
1

Specification and Refinement by Probabilistic
Sequence Diagrams

{Knut Eilif Husa1,2, Atle Refsdal1} 1Department of Informatics, University of Oslo ,2Ericsson
{knutehu, atler}@ifi.uio.no

Abstract—We propose probabilistic sequence diagrams as a
specification language for describing interactions where probabil-
ities are relevant. The language can be seen as a generalization
of a subset of UML2.0 sequence diagrams. A formal semantics is
defined based on traces with probabilities. To facilitate an incre-
mental development process a refinement relation is defined on the
semantics. There are many ways in which probabilistic sequence
diagrams might prove useful: formulating Service Level Agree-
ments, describing security properties, specifying games, abstract-
ing behavior of complex systems and describing the behavior of a
system’s environment.

I. INTRODUCTION

Sequence diagrams show how messages are sent between
lifelines to perform a task. They are used in a number of dif-
ferent situations. They are for example used by an individual
designer to get a better grip of a communication scenario or by
a group to achieve a common understanding of the situation.
Sequence diagrams are also used during the more detailed de-
sign phase where the precise inter-process communication must
be set up according to formal protocols. The lifelines in a se-
quence diagram can represent many different kinds of entities,
such as objects, components, systems and humans. What they
all have in common is that they are able to interact with other
entities through sending of messages.
Sequence diagrams qualitatively specify traces, i.e. they say

something about what behaviors a system should possess and
not possess. E.g. the STAIRS approach ([HS03], [HHRS04])
gives a formal semantics to UML2.0 sequence diagrams where
traces are categorized as positive, negative or inconclusive. The
approach presented in this paper is in many ways inspired by
STAIRS. However, such a categorization of traces puts certain
limits to what can be expressed. In some situations it is not
enough to say that a certain behavior is wanted or unwanted;
we need to say with what probability the behavior should occur.
There are several situations where probabilistic descriptions are
suitable:
• Probabilistic behavior. Some applications behave in a
probabilistic way. Games often involve some random ele-
ment where each outcome should have a certain probabil-
ity. If we want to model the behavior of a dice, it is not
enough to say that all outcomes 1 to 6 are acceptable, and
all others are not. We need to specify that the probability
should be 1/6 for each of the acceptable outcomes. Also in
a security setting we often need to put restrictions on prob-
abilities for different behavior. Suppose we want to spec-
ify a program that produces passwords. We may then want

to specify that the probability that the program produces
any particular password should be less than 0.0001%.

• Abstraction. If a certain component/sub-system makes
complex calculations/decisions based on details that we
do not care about in a given context, then we may want
to abstract from these details. Often it will be sufficient
to say something like ”the system will respond with mes-
sage m in x% of the cases”. A Service Level Agreement
is an example of a context where such descriptions may be
appropriate.

• Modelling the environment. Being able to model the en-
vironment of a system is important for analysis purposes.
Often our knowledge of the environment is of a probabilis-
tic nature, based on empirical data. For example, we might
know that when users log in to a service, they type a wrong
password in 10% of the cases, or that 3% of the items run-
ning on a conveyor belt will have some kind of defect. By
including such knowledge in a formal model we are able to
analyze how overall system performance will be affected.

• Prioritizing resources. By quantifying scenarios we gain
insight into where resources should be allocated. Bot-
tlenecks affecting common behavior should normally be
dealt with before the others.

In this paper we propose the language of probabilistic se-
quence diagrams (psd). This involves introducing a new op-
erator - the palt - to facilitate the description of probabilistic
behavior. Probabilistic sequence diagrams are meant as a gener-
alization of sequence diagrams as presented in [OMG03]. Our
goal is a language suitable for expressing what is the acceptable
(range of) probability for a given behavior, as well as positive
and negative behavior in the UML2.0 sense.
Reaching a detailed system specification is typically the out-

come of a process of learning. Starting at a rough sketch one
would iteratively elaborate the interactions and in the end reach
a specification specific enough for implementation. This means
that a precise interpretation of the various steps in incremental
system development is needed. Therefore our formalism should
capture the notion of refinement and formalize incremental de-
velopment.
The remainder of this paper is divided into four sections.

