
Utility Accrual Real-Time Scheduling with Probabilistically Assured
Timeliness Performance

Peng Li and Binoy Ravindran
ECE Department,Virginia Tech
Blacksburg, VA 24061, USA
{peli2,binoy }@vt.edu

E. Douglas Jensen
The MITRE Corporation

Bedford, MA 01730, USA
jensen@mitre.org

Abstract

We present time/utility function (TUF) algorithms that
provide probabilistic assurance on timeliness behavior.
A TUF, which is a generalization of the classical dead-
line constraint, specifies the utility of completing an ap-
plication activity as a function of that activity’s comple-
tion time. The algorithms consider a stochastic model
where activity execution times and arrivals are proba-
bilistically described. Further, activity time constraints
are specified using TUFs. We consider the dual optimiza-
tion objective of probabilistically satisfying application-
specified lower bounds on individual activity utility, and
maximizing system-wide total utilities. We present algo-
rithms that achieve this dual objective.

1 Introduction

Dynamic real-time systems such as multi-mode
phased array radars [5] and battle management [4] have
time constraints which are “soft” (besides those that are
hard) in the sense that completing an activity at any time
will result in some (positive or negative) utility to the sys-
tem, and that utility depends on the activity’s completion
time.

Jensen’s time/utility f unctions [7] (or TUFs) allow the
semantics of soft time constraints to be precisely speci-
fied. A TUF specifies the utility to the system of complet-
ing an application activity as an application- or situation-
specific function of when that activity completes.

-
Time

6Utility

U1

U2

U3

bbbb

tc

(a) Track Asso.

-Time

6Utility

Uc
max S

S
S

SS
0 tf 2tf

Um
max HHHH

Maintenance

Plot Correlation

(b) Corrln. & Maint.

Figure 1: TUFs in MITRE/TOG AWACS and GD/CMU Air Defense

Figures 1(a) and 1(b) show time constraints of two dy-
namic real-time applications specified using TUFs: (1)

the AWACS (Airborne WArning and Control System)
surveillance mode tracker system [2] built by The
MITRE Corporation and The Open Group (TOG); and
(2) a coastal air defense system [9] built by General Dy-
namics (GD) and Carnegie Mellon University (CMU).
Figure 1(a) shows the TUF of thetrack associationac-
tivity of the AWACS and Figure 1(b) shows the TUFs of
two activities of the air defense system calledplot corre-
lation andtrack maintenance.

Note that the classical deadline is a binary-valued,
downward “step” shaped TUF.

When time constraints are expressed with TUFs, the
scheduling criteria are based on maximizing accrued util-
ity from those activities—e.g., maximizing the sum, or
the expected sum, of the activities’ attained utilities.
Such criteria are calledUtility Accrual (or UA) crite-
ria, and sequencing (scheduling, dispatching) algorithms
that consider UA criteria are called UA sequencing algo-
rithms.

Most existing UA scheduling algorithms provide as-
surances on timeliness behavior for some special cases,
such as optimal timeliness during under-load situations
for step TUFs [3, 8, 13] or assured lower bounds on ac-
crued utilities for deterministic task arrival models [12].

The problem of performance assurance is complicated
by the fact that the systems of interest are dynamic and
they cannot be described using deterministic task mod-
els. For example, task execution times in [2, 9] are
highly context dependent, and therefore worst-case exe-
cution time (WCET) analysis is infeasible, or is too pes-
simistic to be useful. Furthermore, task arrivals do not
have known minimum inter-arrival times.

In this paper, we consider the problem of achieving
performance assurance in dynamic real-time systems that
have TUF time constraints. To better account for non-
determinism in task execution times and arrival patterns,
we stochastically describe those properties. For such a
model, we consider the twofold objective of probabilisti-
cally satisfying lower bounds on individual task utilities,
and maximizing the sum of the utilities. We present re-
source allocation and scheduling algorithms that achieve
this dual objective.

Thus, the contribution of the paper is our algorithms

that achieve this dual objective for stochastically de-
scribed task execution times and arrivals. We are not
aware of any other efforts that have studied this problem.

To present the algorithms, we first introduce our mod-
els and state our objectives in Section 2. In Sections 3, 4,
and 5, we present the resource allocation algorithms. We
describe our UA scheduling algorithm in Section 6. Fi-
nally, we conclude the paper in Section 7.

2 Models and Objectives

In a system of interest, each taskTi is a sequential
execution of a segment of code. We call each instance of
a taskTi a job, denoted asJi,j , j ≥ 1.

