priorities of other objects up or down as required so

that all priorities remain unique.

4.2 Cost Function

The cost function value is calculated as a weighted sum

of the results of lower level functions. These lower level

functions which make up the cost function are cost function

components. In addition to a component for counting how

many deadlines are missed, other components are used as

heuristics to improve the performance of the search. Each

component returns a value in the range [0, 1] and the overall

function is normalised by the sum of the weights so that

it too returns a value in the same range. This is shown in

equation (1).

f(ω) =

∑

i wigi(ω)
∑

i wi

(1)

Weightings must be set in order to optimise the algorithm

for performance and solution quality. The best values will

be dependent upon the problem or set of problems to be

solved. The technique used for setting weightings is the

systematic experimental method for setting search parame-

ters given by Poulding et al. in [13].

The sets of tasks, messages, processors and network

links are denoted as T , M, P , and N respectively. S =
T ∪M is the set of schedulable objects. The notation for the

number in a set X is |X |. Directly dependent (DD) tasks are

a pair of tasks which have a message sent between them. In-

directly dependent (ID) tasks appear in the same transaction

but are not necessarily adjacent in the task graph. Functions

labelled gi are the cost function components and functions

labelled hi are helper functions for gi.

The first component assesses the number of unschedula-

ble objects, by comparing the calculated response time for

each schedulable object, Rτ , with its deadline Dτ .

h1(τ) = 1 if Rτ > Dτ else 0 (2)

g1 =
1

|S|

∑

τ∈S

h1(τ) (3)

The following component counts how many DD tasks

are allocated to processors not connected by a bus. Let al
map a task to its allocated processor and V map a processor

to the set of processors to which it is connected.

c(τ, υ) = 1 if V (al(τ)) ∩ V (al(υ)) = ∅ else 0 (4)

g2 =
1

|M|

∑

ρ∈M

c(src(ρ), dest(ρ)) (5)

The next component penalises objects which cannot re-

ceive their input or send their output due to their allocation.

Firstly, two functions are defined which give the input and

output of a schedulable object. The definitions are condi-

tional on whether the object is a task or message. The func-

tions src and dest give the sending and receiving task of a

message.

in(τ) =

{

{ρ ∈ M : dest(ρ) = τ} if τ ∈ T

{src(τ)} if τ ∈ M
(6)

out(τ) =

{

{ρ ∈ M : src(ρ) = τ} if τ ∈ T

{dest(τ)} if τ ∈ M
(7)

h3(τ) = |{υ ∈ out(τ) : al(υ) /∈ V (al(τ))}|+

|{υ ∈ in(τ) : al(υ) /∈ V (al(τ))}|
(8)

g3 =

∑

τ∈S h3(τ)
∑

τ∈S

[

|in(τ)| + |out(τ)|
] (9)

The following component measures priority assignment

which are incompatible with precedence constraints. pre(τ)
is the set of all objects preceding τ and post(τ) is the set of

all objects that follow τ .

g4 =

∑

τ∈S |{υ ∈ post(τ) and Pυ < Pτ}|
∑

τ∈S |post(τ)|
(10)

A sensitivity component calculates the largest factor by

which execution/communication times can be scaled and

for the system to be schedulable. This value can be found

using a binary search and will be less than 1 while the sys-

tem is unschedulable.

g5 = e−λSCALS (11)

where SCALS is the largest value of a scaling factor s such

that the system is schedulable when the WCETs, Ci of ob-

jects in the set S are set to ⌊sCi⌋.

A load balancing component is based upon the variance

of the utilisations of processors:

g6 =

√

P

X
(UX−µ2)

(|P|−1)µ2+(U−µ)2 (12)

where Ui is the utilisation of processor i, and µ is the mean

utilisation.

Grouping communicating objects onto the same sched-

uler reduces overheads. Let the set of all transactions be

TRANS and the set of schedulable objects contained in

transaction r be TRANSr. Vr is the set of tasks in TRANSr.