Section II defines the formal syntax and semantics of proba-
bilistic interactions, and demonstrates the use of the language.
In section III we introduce the notion of probabilistic refine-
ment. Section IV presents some related work, while section V
show how our goals have been met and outline some ideas for
further work.

2

II. FORMAL FOUNDATION
In the following we define the notion of probabilistic se-

quence diagram. In particular, we formalize the meaning of
probabilistic sequence diagrams in denotational trace seman-
tics.

A. Events
An event may be of two kinds; a transmission event tagged by

! or a consumption event tagged by ?. A message m is a triple
(s, re, tr) of a signal s, a receiver re and a transmitter tr. M
denotes the set of all messages. The receivers and transmitters
are lifelines. L denotes the set of all lifelines. The semantics
of an event is a pair (k,m) ∈ {!, ?} ×M . Syntactically we
represent an event by !m or ?m. For any event e, we define
k.e, m.e, re.e and tr.e to denote its kind, message, receiver
and transmitter, respectively. We let E denote the set of all
event symbols, whileEvents denotes the set of all events. This
means that Events = {!, ?} ×M .

B. Basic composition of trace sets
A trace is a finite sequence of events such that a transmit

event of a message occurs before its corresponding receive
event. We write he1...e2i for the trace starting with event e1 and
ending with event e2, and let U denote the universe of traces.
Before the composition operators are defined, some new no-

tation need to be introduced. For concatenation and filtering of
traces, we have the functions and s, respectively. Concate-
nating two traces implies gluing them together. Hence, a1 a2
denotes a trace that is prefixed by a1. By bsa we denote the
trace obtained from the trace a by removing all events in a that
are not in the set b. π2 is a projection operator returning the sec-
ond element of a tuple. In order to resolve the non-determinism
in interleaving of traces, we make use of an oracle o, an in-
finite sequence of trace identifiers. It determines the order in
which events from two different traces are sequenced. The set
of events that may take place on the lifeline l is denoted by e.l.
Formally:

e.l
def
= {e ∈ Events | (k.e =!∧tr.e = l)∨(k.e =?∧re.e = l)}

We are now ready to define the two basic composition opera-
tors on traces, namely weak sequencing and parallel execution
denoted by % and k, respectively:

t1 k t2 def
= {t ∈ U | ∃o ∈ {1, 2}∞ :

π2(({1} ×Events)s(o, t)) = t1
∧π2(({2} ×Events)s(o, t)) = t2}

t1 % t2
def
= {t ∈ t1 k t2 |

∀l ∈ L : e.lst = e.lst1 e.lst2}

The definitions of k and % are extended to trace sets in the fol-
lowing way: For trace sets T1 and T2 we have T1 k T2

def
=S

t1∈T1

S
t2∈T2

t1 k t2 and T1 % T2
def
=

S
t1∈T1

S
t2∈T2

t1 % t2.

psd q

bob alice

go
y=0.9

yes

palt

no

r

s

r=0.8 & s=0.2

Fig. 1. Graphical representation of a sequence diagram

Example: let T1 = {h!a ?ai} and T2 = {h!b ?bi} where
tr.a = tr.b = l1, re.a = re.b = l2 and l1 6= l2. Then T1 k
T2 = {h!a ?a !b ?bi, h!a !b ?a ?bi, h!b ?b !a ?ai, h!b !a ?b ?ai}
and T1 % T2 = {h!a ?a !b ?bi, h!a !b ?a ?bi}.

C. Probabilistic sequence diagrams
We use predicates with probability variables x, y, ... ∈ [0, 1]

as free variables to impose probability constraints. By F(v) we
denote the set of logical formulas whose free variables are con-
tained in the set v. The set of syntactically correct sequence
diagramsD is defined inductively:
- {e;C(x) | e ∈ E} ⊂ D, where C(x) ∈ F({x}).
- d1, d2 ∈ D =⇒ d1 seq d2 ∈ D ∧ d1 par d2 ∈

D ∧ d1, x palt d2, y;C(x, y) ∈ D, where C(x, y) ∈
F({x, y}).

