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Abstract 
 
Single Event Upsets (SEU) arising from atmospheric neutrons and 
alpha particles are becoming increasingly important in combinational 
logic circuits. Combinational logic is resilient to soft errors due to 
three masking phenomena: (1) Logical Masking, (2) Electrical 
Masking, and (3) Latching-window Masking. This paper concentrates 
on logical masking, and proposes a probabilistic model which 
calculates the Soft Error Rate (SER) of any output node in 
combinational logic circuits, based on inherent logical masking 
properties.  

 
1. Introduction 
 
Technology scaling, shrinking geometries into the deep sub-micron 
regime, lower supply voltages, higher operating frequencies, and 
higher density circuits have all had a negative impact on reliability. 
The number of occurrences of transient faults has increased 
dramatically. One major transient fault type is soft errors, caused by 
two main sources: (1) secondary cosmic rays, especially atmospheric 
neutrons, and (2) alpha particles emitted by decaying radioactive 
impurities in packaging and interconnect materials. These highly 
energetic particles induce Single Event Transients (SET) in digital 
circuits. The amount of charge injected may be sufficient to invert the 
logical state at a node, hence introducing a soft error. SER per chip is 
projected to increase quadratically with decreasing feature size [1]. 
 
Traditionally, soft errors were tackled within the context of memory 
cells. Today, error detection and correction circuits are widely used to 
protect memory arrays. Combinational logic circuits, on the other 
hand, have been found to be less susceptible to SEU in equivalent 
device technologies due to the naturally occurring logical, electrical 
and latching-window masking effects [2]. However, these phenomena 
are diminishing as feature size decreases and circuits move to higher 
operating frequencies. Recent studies predict that the SER per chip of 
logic circuits will increase exponentially to 2011, at which point it will 
be comparable to the SER per chip of unprotected memory elements 
[3]. 
 
For an SET induced in a combinational logic circuit to result in a soft 
error, three conditions have to be satisfied: (1) an active path must 
exist between the afflicted node and the output of the circuit. (2) The 
pulse must be wide enough to avoid inertial delay filtration through 
subsequent gates, and survive electrical attenuation along the active 
path. Finally (3), the pulse should arrive within the setup and hold 
time of a latch element to be captured and cause a soft fault [4]. 
 
The proposed model in this paper concentrates on the first condition, 
and specifically on the role of logical masking in SET propagation. 
The logic state of a gate along the SET path to an output can inhibit 
the upset propagation as a result of the gate’s logical function. The 
haphazard nature of particle-induced upsets, though, implies a 
probabilistic approach, which estimates the SER based on input vector 
probabilities and the statistics of SET in CMOS circuits. This model 
can easily be incorporated as a component within a complete SER 
modeling tool. 
 

Several studies have been conducted in the estimation of SER in both 
storage elements and combinational logic [8, 9, 2]. Hazucha and 
Svensson developed an empirical model to predict atmospheric 
neutron SER as a function of technology scale [1]. Tosaka et al. used a 
Modified Burst Generation Rate (MBGR) empirical model to predict 
neutron-induced SER [5]. Some work has also been done in SER 
estimation in combinational logic. Massengill et al. developed a 
VHDL simulator to analyze SEU effects in combinational circuits [4]. 
Baze et al. investigated the effects of electrical masking [6], while 
Buchner et al. investigated latching-window masking [7]. Shivakumar 
et al. proposed a complete model to account for all three masking 
phenomena in combinational logic [3]. 
 
The rest of the paper is organized as follows: section 2 explains the 
proposed model algorithm and illustrates, through a simple example, 
its application to combinational logic. Section 3 analyzes – using the 
model – two small circuits (the example circuit from Section 2 and a 
Full Adder) and then compares the results to those obtained from 
simulations to validate the model. Section 4 concludes the paper and 
points to future work plans. 
 
2. Model Description 
 
2.1 Preliminary Calculations 
 
This probabilistic model calculates the soft error probability of any 
output node in a combinational circuit, based on logical masking 
principles. 
 
The proposed approach differs from the ones found in the literature in 
three important ways: (1) this model assumes soft error hits at 
individual nodes, and not on the gate as a whole; this makes the model 
more realistic and accurate: 
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Fig. 1 An SET can occur at ANY node 
 
(2) The model accounts for input probabilities, i.e. it can 
accommodate unbalanced input vectors; this allows the designer to 
estimate soft error resiliency for specific input patterns, as well as 
random input patterns. (3) The model includes, despite its low 
likelihood, the possibility of multiple soft error events. 
 