For each τi ∈ Vr , the number of tasks allocated to the same

scheduler as τi and also in Vr is ari. A grouping value and

its maximum for each transaction is:

γr = |Vr| −

|Vr|−1
∑

i=0

ari

|Vr|
γrMAX

= |Vr|(|P|−1)
|P|

The theoretical maximum value occurs when tasks are

equally spread among processors and ari = |Vr|/|P| for all

i. Similar formulae can be defined for messages with Wr

being all messages in TRANSr. Using γrMAX
to normalise

γr and then summing over all transactions, the component

formula is

g7 = |P|
2|TRANS|(|P|−1)

[

|TRANS| −
∑

r

∑

i

ari

|Vr|2

]

+ |N |
2|TRANS|(|N |−1)

[

|TRANS| −
∑

r

∑

i

ari

|Wr|2

] (13)

Figure 3. Messages sent by task replicas

Component g7 groups ID tasks but messages between

DD tasks may still go back and forth between processors.

The following penalises messages sent between DD tasks

on different processors.

g8 =
1

|M|
|{ρ ∈ M : al(src(ρ)) 6= al(dest(ρ))}| (14)

An additional penalty is given to solutions containing

processors with over 100% utilisation.

g9 =
|{l ∈ P ∪ N : Ul > 100}|

|P ∪ N|
(15)

5 Extensions For Fault Tolerance

In order to embrace fault-tolerance as a core part of the

automated architecture design process, it is necessary to ex-

tend the system model, including the computational model,

as well as both the neighbourhood and cost functions used

in the search algorithm.

5.1 Extensions To System Model

An extra attribute is added to the problem specification

which indicates the maximum number of replicas for each

task. Since a hot backup strategy is being assumed, if a mes-

sage passes between two tasks, then an equivalent message

must be passed between all replicas of those tasks. Figure

3 shows a task with two replicas which sends a message to

a task with a single replica. If at least one version of each

task is on a processor which has not failed, then the func-

tionality provided by these tasks will still be present. When

multiple versions of a task are present in the system other

tasks will receive messages from each of the replicas. In

this paper, the computational model assumes that the first

message received is used. Other models are feasible. For

instance, tasks could wait for all messages of working repli-

cas to arrive in order to compare results.

5.2 Extensions To Neighbourhood

In addition to configuring the original set of tasks and

messages in the system, allocations and priorities must be

found for all replica tasks and their messages. For this pur-

pose, replicas are simply treated as extra schedulable ob-

jects in the system so no changes need to be implemented.

However, the replicas do increase the size of the neigh-

bourhood making the possible solution space much larger.

In order for the algorithm to decide how many task repli-

cas should be used, a third axis of variation (in addition

to allocations and priorities) must be added. The neigh-

bourhood function is given the option of enabling and dis-

abling replica tasks. A disabled task is effectively removed

from the system for the purposes of evaluating the system’s

schedulability and fault-tolerance qualities. When a task is

disabled, all of the messages it sends and received are also

disabled as these will not be needed as part of a design with

fewer replicas. On completion of the search, any disabled

objects present in the solution judged to be the best will not

be included in the output.

During the evaluation it was found that it is better to

favour enabling a disabled task as opposed to disabling a

currently working one. Therefore, the function chooses to

change the status of a currently working task, chosen at ran-

dom, with probability 0.1 and changes the status of a cur-

rently disabled replica with probability 0.9. It should be

noted that this is another parameter whose optimal value

will be dependent upon the problem to be solved.

5.3 The System Utility Metric

The system utility metric is taken from Shelton [19].

This section explains how it is implemented efficiently and

used as part of the search objective function.

For a system, where some components may have failed,

the utility of the system is a measure of the functionality that

the system is still providing. Calculating such a value is dif-

ficult since failures are generally not independent. For ex-

ample, consider an automotive braking system with a brake

on each of the four wheels. The loss in utility can be consid-

ered equivalent for any single brake failure. If two brakes

fail, configurations where both failed brakes are on the same

side of the car can be considered to have less utility since

this will cause the car to swerve when braking.

Assuming a fail-fast, fail-stop [17] model, where each

component can only have a status of working or failed, there

are 2N failure configurations for a system with N compo-

nents. Assigning a utility value to every one of these config-

urations is not a scalable solution. To overcome this, Shel-

ton [19] developed a method which uses hierarchical de-

composition to reduce the number of utility values required.