For simplicity the formal definition of probabilistic sequence
diagrams is given in terms of the textual representation. Fig-
ure 1 shows a simple example of a graphical representation. In
the graphical representation we use the following conventions
for probabilities attached to events: If an event is not anno-
tated with a probability predicateC, then we assume an implicit
probability variable xn with default predicate 0 ≤ xn ≤ 1. A
black dot is a shorthand for the probability predicate xn = 1, in
other words an event with probability one.
The diagram in figure 1 can be represented textually as

((!go; 0 ≤ x1 ≤ 1) seq (?go; y = 0.9)) seq
(((!yes;x2 = 1) seq (?yes;x3 = 1)), r
palt
((!no;x4 = 1) seq (?no;x5 = 1)), s
; r = 0.8 ∧ s = 0.2)

D. Semantics of probabilistic sequence diagrams
This section defines a denotational semantics for probabilis-

tic sequence diagrams. The semantics is defined in terms of a
function [[]] that for any diagram d yields a pair [[d]]= (T,F)
where T is a set of traces and F is a set of functions f : U →
[0, 1] assigning probabilities to every trace. A trace with a prob-
ability assignment of zero is never allowed to happen, while a
trace with probability assignment of one must always occur.
The universe U is divided in two sets of traces: the described
traces T and the undescribed traces U\T . The rationale for
letting the domain of f be U is that we want f to be a prob-
ability distribution, i.e.

P
t∈U f(t) = 1. In the following let

[[d1]]= (T1, F1) and [[d2]]= (T2, F2).

3

1) Events
[[(e;C(x))]]

def
= (T, F) where

T = {hei}
F = {f | ∃p ∈ [0, 1] : C(p) ∧ f(hei) = p

∧
X
t∈U

f(t) = 1}

if e ∈ E.
The semantics of an event and its probability predicate C(x)

is given by a unary trace and all the functions assigning a prob-
ability p to the trace such that the predicate C(p) is true. The
designer is free to specify the probability predicate; for exam-
ple it is possible to assign probability zero to a send event and
probability one to its corresponding receive event. The reason
for this is that probabilities are understood in the context they
appear. Consider the diagram in Figure 2. This diagram means
simply that the probability of producing the trace h!m, ?mi is
0.6 ∗ 0.9. It does not mean that the probability of producing the
traces h!mi or h?mi is 0.6 or 0.9, respectively.

psd ex

l1 l2

m
x=0.6 y=0.9

Fig. 2. Sending of a message.

2) Sequential composition
[[d1 seq d2]]

def
= (T,F) where

T = T1 % T2

F = {f | ∃f1 ∈ F1, f2 ∈ F2,∀t1 ∈ T1, t2 ∈ T2 :X
{(t3,t4)∈T1×T2|(t3%t4)=(t1%t2)}

f1(t3) ∗ f2(t4)

≤
X

t∈t1%t2
f(t) ≤

X
{(t3,t4)∈T1×T2|(t3%t4)∩(t1%t2)6=∅}

f1(t3) ∗ f2(t4)

∧
X
t∈U

f(t) = 1}

The seq construct defines weak sequencing which is the im-
plicit composition mechanism combining constructs of a se-
quence diagram. Sequencing of two sets T1 and T2 of traces
is done by sequencing every trace t1 from T1 with every trace
t2 from T2. Deriving probabilities for the resulting traces is
complicated by two factors. Firstly, sequencing of two traces
generally yields a set of traces, and not a single trace. Secondly,
a trace that is in the set of traces we get by sequencing t1 and t2
may also be in the set we would get by sequencing two traces t3
and t4, even if t1 is different from t3 and/or t2 is different from
t4. In other words, we may have (t1 % t2) ∩ (t3 % t4) 6= ∅
or (t1 % t2) = (t3 % t4) even if t1 6= t3 and/or t2 6= t4. So
how should probabilities of traces in t1 % t2 be derived based

