
The Babbling Idiot in Event-triggered Real-time Systems

Ian Broster and Alan Burns
Real-time Systems Research Group
Department of Computer Science

University of York, UK
{ianb, burns}@cs.york.ac.uk

Abstract

We present an approach to detecting ‘babbling’ faulty
nodes on a bus by using a bus guardian to listen to
previous messages and deduce a window during which
future messages should appear. In general, one cannot
detect all erroneous messages, but the messages that
are incorrectly classified can be bounded, and therefore
can be taken this into account when doing worst case
response time analysis.

1. Introduction

It has long been a criticism of event triggered sys-
tems that they are unable to detect or tolerate babbling
idiot failures or commission faults. A commission fail-
ure occurs if a process (or node) produces a result (or
message, event etc.) when none should have been pro-
duced. In a real-time system, this extends to an event
that occurs too early .

Informally, the babbling idiot failure is where a
process/node repeatedly suffers commission faults and
therefore consumes more resources than it would nor-
mally use. For example, consider a set of nodes com-
municating through a shared bus; if one node suffers
a babbling idiot failure and begins to transmit extra
messages onto the bus then it may starve the other
correct nodes on the bus of network bandwidth.

Time triggered bus protocols such as TTP [5] dictate
that a node is only allowed to write to the bus at pre-
defined times. Therefore it is relatively easy to detect
if a node becomes a babbling node by watching when it
writes to the bus. Furthermore, it is possible to build
a bus guardian [7] which only connects the node to the
bus at these predefined times, hence ensuring that the
node can never write to the bus when it should not.

The concept of a bus guardian to isolate a node
in the event of failure is not new, it was used by the

FTMP architecture in 1978 [4] to safely interface nodes
to a multiple-redundant bus. Delta-4 [6] used a similar
strategy, restricting node communication via ‘network
attachment controllers’.

With event triggered communication, is that it is
not possible to exactly specify when a message will be
sent. This flexibility is an advantage in many systems,
but it makes babbling idiot detection (and hence design
of a bus guardian) significantly more difficult.

In this paper, some architectures for detecting and
preventing a babbling idiot are briefly discussed and an
approach for detecting babbling nodes is introduced.

2. Bus Guardians

A bus guardian is a device designed to protect a
bus from failure of some component attached to the
bus. When designing a bus guardian, one of the most
difficult problems is to ensure that there are no com-
mon failure modes between the bus guardian and the
nodes that is it protecting. Independent hardware with
no common components and design diversity can be
used to help achieve this. Some potential sources of
common failures are: protocol implementation, pro-
tocol errors, clocks, CPU/hardware, operating sys-
tem/software, common data, etc.

However, some common elements cannot easily be
removed. For example: it is apparent that the guardian
and the node should have independent clocks, in order
to prevent a fast/slow clock being a common failure
mode. However, if the clocks are independent then
we must assume that the guardian and the node may
experience clock drift relative to each other. Therefore
we must impose some clock synchronisation mechanism
upon both the guardian and the node and this intro-
duces either a common component or a dependency
between the guardian and the node.



3. Architectures

One strategy (figure 1) to ensure independence is
to have the guardian as a completely separate node
connected directly to the bus. Using only information
from the bus, it detects babbling nodes (a scheme for
doing this appears later in this paper).

G Node
Error

Figure 1. Node and Guardian: Not Coupled

The guardian is able to affect (e.g. shutdown) a
node using a direct link to the node (this being the
only connection between the guardian and the node).
For a system where nodes are widely distributed, a
guardian will only have a direct connection to nodes in
the same physical location, therefore one guardian is
required per ‘cluster’.

This model requires no special features of the pro-
cessor node itself, but the guardian is a fairly complex
device because it must understand the network proto-
col. A major disadvantage of this approach is that the
guardian is only able to detect a babbling node a after
it has transmitted an incorrect message onto the bus.

Alternatively the more closely coupled strategy in
figure 2 can be used. It is similar to the techniques used
by TTP [7] and FTMP [4]. The node always listens to
the bus, but transmission is only allowed under the
control of the guardian.