We describe task arrivals using a generalized model
of the unimodal arrival model [6], called Probabilistic
Unimodal Arrival Model (PUAM). A PUAM specifica-
tion is a tuple of〈p(k), w〉, ∀k ≥ 0, wherep(k) is the
probability ofk arrivals during any time intervalw. Note

that
∞∑

k=0

p(k) = 1. Poisson distributionsP(λ) and Bi-

nomial distributionsB(n, θ) are commonly used arrival
distributions. Furthermore, the standard unimodal ar-
rival model, periodic arrival model, and sporadic arrival
models are special cases of our PUAM model. Besides
task arrival patterns, task execution times are also de-
scribed using application-specified non-negative random
variables e.g., gamma distributions.

We focus on non-increasing TUFs, as they encompass
the majority of time constraints in many applications.
The TUF for taskTi is denoted asui(t). For each task,
a user also specifies the assurance requirement as a tuple
〈AUi, APi〉. AUi is the desired utility thatTi needs to
accrue andAPi is the probability thatTi accrues at least
the utility of AUi.

As introduced previously, our objective is two-fold:
(1) satisfy all〈AUi, APi〉 if it is possible; and (2) maxi-
mize the the sum of utilities accrued by all tasks.

3 Solution Approach

For non-increasing TUFs, satisfying a designatedAUi

requires that the task’s sojourn time is upper bounded by
a “critical time” (CTi). Given a desired assurance utility
AUi, CTi satisfies that∀t1 ≤ CTi, ui(t1) ≥ AUi and
∀t2 > CTi, ui(t2) < AUi. Once the requirement of
accruingAUi is converted to bounding task sojourn time
by CTi, a probabilistic feasibility analysis similar to that
for deadlines can be conducted.

We consider the processor demand analysis ap-
proach [1]. The key to using processor demand approach
here is allocating a portion of processor bandwidth to
each task. We first defineprocessor bandwidth:

Definition 1. If a task has a processor bandwidthρ, then
it receives at leastρL processor time during any time in-
terval of lengthL.

Once a taskTi is allocated a processor bandwidth of
ρi, jobs of taskTi execute on a “virtual processor” that
is not affected by the behavior of other tasks. Therefore,
highly dynamic and efficient UA scheduling can be per-
formed on these jobs. The definition of processor band-
width naturally lends it to proportional share (PS). In this
work, we assume a PS has a maximal lagQ. That is, a
task will receive at least(ρiL − Q) processor time dur-
ing any time interval of lengthL. In [10], the authors
establish the conversions among assurances provided by
PS and resource reservations. Therefore, we focus on
resource allocation and scheduling in an abstract level
hereafter.

Theorem 1. Suppose there are at mostk arrivals of a
taskT during any time window of lengthw and all jobs
of T have identical relative critical timeD. Then, all
job critical times can be satisfied if the underlying PS
algorithm providesT with at least a processor bandwidth
of ρ = max{(C + Q)

/
D, C/w}, whereC is the total

execution time ofk jobs released byT in a time window
of w, andQ is the maximal lag of the PS algorithm.

Proof. Let Cp(0, L) be the processor demand and
Sp(0, L) be the available processor time for taskTi on
a time interval of[0, L], respectively. The necessary and
sufficient condition for satisfying job critical times is

Sp(0, L) ≥ Cp(0, L), ∀L > 0 (1)

Let ρ be the processor bandwidth allocated toT . Thus,
Sp(0, L) = ρL − Q. Furthermore, the total amount
of processor time demand on[0, L] is Cp(0, L) =(⌊

(L−D)
/

w
⌋

+ 1
)

C. Therefore, Equation 1 can be

rewritten as

ρL−Q ≥
(⌊

(L−D)
/

w
⌋

+ 1
)

C, ∀L > 0 (2)

Since
(⌊

L−D
w

⌋
+ 1

) ≤ (
(L−D)

/
w + 1

)
, it is suffi-

cient to haveρL − Q ≥ (
L−D

w + 1
)
C, ∀L > 0. This

leads to

ρ ≥ C

w
+

1
L

(
C + Q− C

D

w

)
, ∀L > 0 (3)

It is easy to see thatρ is monotone ofL. For a positive
C +Q−C D

w , the maximalρ occurs whenL = D, which

yieldsρ = (C + Q)
/

D. For a negativeC + Q − C D
w ,

the maximalρ occurs whenL = ∞. Combining these
two cases, we can prove this theorem.

For simplicity, we only consider the caseρ ≥ (C +
Q)

/
D, which impliesD < w. Furthermore, note that

critical sections in a PS algorithm can be handled by set-
ting Q the longest critical section of all tasks.