Shelton’s method takes advantage of the existing design de-

composition already present in the system to group individ-

ual system components into feature subsets. These feature

subsets containing system components are grouped to form

higher level feature subsets.

Figure 4, a simplified version of Shelton’s diagram in

[19], shows four feature subsets for the left front brake sub-

system of an automotive braking system. The utility of each

feature subset depends on the status of the components in it

Figure 4. Example feature subsets from a

braking system (based on Shelton [19])

Feature Subset Configuration Utility

LFAntiLock LFAntiLockCom,
LFWheelSpeed,
Pedal, Dynamics

0.7 + 0.3 ∗
U(Dynamics)

LFAntiLockCom,
LFWheelSpeed,
Pedal

0.7

Others 0

Table 1. Example utility values for the LFAn-

tiLock feature subset

and that of any feature subsets it references. Shelton gives

tables of example utility values for the feature subsets. The

values for the LFAntiLock feature subset are shown in table

1. The utility value in each row of the table corresponds to

one or more failure configurations of the components in the

feature subset. All components listed in the configuration

column must have a working status in order to use the corre-

sponding utility value. The utility value for a configuration

is written as a formula which can refer to the utility value

of another feature subset using the function U(·). This is

shown in the first row of table 1 which uses the utility value

of the Dynamics feature subset.

In order to involve utility as part of our objective function

for performing task allocation, it is necessary to create both

an internal representation for efficiently calculating system

utility and also an external representation for providing in-

put data which describes the utility model for a system.

The internal representation for the utility of a particular

feature subset is a decision tree. Each node of the tree is one

of the components of the feature subset. At the leaves of the

tree are the utility values. In order to calculate the utility

value for the feature subset, the tree is descended from the

root selecting either the working or failed branch from each

Figure 5. Fully expanded utility decision tree

Figure 6. Pruned and compacted trees

node depending on the failure status of the node. For low

level components, the failure status is decided by whether

the component has failed or not. For higher level feature

subset components, the failure status is failed if the utility

value of the referenced feature subset is 0 else the failure

status is working.

In general, for a feature subset with k components, a util-

ity tree will have a depth of k + 1 and have 2k utility values

on the leaves of the tree. An example of such a tree for the

LFAntiLock feature subset is shown in figure 5. However, it

is clear from table 1 that many configurations have the same

utility value. In particular, for configurations dependent on

multiple components, it is not necessary to check the sta-

tus of every component if any have failed. This allows the

tree to be pruned as shown in figure 6. The tree can be

compacted further by allowing a decision node to depend

upon multiple components as shown by the transformation

in figure 6. This form has the advantage of being a more

direct mapping from Shelton’s table of utility values in ta-

ble 1. It also forms the basis of an XML format for utility

Task WCET Period Max Replicas

A 7 10 2
B 7 10 2
C 2 10 2
D 2 10 2

Table 2. Example Problem

decision trees which is not overly verbose. All of the lowest

level components are linked to a task in the system specifi-

cation. Each decision node lists feature subsets on which to

base the decision between following the working or failed

branch. Every node also has a require attribute which can

be set to any or all which indicates how many of the features

must be working in order to take the working branch. Ev-

ery utility model input must include a feature subset named

System. This is assumed to be the feature subset at the top

of feature subset hierarchy and its utility value is used to

calculate the utility value for the system under a particular

failure configuration.

The derivation of utility values for each feature subset is

not dealt with by this work. One way in which to interpret

these values is to map a loss in utility to the expected mone-

tary value [1] which will be the cost incurred by any failures

caused by the faults. When combined with probabilities of

the faults occurring expected monetary value is one method

of quantifying risk.

Two cost function components which both use the utility

metric are described below. The first is based upon keeping

the system utility above an acceptable threshold for as many

faults as possible. The other is motivated by the concept of

expected monetary value and uses probabilities of processor

faults to minimise the expected loss of utility.

5.4 Extensions To Cost Function

The system utility model can generate several values for

all numbers and combinations of faults. The challenge of

using this model in a search algorithm is to create a function

which can map all of these values to a quality metric for

fault-tolerance. Two approaches are introduced here. The

choice of which to use will depend on the fault-tolerance

requirements for the system.