The model is based on the Susceptibility Tables of primitive logic 
gates. The tables for four fundamental gates are shown in Tables 1 and 
2 below. The normalized probability of a soft error hit is Ps, whereas 
the normalized probability of NO hit is 1-Ps. The value of Ps is 
derived from the literature, based on physical experiments carried out 
on circuits. The value depends on many parameters including the 
technology scale used, the altitude and the location worldwide. 
Estimating this value itself is not the focus of this paper. Our model 
uses a given probability value (Ps) which allows the analysis to 
illustrate the relative resilience of a node to soft errors based on input 
vector values for a given circuit. This model is useful in obtaining a 



more accurate estimation of soft error susceptibilities of output nodes 
when more information is known about inputs as is the case in many 
embedded applications. 
 
Two-Input NAND Gate: 

IN OUT Prob. for OUT=0 
from this input state 

Prob. for OUT=1 
from this input state 

00 1 Ps * Ps 1 – Ps * Ps 
01 1 Ps(1-Ps) 1 – Ps(1-Ps) 
10 1 Ps(1-Ps) 1 – Ps(1-Ps) 
11 0 (1-Ps)*(1-Ps) 1 – (1-Ps)*(1-Ps) 

 

Table 1 Two-Input NAND Gate Susceptibility Table 
 
To understand how these values are calculated, take the first table line: 
For a NAND gate with input 00 the output should be 1. To obtain an 
erroneous output, i.e. for the output to switch from 1 to 0, both inputs 
should change to 11 (thus jumping to the last state of the table above). 
For both inputs to change from 00 to 11, two simultaneous soft error 
hits are required, hence the probability of Ps * Ps in the table. On the 
other hand, the probability for the output to equal 1, i.e. no output flip 
(right column of table), is 1 – Ps * Ps. Because the probabilities in the 
last two columns of every table line should sum to 1, calculating one 
value suffices. For the last line of Table 1, if the input is 11, then the 
output is 0. So, for the output to remain at 0, there should be NO soft 
error hit on any of the inputs; hence, a probability of (1-Ps)*(1-Ps) 
shown in the third column. Subtracting this probability from 1 (fourth 
column of table) gives the probability of the output changing from 0 to 
1. This amounts to jumping from this state to any of the other three 
states. 
 
In a similar fashion, the Susceptibility Table of any gate can be 
formulated. 
 
Two-Input NOR Gate: 

IN OUT Prob. for OUT=0 
from this input state 

Prob. for OUT=1 
from this input state 

00 1 1 – (1-Ps)*(1-Ps) (1-Ps)*(1-Ps) 
01 0 1 – Ps(1-Ps) Ps(1-Ps) 
10 0 1 – Ps(1-Ps) Ps(1-Ps) 
11 0 1 – Ps * Ps Ps * Ps 
Two-Input XOR Gate: 
00 0 1 – 2*Ps(1-Ps) 2*Ps(1-Ps) 
01 1 2*Ps(1-Ps) 1 – 2*Ps(1-Ps) 
10 1 2*Ps(1-Ps) 1 – 2*Ps(1-Ps) 
11 0 1 – 2*Ps(1-Ps) 2*Ps(1-Ps) 
NOT (Inverter) Gate: 
0 1 Ps 1 – Ps 
1 0 1 – Ps Ps 

 

Table 2 Susceptibility Tables for more Fundamental Gates 
 
It can be observed that the NAND gate is the logical opposite of the 
NOR gate. This approach can be extended to any kind of gate, 
regardless of the number of inputs involved. Note that the Ps for the 
different gates can be different. 
 
2.2 Model Algorithm and Analysis 
 
This model analyzes the circuit by employing a two-pass 
methodology, as follows: 
 

 
 
 
 
 
 
 
 

Fig. 2 Two-Pass Nature of Model 

The model starts from the output node whose error probability is to be 
calculated, and then moves backwards through all the gates on the 
path. While doing so, Error Probability Equations are set up which 
involve unknown quantities, and the gate’s connection information is 
pushed in a “stack”. As soon as known input values are reached, i.e. 
the start of the circuit, the model can start moving forward again, 
popping the connection information from the “stack” and calculating 
the error probabilities based on the now known parameters. As soon as 
the second pass is finished, the model can calculate the final error 
probability for the output under investigation. 
 
