A Probabilistic Model for Soft-Error Rate Estimation in Combinational Logic
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Abstract

Single Event Upsets (SEU) arising from atmospheric neutrons and
alpha particles are becoming increasingly important in combinational
logic circuits. Combinational logic is resilient to soft errors due to
three masking phenomena: (1) Logical Masking, (2) Electrical
Masking, and (3) Latching-window Masking. This paper concentrates
on logical masking, and proposes a probabilistic model which
calculates the Soft Error Rate (SER) of any output node in
combinational logic circuits, based on inherent logical masking
properties.

1. Introduction

Technology scaling, shrinking geometries into the deep sub-micron
regime, lower supply voltages, higher operating frequencies, and
higher density circuits have all had a negative impact on reliability.
The number of occurrences of transient faults has increased
dramatically. One major transient fault type is soft errors, caused by
two main sources: (1) secondary cosmic rays, especially atmospheric
neutrons, and (2) alpha particles emitted by decaying radioactive
impurities in packaging and interconnect materials. These highly
energetic particles induce Single Event Transients (SET) in digital
circuits. The amount of charge injected may be sufficient to invert the
logical state at a node, hence introducing a soft error. SER per chip is
projected to increase quadratically with decreasing feature size [1].

Traditionally, soft errors were tackled within the context of memory
cells. Today, error detection and correction circuits are widely used to
protect memory arrays. Combinational logic circuits, on the other
hand, have been found to be less susceptible to SEU in equivalent
device technologies due to the naturally occurring logical, electrical
and latching-window masking effects [2]. However, these phenomena
are diminishing as feature size decreases and circuits move to higher
operating frequencies. Recent studies predict that the SER per chip of
logic circuits will increase exponentially to 2011, at which point it will
be comparable to the SER per chip of unprotected memory elements

[3].

For an SET induced in a combinational logic circuit to result in a soft
error, three conditions have to be satisfied: (1) an active path must
exist between the afflicted node and the output of the circuit. (2) The
pulse must be wide enough to avoid inertial delay filtration through
subsequent gates, and survive electrical attenuation along the active
path. Finally (3), the pulse should arrive within the setup and hold
time of a latch element to be captured and cause a soft fault [4].

The proposed model in this paper concentrates on the first condition,
and specifically on the role of logical masking in SET propagation.
The logic state of a gate along the SET path to an output can inhibit
the upset propagation as a result of the gate’s logical function. The
haphazard nature of particle-induced upsets, though, implies a
probabilistic approach, which estimates the SER based on input vector
probabilities and the statistics of SET in CMOS circuits. This model
can easily be incorporated as a component within a complete SER
modeling tool.

Several studies have been conducted in the estimation of SER in both
storage elements and combinational logic [8, 9, 2]. Hazucha and
Svensson developed an empirical model to predict atmospheric
neutron SER as a function of technology scale [1]. Tosaka et al. used a
Modified Burst Generation Rate (MBGR) empirical model to predict
neutron-induced SER [5]. Some work has also been done in SER
estimation in combinational logic. Massengill et al. developed a
VHDL simulator to analyze SEU effects in combinational circuits [4].
Baze et al. investigated the effects of electrical masking [6], while
Buchner et al. investigated latching-window masking [7]. Shivakumar
et al. proposed a complete model to account for all three masking
phenomena in combinational logic [3].

The rest of the paper is organized as follows: section 2 explains the
proposed model algorithm and illustrates, through a simple example,
its application to combinational logic. Section 3 analyzes — using the
model — two small circuits (the example circuit from Section 2 and a
Full Adder) and then compares the results to those obtained from
simulations to validate the model. Section 4 concludes the paper and
points to future work plans.

2. Model Description

2.1 Preliminary Calculations

This probabilistic model calculates the soft error probability of any
output node in a combinational circuit, based on logical masking
principles.

The proposed approach differs from the ones found in the literature in
three important ways: (1) this model assumes soft error hits at
individual nodes, and not on the gate as a whole; this makes the model
more realistic and accurate:
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(2) The model accounts for input probabilities, i.e. it can
accommodate unbalanced input vectors; this allows the designer to
estimate soft error resiliency for specific input patterns, as well as
random input patterns. (3) The model includes, despite its low
likelihood, the possibility of multiple soft error events.