on the probabilities for the traces in T1 and T2? We have cho-
sen to place an upper and a lower bound for the sum of prob-
abilities for the traces in t1 % t2. The lower bound is given
by the sum of the product of the probabilities for all traces
t3 ∈ T1 and t4 ∈ T2 such that (t1 % t2) = (t3 % t4). If
t1 and t2 are the only traces to fulfill this last condition (when
t1 = t3 and t2 = t4), the lower bound will be f1(t1) ∗ f2(t2).
The upper bound is given by the sum of the product of the
probabilities for all traces t3 ∈ T1 and t4 ∈ T2 such that
(t1 % t2) ∩ (t3 % t4) 6= ∅. If t1 and t2 are the only traces
to fulfill this last condition, the upper bound will be equal to the
lower bound.
3) Parallel composition
[[d1 par d2]]

def
= (T, F) where T and F are defined as for

seq, except that % is replaced by k every place it occurs.
The par construct represents a parallel merge or a permuta-

tion of sequences such that the ordering of the events from each
operand is maintained in the resulting traces. Parallel merge
of two traces may result in a set of traces. The considerations
regarding probabilities are exactly the same as for seq.
4) Probabilisic alternative
[[(d1, x palt d2, y;C(x, y))]]

def
= (T,F) where

T = T1 ∪ T2
F = {f | ∃f1 ∈ F1, f2 ∈ F2,

p1 ∈ [0, 1], p2 ∈ [0, 1] :
(C(p1, p2) ∧
∀t1 ∈ T1\T2 : f(t1) = p1 ∗ f1(t1) ∧
∀t2 ∈ T2\T1 : f(t2) = p2 ∗ f2(t2) ∧
∀t3 ∈ T1 ∩ T2 : f(t3) = p1 ∗ f1(t3) + p2 ∗ f2(t3))
∧
X
t∈U

f(t) = 1}

The palt construct defines probabilities of traces described in
the operands. The predicate C with the probability variables
x, y as free variables determines the probabilities. If the same
trace is described in both operands, the resulting trace probabil-
ity is defined as the sum of the individual trace probabilities.
Example of semantics: Applying the definitions of the se-

mantics for the operators we obtain the following semantics
for diagram in figure 1: [[q]] = (T,F), where T = {t1, t2},
t1 = h!go ?go !yes ?yesi, t2 = h!go ?go !no ?noi and
F = {f | 0 ≤ f(t1) ≤ 0.72 ∧ 0 ≤ f(t2) ≤ 0.18}. The
reason why f(t1) and f(t2) can range from zero to an upper
bound is that the ?go event can have any probability from zero
to one.

E. Example
The scenario described in Figure 3 is inspired by an exam-

ple taken from [Jan03] and describes an interaction between a
client, an automatic teller machine (atm) and a bank. It starts
with the atm prompting ”please insert card” to the client. The
client may then insert her/his card, and the atm prompts ”please
enter PIN”. In this initial phase of the interaction we make
no assumptions regarding probabilities of the client’s behavior,

4

therefore we have put no explicit predicates on the first three
events on this lifeline. After the ”please enter PIN” message
has been received there are two alternative continuations of the
scenario. The first is given by the first operand of the outermost
palt and starts with the client giving the correct PIN. According
to the specification the probability of this continuation being
chosen should be higher than 0.9. (Note that this probability
applies to the whole operand, not only to the first event.) The
second alternative is that the client enters a wrong PIN, and
nothing more happens. The probability for this should be less
than 0.1. If the first scenario is chosen, then the atm responds
to the correct PIN by asking how much money the user wants
to withdraw. Again two alternatives are given. The first has
a probability of between 0.2 and 0.4. It begins with the client
choosing 20 euros (or whatever the unit might be), and the atm
then passes this message along to the bank. What happens next
is described in the referenced diagram in Figure 4. The second
alternative has a probability from 0.4 to 0.7 and only differs
from the first in that the chosen sum is 50 instead of 20. In Fig-
ure 4 we see that after the bank has received a request it might
either accept it (with probability> 0.8) or reject it (with proba-
bility < 0.2). This is an abstraction in the sense that we do not
go into the details for why the bank does one or the other. If
the bank rejects the request it will perhaps in most cases be be-
cause the client does not have enough money in her/his account.
But there could also be other reasons, such as the account be-
ing temporarily closed due to a lost card, or some maintenance
problems at the bank.
Note that for the innermost probabilistic alternative in Figure

3 there is a possibility that the sum of probabilities for the given
alternatives is less than one. This allows undescribed situations
to happen, for example withdrawal of other amounts.