This algorithm is summarized in pseudo-code form below: 
 

 
Fig. 3 Probabilistic Model Algorithm 

for (different input pattern) 
 {  
  pick output node  
  while(the input probabilities of the gate are unknown) 
  {  
   push this gate  in the stack 
   go backwards to the preceding gate 
  } 
  while(not having reached the output node) 
  { 
    pop gate from stack 

calculate the error probability of the gate output 
using known input probabilities and the gate’s 
susceptibility table 

go forward to the following gate 
  } 
 } 
calculate total error probability for the final output using 

given input vector probabilities 

 
The following example circuit will help illustrate how the proposed 
model works: 
 
 
 
 
 

Fig. 4 Example circuit with Input State=11 
 
As described in the algorithm, the model starts from the output, and 
then propagates to the input. Hence, the two input nodes of the last 
gate (on the right of Fig. 4) are identified as X and Y for the analysis 
to begin. The probability of an error in the output, given an 11 input, 
is, by the Total Probability Theorem: 
 

In 11P{Error} = P{Error | X=0 & Y=0} * P{X=0} * P{Y=0}
+ P{Error | X=0 & Y=1} * P{X=0} * P{Y=1}
+ P{Error | X=1 & Y=0} * P{X=1} * P{Y=0}
+ P{Error | X=1 & Y=1} * P{X=1} * P{Y=1}

 (1) 

 
Now, the conditional probabilities for the different value combinations 
for X and Y can be calculated using the NOR gate Susceptibility Table 
(see Table 2): 
 

2

2

P{Error | X=0 & Y=0} = 1 - (1-Ps)
P{Error | X=0 & Y=1} = 1 - Ps (1-Ps)
P{Error | X=1 & Y=0} = 1 - Ps (1-Ps)
P{Error | X=1 & Y=1} = 1 - Ps

 (2) 

 
However, the input probabilities for X and Y, i.e. P{X=0,1} and 
P{Y=0,1}, are unknown at this point. Therefore, as per the algorithm, 
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the right-most gate is pushed in the stack, and the preceding gates are 
analyzed. 
 

X

X

X

X

P{X=0} = P {Error | A=0 & B=0} * P{A=0} * P{B=0}
+ P {Error | A=0 & B=1} * P{A=0} * P{B=1}
+ P {Error | A=1 & B=0} * P{A=1} * P{B=0}
+ P {Error | A=1 & B=1} * P{A=1} * P{B=1}

 (3) 

 
Once again, the conditional probabilities of equation (3) can be 
calculated using the Susceptibility Table of the NAND gate: 
 

2
X

X

X
2

X

P {Error | A=0 & B=0} = Ps
P {Error | A=0 & B=1} = Ps (1-Ps)
P {Error | A=1 & B=0} = Ps (1-Ps)

P {Error | A=1 & B=1} = (1 - Ps)

 (4) 

 
At this point, however, the input probabilities for A and B, i.e. 
P{A=0,1} and P{B=0,1}, are known, since the start of the circuit has 
been reached: 
 
P{A=0} = 0 P{A=1} = 1
P{B=0} = 0 P{B=1} = 1

 (5) 

 
So, plugging (4) and (5) into (3), 
 

2

2

P{X=0} = (1 - Ps)
P{X=1} = 1 - P{X=0} = 1 - (1 - Ps)

 (6) 

 
Similarly, 
 

Y

Y

Y

Y

P{Y=0} = P {Error | A=0 & B=0} * P{A=0} * P{B=0}
+ P {Error | A=0 & B=1} * P{A=0} * P{B=1}
+ P {Error | A=1 & B=0} * P{A=1} * P{B=0}
+ P {Error | A=1 & B=1} * P{A=1} * P{B=1}

 (7) 

 
The conditional probabilities of equation (7) can be calculated using 
the Susceptibility Table of the XOR gate: 
 

Y

Y

Y

Y

P {Error | A=0 & B=0} = 1 - 2*Ps(1-Ps)
P {Error | A=0 & B=1} = 2*Ps(1-Ps)
P {Error | A=1 & B=0} = 2*Ps(1-Ps)
P {Error | A=1 & B=1} = 1 - 2*Ps(1-Ps)

 (8) 

 
Plugging (8) and (5) into (7), 
 
P{Y=0} = 1 - 2*Ps(1-Ps)
P{Y=1} = 1 - P{Y=0} = 2*Ps(1-Ps)