The first is based on the utility values of the worst case

combinations of processor faults over increasing numbers

of faults. This is clarified with the following example. Table

2 shows a small system with four tasks and no messages.

Deadlines are set equal to the period of the task. The timing

requirements of tasks A and B dictate that they cannot be

allocated to the same processor. Each task can be replicated

up to two times so there may be up to three versions of each

task in the solution. The utility model for this system, given

in table 3, uses a simple additive model such that the utility

provided by any particular task is independent of whether

other tasks have failed. In this instance, the amount of utility

provided to the system decreases from task A to task D.

Feature Subset Utility

System 0.5 * U(A) + 0.3 * U(B) + 0.15 *
U(C) + 0.05 * U(D)

Table 3. Utility model for example problem

P1 P2 P3 P4

P1 P2 P3 P4

Solution 1

Solution 2

B A C A’ D A’’ C’

AB D B’ D’ A’ C’C

Figure 7. Two solutions to example problem

Two feasible solutions, where all schedulability con-

straints are met, are shown in figure 7. For Solution 1, the

worst case single processor fault which can occur is when

P1 fails since there are no versions of task B left in the sys-

tem. The worst combination of two faults is when proces-

sors P1 and P3 fail which removes all versions of both tasks

B and D from the system. The worst case system utility val-

ues for increasing numbers of faults for both Solution 1 and

Solution 2 are plotted in figure 8. The answer to the ques-

tion of which degradation profile is preferable will depend

on requirements. In order for the cost function component

to be able to select which solution is best, a threshold pa-

rameter, which is specified as part of the utility model, is

introduced. It is assumed that once utility falls below this

threshold the system in some sense becomes unreliable or

unsafe. Therefore, the aim is to withstand as many faults

as possible before the utility falls below this level. This is

akin to trying to maximise the value to t when designing

a t-fault-tolerant system. Using this model, Solution 1 is

preferable for the low threshold value marked in figure 8

whereas Solution 2 is better for the high threshold. A cost

Figure 8. Worst case utility degradation

function component which will order solutions according to

this scheme is given in equation (18).

Mt = min
F∈combs(P,t)

U(System|Ffailed) (16)

lt =

{

Mt if Mt ≥ L

−L otherwise
(17)

gmaxloss = 1 −

∑|P|−1
t=0 2t(lt + L)

(1 + L)(2|P| − 1)
(18)

In these equations, t is a number of processor faults. The set

combs(X, i) is the set of all combinations of i items chosen

from X . lt is the worst case utility value for t faults and

L is the threshold utility value. In order not to differentiate

between solutions once utility has fallen below the thresh-

old, if lt < L then lt is set to −L. The 2t term ensures that

systems which can withstand more faults will always have

a lower value of gmaxloss. Note that the initial value of t is

0. The utility is not necessarily maximal for 0 faults since

the search algorithm has the design choice of not including

any versions of a particular task in the system.

Given an arbitrary utility model, calculating lt requires

every combination of possible processor faults to be eval-

uated. For systems with more processors, the number of

combinations will grow rapidly. One way of limiting this is

to only iterate up to a maximum number of faults. A sug-

gested topic for future work is to investigate approximations

for lt for particular restricted utility models.

An alternative cost function component for assessing the

fault-tolerance quality of a system is given in equation (20).

Let P (F) be the probability that processors in the set F
have permanent faults.

hexploss = 1 −

|P|−1
∑

i=0

∑

F∈combs(P,i)

P (F)U(System|Ffailed)

(19)

gexploss = hexploss
0.075 (20)