III. REFINEMENT
Refinement of a specification means to reduce under-

specification by adding information such that the specification
becomes closer to an implementation. In our setting this can be
done by reducing the acceptable variability for trace probabili-
ties or by describing new traces.
Let ΠT .f ∈ T → [0, 1] be the projection of f on T , and let

ΠT .F = {ΠT .f | f ∈ F}. We say that (T 0, F 0) is a refinement
of (T, F) iff
1) T ⊆ T 0 and
2) ΠT .F 0 ⊆ ΠT .F
Point 1) says that all traces that are described remain de-

scribed through a refinement. However, traces from the un-
described domain may be described and hence moved from the
undescribed set to the described set. Point 2) says that for all
functions in the refined specification there must be a function in
the original specification that assigns the same value for every
trace in the original specification.

A. Example of refinement
Figure 5 shows a refinement of the scenario given in Fig-

ure 3. First of all some new traces have been added. A new
operand has been added to the innermost palt that describes

psd cash_withdrawal

client atm bank

prompt ”insert card”

card

prompt ”please enter PIN”

correct PIN

prompt ”How much..withdraw?”

palt

wrong PIN

palt

amount(20)r

amount(50)
s

request(20)

ref

Request_to_bank(20)

0.9<x<=1 & y<0.1 & x+y=1

x

y

0.2<r<0.4 & 0.4<s<0.7

ref

Request_to_bank(50)

request(50)

Fig. 3. A cash withdrawal scenario.

psd Request_to_bank(Int value)

client atm bank

allow

take card

palt

deny

prompt ”transaction aborted”

card back

withdraw(value)

prompt ”Please take card”

card back

take card

prompt ”Please take money”

money(value)

take money

t>0.8 & u<0.2

t

u

Fig. 4. Cash withdrawal scenario continued.

5

psd cash_withdrawal_2

client atm bank

prompt ”insert card”

card

prompt ”please enter PIN”

correct PIN

prompt ”How much..withdraw?”

palt

wrong PIN

palt

amount(20)

0.25<r<0.35 & 0.45<s<0.55 & 0.15<v<0.25

amount(50)

amount(100)

request(20)

ref
Request_to_bank(20)

x

y

x>=0.99 & y <= 0.01 & x+y=1

r

s

v

ref
Request_to_bank(50)

ref
Request_to_bank(100)

request(50)

request(100)

prompt ”How much..withdraw?”

palt w=0

w

Fig. 5. A refinement of the cash withdrawal scenario.

a situation where the client withdraws 100 euros. The proba-
bilities for the resulting new traces add up to between 0.15 and
0.25. We have also added a new message ”How much do you
want to withdraw” enclosed by a palt and given a probability of
zero in the second operator of the outermost palt. This means
that we have added a trace where the atm sends this question
to the client after the client has entered an incorrect PIN. The
probability for this trace should of course be zero.
In addition to adding new traces we have also reduced the ac-

ceptable probability intervals for the original traces. For exam-
ple, the situation where a wrong PIN was given originally had
a probability from zero to (but not including) 0.1. In the refined
version the probability has to be lower than 0.01. We might
imagine that the designer has decided that the high probability
of wrong PINs will be unacceptable. A satisfactory probability
could perhaps be reached by improving the user interface of the
atm or by changing the PIN code format. Semantically this
change means that all functions assigning probabilities from
0.01 to 0.1 to the corresponding trace have been removed.