 (9) 

 
Pass 1 of the algorithm has now been concluded and Pass 2 can 
commence moving forward toward the output node. The right-most 
gate can now be popped from the stack and calculated, since all 
equation parameters are now known. Plugging (2), (6) and (9) into (1) 
gives: 
 

[ ]
[ ]
[ ] [

2 2
In 11

2

2

2 2

P{Error} = 1 - (1-Ps)  * (1-Ps)  * 1 - 2*Ps(1-Ps)

+ 1 - Ps (1-Ps)  * (1-Ps)  * 2*Ps(1-Ps)

+ 1 - Ps (1-Ps)  * 1 - (1-Ps)  * 1 - 2*Ps(1-Ps)

+ 1 - Ps  * 1 - (1-Ps)  * 2*Ps(1-Ps)

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

]
 (10) 

 
The stack is now empty, since the output node has been reached. Pass 
2 of the algorithm has been concluded for Input Vector 11. The two-

pass algorithm is repeated for all input combinations. This way, 
P{Error}In 00 , P{Error}In 01  and   P{Error}In 10 are also calculated. 
 
After all input combinations are calculated, the last two lines of the 
algorithm of Fig. 3 are executed. This involves calculating the Total 
Error Probability for the output node under investigation: 
 

In 00

In 01

In 10

In 11

P{Total Error} =P{Input=00} * P{Error}
+ P{Input=01} * P{Error}
+ P{Input=10} * P{Error}
+ P{Input=11} * P{Error}

 (11) 

 
The input vector probabilities are accounted for in the terms 
P{Input=00}, P{Input=01}, P{Input=10}, and P{Input=11}. In 
arithmetic circuits, the inputs are usually random, but in control 
circuits the input vectors could be skewed toward 1 or 0. This model 
provides the flexibility of accounting for such unbalanced input 
values. 
 
Hence, by repeating the two-pass algorithm for all input patterns, the 
model fully analyzes the circuit and calculates a soft error probability 
for any output node, based on logical masking principles. 
 
A potential problem to the proposed methodology arises when the 
number of inputs increases dramatically. Because the model 
exhaustively analyzes all input combinations, the calculation time 
grows exponentially with the number “n” of inputs (2n). However, 
there are two methods, one of which is used extensively in the 
Functional Verification field and known as Pseudo-Exhaustive Testing, 
which alleviate this conundrum. (1) Pseudo-Exhaustive Testing breaks 
a circuit having n primary inputs into smaller, overlapping partitions, 
each with less than n inputs. Each of these partitions is then tested 
exhaustively in parallel. Our model inherently exhibits one such 
pseudo-exhaustive technique known as Cone Segmentation. The latter 
allows the partitioning of large circuits into fan-in cones by 
backtracking from each primary output, through the circuit, to the 
inputs which influence the output. Each fan-in cone can then be tested 
exhaustively in parallel. Sensitized Path Segmentation is another 
technique which breaks the inputs affecting the output into logical 
segments and then analyzes each segment individually [10]. (2) By 
studying the Susceptibility Tables of individual gates, a designer can 
identify Equivalent Input Vectors. For example, Table 2 indicates that 
inputs 01 and 10 are equivalent for a two-input XOR gate. Thus, only 
one of them needs to be tested. Using input equivalence, input vectors 
can collapse to manageable sizes. 
 
 

3. Applications 
 
3.1 Circuits and Methodology 
 
To validate the proposed model, two circuits were analyzed using the 
model algorithm, and the results compared to Verilog HDL 
simulations. MATLAB was used to implement the model algorithm. 
To simulate the circuits, short pulses were injected randomly and 
errors in the output observed. Simulations of 2000 transient-event 
injections were run to obtain a stochastic soft error rate. The circuits 
used were the example circuit from Section 2 of this paper and a Full 
Adder (see Fig. 5 below). The latter was chosen because of its three 
inputs and two outputs, which are ideal to illustrate the capabilities of 
the model. 
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Fig. 5 Full Adder Circuit 



 
Ps is a normalized SER value. The normalization was deemed 
necessary to accelerate the number of errors observed in reasonable 
amount of simulation time and provide enough errors to make the 
correlation between the simulation and the model meaningful. The 
normalized Ps value is significantly larger, yet directly related to the 
actual SER value. Ps is the average Neutron Flux at sea-level. It was 
chosen to be 0.0045, which is the average Neutron Flux in 
neutrons*cm-2sec-1 between New York City and Tokyo [5]. The 
Neutron Flux value varies with location and altitude around the world. 
The values mentioned in the literature are for New York City and 
Tokyo. The true SER value is the Neutron Flux value multiplied by 
the Atmospheric Neutron Cross Section [1]. This Ps value is 
appropriate to show the relative soft error resilience of any output 
node for any input combination. In this evaluation, the same value of 
Ps is used and our model is used to compare resiliency of nodes in 
different circuits. However, it must be observed that our model is 
more flexible and can permit the use of different Ps values for 
different gate primitives.  
 