G

Error

Enable

Request(msg_id)

Node

Bus Driver

Figure 2. Node and Guardian: Loosely Cou-
pled

Normally the bus drivers are switched ‘off’; before
attempting to transmit to the bus, the node must in-

form the guardian that it wishes to transmit. If the
guardian agrees with the request then it enables the bus
driver. Afterwards, the guardian disables the driver.

This scheme provides significantly more protection
because a rogue message is stopped before it can reach
the bus. It moves towards fail silence: in order for any
message to appear on the bus, both the guardian and
the node must concur.

A third architecture (figure 3) uses even closer cou-
pling between the node and guardian. It is similar to
the network attachment controller approach in Delta-4
[6] and the hardware supported approach for CAN [2]
suggested by Tindell [9]. In this architecture, the

Bus Driver

G

Error

Node

Figure 3. Node and Guardian: Close Coupled

guardian must be highly reliable: it is the sole inter-
face to the network. It must understand the network
protocol (which adds complexity to the guardian) but
redundant hardware could be used to provide fail silent
dependability.

4. Definitions and Model

We define a babbling node as one which incorrectly
sends a message before such a message should have
been released. It does not matter whether or not the
message is functionally correct.

Justification for such a harsh definition is that even
one early message is a violation of timing analysis be-
cause the early message may impose unanticipated in-
terference on other messages. It is irrelevant whether
the babbling node repeatedly transmits too early or
not, although this may be taken this into account for
any error recovery such as shutting down the node.

The system model in this paper is of a set of inde-
pendent nodes connected to a single bus. The nodes
broadcast periodic messages. The bus traffic may be
analysed off-line to provide worst-case response times
for each message stream in the absence of errors. The



worst case response time for any message is less than
or equal to its period. An example network protocol is
CAN [2] where the worst case response time for each
message is easily calculated [8].

Babbling nodes are detected by a bus guardian,
which is connected using a suitable architecture from
section 3 such that it can monitor accesses to the bus
of a particular message stream.

We initially assume that there are no faults in the
system other than early messages.

5. Approach to Detection

One approach to detecting babbling nodes is to mon-
itor the times that messages from a particular message
stream appear on the network, and deduce a window
during which future messages should appear.

For periodic messages, we can do this by consider-
ing the initially unknown offset for the stream. If we
assume that all previous messages in the stream were
timely (neither early nor late) we can deduce some ap-
proximate value for the offset of the stream.

For a given stream of messages, let S∗i be the ac-
tual release time for the ith message in the stream
(i.e. when the message is produced by the applica-
tion). S∗i = O∗ + iT , where O∗ is the initial offset of
message stream. The value of O∗ unknown.

For each message in the stream, the time that the
message appears on the bus, Ni, is used to provide an
estimate Si for S∗i using equation (1).

Si =
{
Ni −Q if i = 0
max(Si−1 + T,Ni −Q) i > 0 (1)

where Q is the maximum amount of time that the
message could have been queued before appearing on
the bus. For CAN in the absence of any faults, Q =
R− C (worst case response time - length of frame).

If all previous messages were timely then an approx-
imate test for an early message is

Ni < Si−1 + T ⇒ Message i is early (2)

However, this test is not an ‘if and only if’ test, since
the value of Si−1 may be up to Q too early. Therefore,
in the worst case (no queueing ever occurred), an early
message in the window S∗i − Q < Ni < S∗i may be
incorrectly accepted as on time, when in fact it is early.

5.1. Late Messages

The simple scheme above fails when there are late
messages. For a particular real-time system, it may
be appropriate to argue that late messages cannot ever

occur (consider the quantity on research dedicated to
guaranteeing deadlines), for example [3] where late
messages are never sent (note that the paper assumes
to know O). However, in general, for an event triggered
system, late messages are much more likely than a bab-
bling idiot, therefore late messages must be tolerated.

Some late messages can be detected using the varia-
tion in queueing to more accurately determine an upper
limit to the window.