The model is based on the Susceptibility Tables of primitive logic
gates. The tables for four fundamental gates are shown in Tables 1 and
2 below. The normalized probability of a soft error hit is Ps, whereas
the normalized probability of NO hit is 1-Ps. The value of Ps is
derived from the literature, based on physical experiments carried out
on circuits. The value depends on many parameters including the
technology scale used, the altitude and the location worldwide.
Estimating this value itself is not the focus of this paper. Our model
uses a given probability value (Ps) which allows the analysis to
illustrate the relative resilience of a node to soft errors based on input
vector values for a given circuit. This model is useful in obtaining a



more accurate estimation of soft error susceptibilities of output nodes
when more information is known about inputs as is the case in many
embedded applications.

Two-Input NAND Gate:

IN | ouT Prob. _for ouT=0 Prob. fo_r ouT=1
from this input state from this input state

00 1 Ps * Ps 1-Ps*Ps

01 1 Ps(1-Ps) 1 —Ps(1-Ps)

10 1 Ps(1-Ps) 1 — Ps(1-Ps)

11 0 (1-Ps)*(1-Ps) 1 - (1-Ps)*(1-Ps)

Table 1 Two-Input NAND Gate Susceptibility Table

To understand how these values are calculated, take the first table line:
For a NAND gate with input 00 the output should be 1. To obtain an
erroneous output, i.e. for the output to switch from 1 to 0, both inputs
should change to 11 (thus jumping to the last state of the table above).
For both inputs to change from 00 to 11, two simultaneous soft error
hits are required, hence the probability of Ps * Ps in the table. On the
other hand, the probability for the output to equal 1, i.e. no output flip
(right column of table), is 1 — Ps * Ps. Because the probabilities in the
last two columns of every table line should sum to 1, calculating one
value suffices. For the last line of Table 1, if the input is 11, then the
output is 0. So, for the output to remain at 0, there should be NO soft
error hit on any of the inputs; hence, a probability of (1-Ps)*(1-Ps)
shown in the third column. Subtracting this probability from 1 (fourth
column of table) gives the probability of the output changing from 0 to
1. This amounts to jumping from this state to any of the other three
states.

In a similar fashion, the Susceptibility Table of any gate can be
formulated.

Two-Input NOR Gate:

IN | ouT Prob. fon_’ ouT=0 Prob. fo_r ouT=1
from this input state from this input state

00 1 1 - (1-Ps)*(1-Ps) (1-Ps)*(1-Ps)
01 0 1 - Ps(1-Ps) Ps(1-Ps)

10 0 1 - Ps(1-Ps) Ps(1-Ps)

11 0 1-Ps*Ps Ps * Ps
Two-Input XOR Gate:

00 0 1 — 2*Ps(1-Ps) 2*Ps(1-Ps)

01 1 2*Ps(1-Ps) 1 — 2*Ps(1-Ps)
10 1 2*Ps(1-Ps) 1 — 2*Ps(1-Ps)
11 0 1 - 2*Ps(1-Ps) 2*Ps(1-Ps)
NOT (Inverter) Gate:

0 1 Ps 1-Ps

1 0 1-Ps Ps

Table 2 Susceptibility Tables for more Fundamental Gates

It can be observed that the NAND gate is the logical opposite of the
NOR gate. This approach can be extended to any kind of gate,
regardless of the number of inputs involved. Note that the Ps for the
different gates can be different.

2.2 Model Algorithm and Analysis

This model analyzes the circuit
methodology, as follows:

by employing a two-pass

PASS 1:
Traverse circuit while setting up

Probability Equations until known
Input Probabilities reached

Inputs CIRCUIT Outputs

PASS 2:
Traverse circuit while calculating
Error Probability for each gate

Fig. 2 Two-Pass Nature of Model

The model starts from the output node whose error probability is to be
calculated, and then moves backwards through all the gates on the
path. While doing so, Error Probability Equations are set up which
involve unknown quantities, and the gate’s connection information is
pushed in a “stack”. As soon as known input values are reached, i.e.
the start of the circuit, the model can start moving forward again,
popping the connection information from the “stack” and calculating
the error probabilities based on the now known parameters. As soon as
the second pass is finished, the model can calculate the final error
probability for the output under investigation.