3.2 Results 
 
The results for both circuits are summarized in Tables 3 and 4 below: 
 
Example Circuit from Section 2: 

Input 
Pattern 

Model 
Prediction 
(0 < P < 1) 

Normalized 
Model 

Prediction 

Simulation 
Results 

(No. of SE) 

Normalized 
Simulation 

Results 
00 0.0045 37.63 418 46.44 
01 1.1960e-4 1 9 1 
10 1.1960e-4 1 9 1 
11 0.0266 222.41 1999 222.11 

 

Table 3 Simulation Results for Example Circuit in Section 2 
 
The normalized columns indicate the relative soft error susceptibility 
of the output for each input pattern. The normalizing value (i.e. 1, the 
smallest value in the column) indicates the input pattern that is most 
resilient to errors at the output node. For example, the model predicts 
that the output of the circuit is about 222 times more susceptible to 
soft errors for input pattern 11 as compared to using input patterns 01 
and 10 due to the logical masking capability. The latter two are the 
most resilient input patterns. 
 
Full Adder (Sum Output): 

Input 
Pattern 

Model 
Prediction 
(0 < P < 1) 

Normalized 
Model 

Prediction 

Simulation 
Results 

(No. of SE) 

Normalized 
Simulation 

Results 
000 0.0178 1 1014 1 
001 0.0178 1 1014 1 
010 0.0178 1 1014 1 
011 0.0178 1 1014 1 
100 0.0178 1 1014 1 
101 0.0178 1 1014 1 
110 0.0178 1 1014 1 
111 0.0178 1 1014 1 

Full Adder (Carry-Out Output): 
000 0.0091 1 416 1 
001 0.0221 2.43 1223 2.94 
010 0.0178 1.95 787 1.89 
011 0.0220 2.41 1214 2.92 
100 0.0178 1.95 811 1.95 
101 0.0220 2.41 1214 2.92 
110 0.0133 1.46 579 1.39 
111 0.0132 1.44 579 1.39 

 

Table 4 Simulation Results for Full Adder Circuit 
 
The top portion of Table 4 concerns the Sum output of the Full Adder. 
The model predicts that all input combinations will be equally 
susceptible to SEU. The reason is the symmetrical nature of the XOR 
gate which affects the sum output (see Fig. 5). As seen in the XOR 
Susceptibility Table (Table 2), the probability of a soft error from any 

input state of an XOR gate is exactly the same, i.e. 2*Ps(1-Ps). The 
model prediction is verified by the simulation results on the right-hand 
side of Table 4 above. The Carry-Out output path includes a series of 
cascaded gates, and, thus, does not exhibit any symmetrical behavior. 
 
Comparing the Normalized Model Prediction and the Normalized 
Simulation Results columns, it can be seen that the model is fairly 
accurate in predicting the relative soft error susceptibility of the output 
node for each input pattern. The small inaccuracy is attributed to the 
relatively small number of simulations for such small error 
probabilities. The experimental values slowly converge to the model 
estimation as the number of simulations increases. 
 
4. Conclusions and Future Work 
 
A soft error rate estimation model for combinational logic, based on 
logical masking properties, was proposed. The model is able to 
determine the soft error resiliency of any output node in a circuit, for 
any input pattern. The strength of this model lies in its ability to 
produce individual SER values for any input combination, thus 
offering the designer the ability to accurately estimate SER 
susceptibility for unbalanced input vectors, such as those found in 
control-signal circuitry. Moreover, the designer can identify highly 
susceptible input patterns and modify the design accordingly. 
Simulation results validate the functionality and accuracy of the 
model. 
 
Work is currently under way to apply this model to more complex 
combinational logic, including sequential circuits. The model will also 
be extended to include electrical and window-latching masking 
effects, by using a variable Ps value and additional parameters. 
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