IV. RELATED WORK

Sequence diagrams have been used informally for several
decades. The first standardization of sequence diagrams came
in 1992 [ITU93]— often referred to as MSC-92. Later we have
seen several dialects and variations. The sequence diagrams
of UML 1.4 [OMG00] were comparable to those of MSC-92,
while the recent UML 2.0 [OMG03] has upgraded sequence di-
agrams to conform well to MSC-2000 [ITU99].
STAIRS [HS03] is an approach to the compositional devel-

opment of sequence diagrams supporting the specification of
mandatory as well as potential behavior. A new language con-
struct xalt is introduced to describe mandatory behavior. Traces
are categorized as positive, negative or inconclusive. Basic in-
crements in system development are structured into three types:
Supplementing means moving traces from the inconclusive set
to a positive or negative set. Narrowing means moving traces
from a positive set to a negative set. Detailing means introduc-
ing a more detailed description without significantly altering
the externally observable behavior. We see our work as a gen-
eralization of the work in STAIRS. Our notion of refinement is
based on that found in STAIRS.
Live Sequence Charts [DH01] is an extension of MSC al-

lowing the distinction between possible and necessary behav-
ior. The designer is allowed to selectively designate a chart or
part of a chart as universal (necessary, mandatory) or existen-
tial (possible, provisional, optional). We view the distinction
between universal and existential behavior as a special case of
probability - universal behavior corresponds to behavior with
probability one, while existential behavior can have probability
in the interval [0, 1i. Therefore, to a certain degree our work
can be seen as a generalization of LSC. However, [DH01] also
introduce explicit criteria for when a chart applies in the form
of pre-charts: Whenever the system exhibits the communica-
tion behavior of its pre-chart its own behavior must conform to
that prescribed by the chart. In our approach we have nothing
similar to pre-charts. Instead we rely on an implied assumption
of alignment, just like UML sequence diagrams.

V. CONCLUSION
We have proposed probabilistic sequence diagrams as a lan-

guage for expressing probabilistic behavior. A formal seman-
tics is given based on traces with probabilities. The semantics
is accompanied by a refinement relation, thereby supporting in-
cremental development. The language is a generalization of a
subset of UML2.0 sequence diagrams. Positive and negative
behavior are expressed as a special cases of probabilistic behav-
ior; positive traces are traces that may have probability greater
than zero, while negative traces have probability zero.
We intend to continue the work presented in this paper. One

of the things we plan to do is to include time in the language.
The combination of time and probabilities on sequence dia-
grams should give a very powerful language for specifying sys-
tem behavior and properties. One main focus for us will be
to explore how availability properties can be expressed within
such a language. A natural next step would also be to explore
the relationship between probabilistic sequence diagrams with
time and other formalisms including time and probabilities, for
example stochastic state-charts as presented in [Jan03].

6

To our knowledge no other language has fully integrated
probabilities with sequence diagrams. The expressive power
of this combination allows a wide area of applications.

VI. ACKNOWLEDGMENTS
The research on which this paper reports has been car-

ried out within the context of the IKT-2010 project SARDAS
(15295/431) funded by the Research Council of Norway. We
would like to thank Øystein Haugen and Ketil Stølen for help-
ful comments.

REFERENCES
[DH01] Werner Damm andDavid Harel. LSCs: Breathing life into message

sequence charts. Formal Methods in System Design, 19(1):45–80,
2001.

[HHRS04] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. Why timed se-
quence diagrams require three-event semantics. Technical Report
ISBN 82-7368-261-7, University of Oslo, 2004.

[HS03] Ø. Haugen and K. Stølen. STAIRS – Steps to analyze interactions
with refinement semantics. In Sixth International Conference on
UML, number 2863 in Lecture Notes in Computer Science, pages
388–402. Springer, 2003.

[ITU93] International Telecommunication Union. Recommendation Z.120
— Message Sequence Chart (MSC), 1993.

[ITU99] International Telecommunication Union. Recommendation Z.120
— Message Sequence Chart (MSC), 1999.

[Jan03] David N. Jansen. Extensions of Statecharts with Probability, Time,
and Stochastic Timing. PhD thesis, University of Twente, 2003.

[OMG00] Object Management Group. Unified Modeling Language, Version
1.4, 2000.

[OMG03] Object Management Group. Unified Modeling Language: Super-
structure, OMG ad/03-04-01 edition, 2003.