This algorithm is summarized in pseudo-code form below:

for (different input pattern)
{
pick output node
while(the input probabilities of the gate are unknown)

push this gate in the stack
go backwards to the preceding gate

while(not having reached the output node)

pop gate from stack

calculate the error probability of the gate output
using known input probabilities and the gate’s
susceptibility table

go forward to the following gate

}

calculate total error probability for the final output using
given input vector probabilities

Fig. 3 Probabilistic Model Algorithm

The following example circuit will help illustrate how the proposed

model works:
A

1

Fig. 4 Example circuit with Input State=11

As described in the algorithm, the model starts from the output, and
then propagates to the input. Hence, the two input nodes of the last
gate (on the right of Fig. 4) are identified as X and Y for the analysis
to begin. The probability of an error in the output, given an 11 input,
is, by the Total Probability Theorem:

P{ETor},,,, =P{ETor | X=0 & Y=0}* P{X=0} * P{Y=0}

+P{Bor | X=0 & Y=1} * P{X=0} * P{Y=1} (1)
+P{Eror | X=1 & Y=0} * POELL * P{Y=0}

+P{Eror | X=1 & Y=13 * POEL} * PLY=1}

Now, the conditional probabilities for the different value combinations

for X and Y can be calculated using the NOR gate Susceptibility Table
(see Table 2):

P{ETOr | X=0 & Y=0} =1 - (1-P5)’

P{ETOr| X=0 & Y=1}=1-Ps (1-P%) @)
P{ErTOr | X=1 & Y=0}=1-Ps (1-Ps)

P{ETOr| X=1 & Y=1}=1-PS

However, the input probabilities for X and Y, i.e. P{X=0,1} and
P{Y=0,1}, are unknown at this point. Therefore, as per the algorithm,



the right-most gate is pushed in the stack, and the preceding gates are
analyzed.
POy =R{Emor| A-0 &B=0} *P{A=0} * P{B-0}
+R,{Emor | A0 &B=1}* P{A=0} * P{B=1} 3
+P {Emor | A=1 & B=0} * P{A=1} * P{B=0}
+R{Emor | A1 &B=1} *P{A=1} * P{B=1}

Once again, the conditional probabilities of equation (3) can be
calculated using the Susceptibility Table of the NAND gate:

PX{Error|A=O&B=O}:Ps2

R{Eror | A0 &B=1} =Ps (1-F%) 4)
R{Eror | A=1 &B=0}=Ps (1-%)

PX{Error|A:1<‘§LB=1}:(1-P3)2

At this point, however, the input probabilities for A and B, i.e.

P{A=0,1} and P{B=0,1}, are known, since the start of the circuit has
been reached:

P{A=0}=0
P{B=0}=0

P{A=1}=1 (5)
P{B=1}=1

So, plugging (4) and (5) into (3),

POX0}=(L-Psy’ (6)
POE1}=1-PE0 =1 (1-Pgy?

Similarly,

P{Y=0} =P {Bmor| A0 &B-0} *P{A=0} *P{B=0}
+PABTOr| A0 &B=L}*P{A=0} * P{B=1} @
+P {Eor | A=L &B=0} * P{A=L} * P{B=0}

+R {Bor | A=1 & B=1} * P{A=1} * P{B-1}

The conditional probabilities of equation (7) can be calculated using
the Susceptibility Table of the XOR gate:

RA{Emor | A=0 &B=0} =1- 2*Ps(1-Fs)

R AEmor | A=0 &B=1} = 2*Ps(1-Py) (8)
R{Eor | A= &B=0} = 2*P5(1-s)

RAETOr | AF1 &B=1} =1 - 2*P5(1-Ps)