This equation calculates the expected system utility by con-

sidering the system utility for each possible fault combi-

nation across different numbers of faults. P (F) is calcu-

lated by combining the probabilities of individual proces-

sor faults which must be specified. Processor faults are as-

sumed to be independent though any probability function

which maps a set of faults, F , to the probability of them oc-

curring could be used. Since the probability of a processor

fault is small, the probability of 0 faults dominates the total

probability of 1 or more faults. The 0 fault case will usu-

ally coincide with full system utility. Therefore, although

hexploss is capable of giving values in the full [0, 1] range,

the result will often be very low and the very small varia-

tions are insufficient to guide the search. Therefore, raising

System Replicas Tasks Messages Procs Time

evalsys 0 8 12 2 <1s
evalsys 1 16 48 4 2s
evalsys 2 24 108 6 9s
brakes 0 19 29 5 1s
brakes 1 29 90 5 16s
brakes 2 39 183 7 2m 10s
brakes 2 39 183 8 1m 24s

Table 4. Problem sizes with solution times

to a low valued power in the actual cost function component

increases the size of the variations in the values which are

typically produced without changing the range.

The final issue in the design of the extended cost function

is the balancing of schedulability and fault-tolerance. Since

schedulability is being treated as a constraint rather than

an objective, the optimisation problem is a single objective

problem which can be stated as: optimise fault-tolerance

such that all schedulability constraints are met. To help

achieve this balance a hierarchical weightings structure is

introduced. Rather than attempt to balance fault-tolerance

against each of the previous cost function components in-

dividually, components g1, . . . , g9 which were designed for

solving schedulability constraints are grouped together and

the fault-tolerance cost function components is placed in a

separate group. In addition to changing the importance of

components within groups, a weighting can be applied to

the groups themselves in order to balance the schedulability

constraints and fault-tolerance objectives.

6 Evaluation

The evaluation concentrates on the effectiveness of the

two cost function components for fault-tolerance given in

equations (18) and (20). Two systems are used during the

course of the evaluation. The first is a randomly generated 8

task example called evalsys and the other is a brake-by-wire

example taken from Shelton [19] labelled as brakes.

The first experiments were performed to gain an under-

standing of how adding replicas increases the complexity of

the problems. All timings were measured using a machine

with an AMD Athlon 64 3500+ CPU clocked at 2.2GHz.

The increase in problem size as replicas are added is shown

in table 4. Of particular note is the number of extra de-

pendencies which are generated. In the brakes problem,

sensors, software components and actuators are represented

but only software components are replicated. The problems

were solved with all replicas enabled as straightforward task

allocation problems with no fault-tolerance objectives. Ad-

ditional processors were introduced to the system require-

ments to accommodate replicas. The brakes example has

separation constraints on some tasks so a minimum of 5

processors were required. The time taken to solve each

problem variation is also shown in table 4. Adding replicas

significantly increases the time required to solve problems

Feature Subset Configuration Utility

System τ1, τ2, τ3 0.25 ∗ U(τ4) + 0.25 ∗
U(τ6) + 0.25 ∗ U(τ7) +
0.25 ∗ U(τ8)

τ1, τ5 0.25∗U(τ7)+0.25∗U(τ8)

Others 0

Table 5. Utility values for evalsys

Num Replicas Procs L=0.8 L=0.4

1 3 1 (1.00) 1 (1.00)
2 3 unschedulable unschedulable
2 4 1 (1.00) 2 (0.75)
2 5 2 (1.00) 2 (1.00)

Table 6. Fixed number of replicas

but all problems could still be solved within a few minutes.

The final experiment shows that increasing the number of

processors can make the scheduling problem easier.

In order to conduct experiments using the fault-tolerance

components, utility models were needed for both systems.

The model for the brakes system is taken from Shelton [19].

The utility model for the evalsys system was constructed as

shown in table 5. It shows that task τ1 is critical to the

system and that the system can only run at full utility if

tasks τ2 and τ3 are also present.

The next experiment used the evalsys problem to evalu-

ate the worst case loss fault-tolerance component. It com-

pared two strategies of replication. The first used a fixed

number of replicas whilst the second allowed the algorithm

to vary the number of replicas used. Separation of replicas

is not enforced but solutions where replicas are allocated

to the same processor should be heavily penalised for poor

fault-tolerance quality.