Let Di be the relative difference between the “ear-
liest” and the “latest” message in the stream so far
(the messages which experienced the shortest and the
longest queueing delay). Formally:

Di = max
∀j<i

(Nj − jT )− min
∀j<i

(Nj − jT ) (3)

which can be efficiently computed for each message us-
ing:

Di = Si +Q−min(Ni, Si−1 + T +Q−Di−1) (4)

A message (i) will be classified as early if

Ni < Si−1 + T − (Q−Di−1)

and late if

Ni > Si−1 + T + 2Q−Di−1

The window (shown in figure 4) allows the detection
of both early and late messages.

D S+2Q−D

Normal Messages

S*

S

Guardian’s Window

Real Window

Late

Normal

Detected as Late

Early

S+Q

S*+Q

S−(Q−D)

Detected as Early

Figure 4. Bus guardian “window” for classify-
ing messages

Notice that he guardian’s window in figure 4 is wider
than the real window: the accuracy of detection de-
pends on the variation in queueing time for previous
messages. The greater the variation, the closer the es-
timated window will match the ‘real’ window. Never-
theless, even in the worst case (no variation in queueing
time), the inaccuracy of the window can be bounded:



The value of D is bounded by Q therefore in
the worst case, an early message at S∗i − Q
will not be detected.

As we can determine the worst case that will not be
detected, we can feed this value back into the worst
case response time analysis for the bus as a form of
jitter (despite the pessimism in doing so). If assump-
tions are made about the number of correct messages
that appear on the bus before a babbling idiot appears
then analysis developed by Bernat [1] can be used to
argue about the value of D and hence improve the pes-
simism. A system initialisation self-test (where the
consequences of failure are nil) can be used to provide
initial timely messages on the bus to fulfil the assump-
tions.

This means that we can still guarantee the response
time of all messages even in the presence of a certain
babbling idiot failures.

6. Summary and Future Direction

This ongoing research is investigating a run-time
guard that detects certain types of babbling idiot fail-
ure and can shutdown offending nodes. Depending on
the closeness of the coupling between the bus guardian
and the nodes, the guardian may be able to detect dif-
ferent levels of failures.

In general, the guardian cannot detect all erroneous
messages, but the messages that are incorrectly classi-
fied can be bounded , and therefore we can take this into
account when doing worst case response time analysis.

There are many weak areas in the scheme so far, and
these are being addressed in current work. Problem
areas include: clock drift, the assumption that the first
message is correct, common failure modes and failure
of the guardian.

The next planned stage is to analyse exactly which
errors the scheme outlined in this paper will detect,
to further develop the analysis for a specific bus (e.g.
CAN), and present a response time analysis which can
take into account the insufficiencies in any babbling
idiot detector.

References

[1] G. Bernat. Specification and Analysis of Weakly Hard
Real-time Systems. PhD thesis, Universitat de les Illes
Balears, January 1998.

[2] Bosch, Postfach 50, D-700 Stuttgart 1. CAN Specifica-
tion, version 2.0 edition, 1991.

[3] I. Broster and A. Burns. Timely use of the CAN pro-
tocol in critical hard real-time systems with faults. In

Proceedings of the 13th Euromicro Conference on Real-
time Systems, Delt, The Netherlands, June 2001. IEEE.

[4] A. L. Hopkins, T. B. Smith, and J. H. Lala. FTMP - a
highly reliable fault-tolerant multiprocessor for aircraft.
Proceedings of the IEEE, 66(10):1221–39, October 1978.

[5] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer Academic,
1997.

[6] D. Powell. Delta-4: A Generic Architecture for Depend-
able Distributed Computing., volume 1 of Research Re-
ports, ESPRIT 818/2252. Springer-Verlag, 1991. ISBN
3-540-54985-4.

[7] C. Temple. Avoiding the babbling-idiot failure in a
time-triggered communication system. In Proceedings
28th Annual International Fault Tolerant Computing
Symposium, FTCS’98, 1998.

[8] K. Tindell, A. Burns, and A. J. Wellings. Calculating
controller area network (CAN) message response times.
Control Engineering Practice, 3(8):1163–1169, 1995.

[9] K. Tindell and H. Hansson. Babbling idiots, the dual-
priority protocol, and smart CAN controllers. In Pro-
ceedings of the 2nd Internation CAN Conference, pages
7.22–28, 1995.