Plugging (8) and (5) into (7),

PEY=0}=1- 2P(1-Py) ©)
PEY=13=1-P{Y=0} = 2P(1PY)

Pass 1 of the algorithm has now been concluded and Pass 2 can
commence moving forward toward the output node. The right-most
gate can now be popped from the stack and calculated, since all
equation parameters are now known. Plugging (2), (6) and (9) into (1)
gives:

P{EMOY,, = [1- (LS ] * (LS * [L-2Po(LP)]
+[1-Ps (1Ps)] * (1-P5)” * 2*Ps(1-P%) (10)
+[L-Ps (1PY] * [1- (1P | * [1- 22P5(1-P)]
+[1-Ps* ] * [1- (1P | * 2P(1-Py)

The stack is now empty, since the output node has been reached. Pass
2 of the algorithm has been concluded for Input Vector 11. The two-

pass algorithm is repeated for all input combinations. This way,
P{Error}inoo , P{Error}o: and P{Error},, 1 are also calculated.

After all input combinations are calculated, the last two lines of the
algorithm of Fig. 3 are executed. This involves calculating the Total
Error Probability for the output node under investigation:

P{Total Error} = P{Input=00} * P{Enor};,
+ P{Input=01} * P{Error}, , (11)
+P{Input=10} * P{Ermor; ,,
+P{Input=11} * P{Ermor};, ,,

The input vector probabilities are accounted for in the terms
P{Input=00}, P{Input=01}, P{Input=10}, and P{Input=11}. In
arithmetic circuits, the inputs are usually random, but in control
circuits the input vectors could be skewed toward 1 or 0. This model
provides the flexibility of accounting for such unbalanced input
values.

Hence, by repeating the two-pass algorithm for all input patterns, the
model fully analyzes the circuit and calculates a soft error probability
for any output node, based on logical masking principles.

A potential problem to the proposed methodology arises when the
number of inputs increases dramatically. Because the model
exhaustively analyzes all input combinations, the calculation time
grows exponentially with the number “n” of inputs (2"). However,
there are two methods, one of which is used extensively in the
Functional Verification field and known as Pseudo-Exhaustive Testing,
which alleviate this conundrum. (1) Pseudo-Exhaustive Testing breaks
a circuit having n primary inputs into smaller, overlapping partitions,
each with less than n inputs. Each of these partitions is then tested
exhaustively in parallel. Our model inherently exhibits one such
pseudo-exhaustive technique known as Cone Segmentation. The latter
allows the partitioning of large circuits into fan-in cones by
backtracking from each primary output, through the circuit, to the
inputs which influence the output. Each fan-in cone can then be tested
exhaustively in parallel. Sensitized Path Segmentation is another
technique which breaks the inputs affecting the output into logical
segments and then analyzes each segment individually [10]. (2) By
studying the Susceptibility Tables of individual gates, a designer can
identify Equivalent Input Vectors. For example, Table 2 indicates that
inputs 01 and 10 are equivalent for a two-input XOR gate. Thus, only
one of them needs to be tested. Using input equivalence, input vectors
can collapse to manageable sizes.

3. Applications

3.1 Circuits and Methodology

To validate the proposed model, two circuits were analyzed using the
model algorithm, and the results compared to Verilog HDL
simulations. MATLAB was used to implement the model algorithm.
To simulate the circuits, short pulses were injected randomly and
errors in the output observed. Simulations of 2000 transient-event
injections were run to obtain a stochastic soft error rate. The circuits
used were the example circuit from Section 2 of this paper and a Full
Adder (see Fig. 5 below). The latter was chosen because of its three
inputs and two outputs, which are ideal to illustrate the capabilities of
the model.