Table 6 shows results for systems with a fixed number

of replicas. The number of processors and threshold values

were varied across different runs. The values in the final

two columns give the number of faults which could be tol-

erated before the system utility fell below the threshold. The

values in parentheses are the worst case system utility after

that many failures. The original problem requires two pro-

cessors to schedule all tasks. Therefore, a solution which

duplicates this would require 4 processors and handle a sin-

gle fault. However, the results show that it is possible to find

a solution which achieves the same degree of fault-tolerance

with only 3 processors. These runs took about 25 minutes to

complete. Although there is some overhead from having to

calculate worst case system utility values, this was insignif-

icant compared to the additional time spent by the search

in finding a schedulable solution since it had to balance this

constraint with the objective of improving fault-tolerance.

Table 7 shows results when the search was able to vary

the number of replicas. These runs took longer still, taking

up to an hour to find good solutions. Finding a schedula-

ble solution is now easier for the search because it is able

Max Replicas Procs L=0.8 L=0.4

2 3 1(1.00) 2 (0.50)
2 4 1(1.00) 2 (0.75)
2 5 2(1.00) 2 (0.75)

Table 7. Variable number of replicas

Task 0.8,3 0.8,4 0.8,5 0.4,3 0.4,4 0.4,5

τ1 1 2 2 2 2 2
τ2 1 1 2 1 2 2
τ3 1 1 2 1 2 2
τ4 1 1 2 1 1 2
τ5 0 1 0 1 2 1
τ6 2 1 2 1 1 1
τ7 2 1 2 1 1 1
τ8 1 1 2 2 1 1

Total 9 9 14 10 12 12

Table 8. Number of replicas used

to remove replicas. To compensate for this and maintain a

good level of utility, it was necessary to adjust the balance

of weights away from the group of schedulability cost com-

ponents and in favour of the worst case loss component. For

fixed numbers of replicas, schedulability was weighted 10

times higher than fault tolerance but for this latter table of

results, fault tolerance was weighted more highly in a ratio

of 2 to 1. This difficulty is emphasised by the fact that the

result achieved for a threshold of 0.4 and 5 processors is

slightly worse than that of the equivalent result with a fixed

number of replicas. However, the benefit can be seen in that

it was able to withstand an additional fault with only 3 pro-

cessors when the threshold was set at 0.4. Table 8 shows the

number of replicas included in each solution for the results

in table 7. This shows that the algorithm correctly favoured

the critical task, τ1, and increased the number of replicas

used when extra processors were available.

The expected utility loss component was tested with the

brakes system. Since this system did not have redundant

sensors included in the example, it will not withstand any

faults in the worst case but the expected utility loss can still

be improved. The probability of each processor failing in a

given time frame was set to 0.001 and the maximum number

Figure 9. Expected loss

of replicas was 2. The results are shown in figure 9. The

solutions showed a general pattern of decreasing expected

loss of utility as the number of processors increased though,

on this set of runs, the solution for 6 processors was slightly

better than that for 7.

The examples presented here are limited in size though

grow rapidly as replicas are added. The largest performance

problem has been found to be the growth of the solution

space caused by having variable numbers of replicas. How-

ever it is hard to extrapolate performance based on size

alone. For problems which are large but are easily schedula-

ble there will be fewer issues balancing schedulability con-

straints with fault-tolerance objectives.

7 Conclusions And Future Work

This paper has presented extensions to a task allocation

search algorithm to make architectural decisions influenced

by fault-tolerance requirements. Suitable objective func-

tions were presented which allowed for gracefully degrad-

ing systems to be generated. The pattern of degradation can

be changed by setting a threshold parameter for the worst

case utility loss component. An objective function for ex-

pected utility loss was also given. The neighbourhood for

local search was extended to allow the number of task repli-

cas to be varied.

The are some remaining issues for future research. The

probability of a processor failure is rarely independent of

other failures. The same optimisation methods and metrics

could be used in conjunction with a more complex prob-

ability model. To this point, communication failures have

not been accounted for. The methods discussed in this pa-

per could be used to complement previous work which con-

structs schedules for resending messages and/or rerunning

tasks when failures occur.

References

[1] J. Abrams and R. Cone. Implementing expected monetary

value analysis into risk metrics and assessment criteria. In

Proceedings of the 24th International System Safety Confer-

ence (ISSC), August 2006.

[2] I. Bate and P. Emberson. Incorporating scenarios and heuris-

tics to improve flexibility in real-time embedded systems.