Cout

Cin—> -

Fig. 5 Full Adder Circuit



Ps is a normalized SER value. The normalization was deemed
necessary to accelerate the number of errors observed in reasonable
amount of simulation time and provide enough errors to make the
correlation between the simulation and the model meaningful. The
normalized Ps value is significantly larger, yet directly related to the
actual SER value. Ps is the average Neutron Flux at sea-level. It was
chosen to be 0.0045, which is the average Neutron Flux in
neutrons*cmZsec’’ between New York City and Tokyo [5]. The
Neutron Flux value varies with location and altitude around the world.
The values mentioned in the literature are for New York City and
Tokyo. The true SER value is the Neutron Flux value multiplied by
the Atmospheric Neutron Cross Section [1]. This Ps value is
appropriate to show the relative soft error resilience of any output
node for any input combination. In this evaluation, the same value of
Ps is used and our model is used to compare resiliency of nodes in
different circuits. However, it must be observed that our model is
more flexible and can permit the use of different Ps values for
different gate primitives.

3.2 Results
The results for both circuits are summarized in Tables 3 and 4 below:

Example Circuit from Section 2:

Input Mo_de_l Normalized Simulation Ngrmali_zed
Pattern Prediction Mo_de_l Results Simulation
(0<P<1 Prediction (No. of SE) Results
00 0.0045 37.63 418 46.44
01 1.1960e-4 1 9 1
10 1.1960e-4 1 9 1
11 0.0266 222.41 1999 222.11

Table 3 Simulation Results for Example Circuit in Section 2

The normalized columns indicate the relative soft error susceptibility
of the output for each input pattern. The normalizing value (i.e. 1, the
smallest value in the column) indicates the input pattern that is most
resilient to errors at the output node. For example, the model predicts
that the output of the circuit is about 222 times more susceptible to
soft errors for input pattern 11 as compared to using input patterns 01
and 10 due to the logical masking capability. The latter two are the
most resilient input patterns.

Full Adder (Sum Output):

Input Mo_de_l Normalized Simulation Ngrmali_zed
Pattern Prediction Mo_de_l Results Simulation
(0<P<1) Prediction (No. of SE) Results

000 0.0178 1 1014 1

001 0.0178 1 1014 1

010 0.0178 1 1014 1

011 0.0178 1 1014 1

100 0.0178 1 1014 1

101 0.0178 1 1014 1

110 0.0178 1 1014 1

111 0.0178 1 1014 1

Full Adder (Carry-Out Output):

000 0.0091 1 416 1

001 0.0221 243 1223 2.94
010 0.0178 1.95 787 1.89
011 0.0220 2.41 1214 2.92
100 0.0178 1.95 811 1.95
101 0.0220 241 1214 2.92
110 0.0133 1.46 579 1.39
111 0.0132 1.44 579 1.39

Table 4 Simulation Results for Full Adder Circuit

The top portion of Table 4 concerns the Sum output of the Full Adder.
The model predicts that all input combinations will be equally
susceptible to SEU. The reason is the symmetrical nature of the XOR
gate which affects the sum output (see Fig. 5). As seen in the XOR
Susceptibility Table (Table 2), the probability of a soft error from any

input state of an XOR gate is exactly the same, i.e. 2*Ps(1-Ps). The
model prediction is verified by the simulation results on the right-hand
side of Table 4 above. The Carry-Out output path includes a series of
cascaded gates, and, thus, does not exhibit any symmetrical behavior.

Comparing the Normalized Model Prediction and the Normalized
Simulation Results columns, it can be seen that the model is fairly
accurate in predicting the relative soft error susceptibility of the output
node for each input pattern. The small inaccuracy is attributed to the
relatively small number of simulations for such small error
probabilities. The experimental values slowly converge to the model
estimation as the number of simulations increases.

4. Conclusions and Future Work

A soft error rate estimation model for combinational logic, based on
logical masking properties, was proposed. The model is able to
determine the soft error resiliency of any output node in a circuit, for
any input pattern. The strength of this model lies in its ability to
produce individual SER values for any input combination, thus
offering the designer the ability to accurately estimate SER
susceptibility for unbalanced input vectors, such as those found in
control-signal circuitry. Moreover, the designer can identify highly
susceptible input patterns and modify the design accordingly.
Simulation results validate the functionality and accuracy of the
model.

Work is currently under way to apply this model to more complex
combinational logic, including sequential circuits. The model will also
be extended to include electrical and window-latching masking
effects, by using a variable Ps value and additional parameters.
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