In Proceedings of the 12th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS’06), pages

221–230, 2006.

[3] F. Bicking, B. Conrard, and J. M. Thiriet. Integration of

dependability in a task allocation problem. Instrumentation

and Measurement, IEEE Transactions on, 53(6):1455–1463,

2004.

[4] K. Echtle and I. Eusgeld. A genetic algorithm for fault-

tolerant system design. In Dependable Computing, Lecture

Notes In Computer Science, pages 197–213. Springer, 2003.

[5] P. Emberson and I. Bate. Minimising task migration and

priority changes in mode transitions. In Proceedings of the

12th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS’07), pages 158–167, 2007.
[6] A. Girault, C. Lavarenne, M. Sighireanu, and Y. Sorel. Gen-

eration of fault-tolerant static scheduling for real-time dis-

tributed embedded systems with multi-point links. In IEEE

Workshop on Fault-Tolerant Parallel and Distributed Sys-

tems, pages 125–125, April 2001.
[7] W. Jia and W. Zhou. Reliability and replication techniques.

In Distributed Network Systems, Network Theory and Ap-

plications, pages 213–254. Springer US, 2005.
[8] J. P. Kany and S. H. Madsen. Design optimisation of fault-

tolerant event-triggered embedded systems. Master’s thesis,

Informatics and Mathematical Modelling, Technical Univer-

sity of Denmark, DTU, 2007.
[9] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by

simulated annealing. Science, 220(4598):671–680, 1983.
[10] W. Nace and P. Koopman. A product family approach

to graceful degradation. In Proceedings of the IFIP

WG10.3/WG10.4/WG10.5 International Workshop on Dis-

tributed and Parallel Embedded Systems, 2000.
[11] Y. Oh and S. H. Son. Scheduling real-time tasks for depend-

ability. The Journal of the Operational Research Society,

48(6):629–639, 1997.
[12] J. Palencia and M. G. Harbour. Schedulability analysis for

tasks with static and dynamic offsets. In Proceedings of the

IEEE Real-Time Systems Symposium, pages 26–37, 1998.
[13] S. Poulding, P. Emberson, I. Bate, and J. Clark. An efficient

experimental methodology for configuring search-based de-

sign algorithms. In Proceedings of 10th IEEE High Assur-

ance System Engineering Symposium, pages 53–62, 2007.
[14] C. C. Price. Task allocation in distributed systems: A survey

of practical strategies. In ACM 82: Proceedings of the ACM

’82 conference, pages 176–181, 1982.
[15] X. Qin and H. Jiang. A novel fault-tolerant scheduling al-

gorithm for precedence constrained tasks in real-time het-

erogeneous systems. Parallel Computing, 32(5-6):331–356,

June 2006.
[16] O. Redell. Analysis of tree-shaped transactions in dis-

tributed real time systems. In 16th Euromicro Conference

on Real-Time Systems (ECRTS), pages 239–248, 2004.
[17] R. D. Schlichting and F. B. Schneider. Fail-stop processors:

An approach to designing fault-tolerant computing systems.

Computer Systems, 1(3):222–238, 1983.
[18] F. B. Schneider. Implementing fault-tolerant services using

the state machine approach: a tutorial. ACM Comput. Surv.,

22(4):299–319, December 1990.
[19] C. Shelton. Scalable Graceful Degradation For Distributed

Embedded Systems. PhD thesis, Carnegie Mellon Univer-

sity, June 2003.
[20] K. Tindell, A. Burns, and A. Wellings. Allocating hard real-

time tasks: An NP-hard problem made easy. Real-Time Sys-

tems, 4(2):145–165, 1992.
[21] Y. C. Yeh. Safety critical avionics for the 777 primary flight

controls system. In Digital Avionics Systems, 2001. DASC.

The 20th Conference, volume 1, 2001.
[22] P.-Y. Yin, S.-S. Yu, P.-P. Wang, and Y.-T. Wang. Multi-

objective task allocation in distributed computing systems

by hybrid particle swarm optimization. Applied Mathemat-

ics and Computation, 184(2):407–420, January 2007.