Let Ni be the random variable for the number of ar-
rivals during a time window ofwi. Then, the proces-
sor demand of taskTi during a time window ofwi is

Ci =
Ni∑
j=1

ci,j , whereci,j is the execution time of job

Ji,j . By Theorem 1,ρi ≥ (Ci + Q)
/
CTi, whereCTi

is the critical time of taskTi. To satisfy the assurance
probability, we require

Pr

Ni∑

j=1

ci,j ≤ ρiCTi −Q

 ≥ APi (4)

The above condition is the fundamental bandwidth re-
quirement for satisfying a task’s critical time. IfNi = k,
the total processor time demand during a time window

becomes
k∑

j=1

ci,j . Therefore, Equation 4 can be rewritten

as a sum of conditional probabilities:

∞∑

k=0

pi(k)× Pr

k∑

j=1

ci,j ≤ ρiCTi −Q

 ≥ APi

(5)

4 A General Solution

The feasibility condition (Equation 4) can be rewritten
as:

1− Pr [Ci ≥ ρiCTi −Q] ≥ APi (6)

By Markov’s Inequality,Pr[X ≥ t] ≤ E(X)
/
t for any

non-negative random variable. Therefore,1 − Pr[Ci ≥
ρiCTi − Q] ≥ 1 − E(Ci)

/
(ρiCTi − Q). If we can de-

termine aρi so that1 − E(Ci)
/
(ρiCTi − Q) ≥ APi,

Pr[Ci ≤ ρiCTi − Q] ≥ APi is also satisfied. This be-
comes

ρi ≥ E(Ci)
CTi (1−APi)

+
Q

CTi
(7)

Note thatNi in Equation 4 is a random variable and fol-
lows a distribution specified bypi(a). By Wald’s Equa-

tion, E(Ci) = E
(∑Ni

j=1 ci,j

)
= E(ci)E(Ni). Thus,

ρi ≥ E(ci)E(Ni)
CTi (1−APi)

+
Q

CTi
(8)

This solution is applicable for any distributions ofci

andNi, and only requires the average number of arrivals
and the average execution time.

5 A Binary Search Strategy

The previous section assumes minimal information
regarding task arrivals and execution times. Therefore,
the solution in Equation 8 may be pessimistic for some
distributions. This section presents a binary search strat-
egy that demands and utilizes the information of full dis-
tributions of task arrivals and execution times.

For brevity, we introduce a shorthand notation for the
left hand side of Equation 5. LetfeasibleProbi(ρi) =
∞∑

k=0

(
pi(k)× Pr

[
k∑

j=1

ci,j ≤ ρiCTi −Q

])
. This func-

tion calculates the probability of satisfying all job critical

critical times if taskTi were assigned a processor band-
width of ρi.

Then, Equation 5 can be restated as solving the min-
imal ρi that satisfiesfeasibleProbi(ρi) ≥ APi. Notice
that functionfeasibleProbi(ρi) is a monotone in terms
of ρi. Therefore, a binary search is applicable on the set
of ρi ∈ [0, 1].

The binary search strategy, presented in Algorithm 1
works as follows: The algorithm accepts an error bound
ε, a range to search the minimal bandwidth, denoted as
[a, b], and the required assurance probabilityAPi. In
our case, invokingminBW (ε, 0, 1, APi) returns either
the minimal requiredρi, or failure if even the maximal
processor bandwidth i.e.,ρi = 1, cannot satisfyAPi.
In the worst case, functionminBW (ε, a, b, APi) per-
forms log2((b − a)/ε) searches. Ifa = 0 andb = 1,
the worst case complexity ofminBW (ε, a, b, APi) be-
comeslog2(1/ε).

Input : ε, a, b, APi

Output : the minimal ρi that satisfies
feasibleProb(ρi) ≥ APi for
taskTi; failure if even the maximal
bandwidthb cannot satisfyAPi

if feasibleProbi(b) < APi then
return failure ;

if b− a ≤ ε then
return a;

if feasibleProbi((a + b)/2) ≥ APi then
return minBW(ε, a, (a + b)/2, APi);

else
return minBW(ε, (a + b)/2, b, APi);

Algorithm 1: minBW(ε, a, b, APi) Function

Let Sk =
k∑

j=1

ci,j . Given a task arrival pattern

〈pi(a), wi〉, the key to using Algorithm 1 is to calcu-
late the sum distributionPr [Sk ≤ ρiCTi]. Computing
the sum distribution of a set of independent random vari-
ables, in general, requires convolutions. In practice, con-
volutions are performed for smallk. Whenk is large,
the sum distribution can be approximated by the Central
Limit Theorem (CLT), regardless of the original distribu-
tion of job execution times. The Central Limit Theorem
states that whenk is large,Sk converges to a normal dis-
tribution. Furthermore, ifE

(|ci − E(ci)|3
)

< ∞, the
error of using CLT to approximate the sum distribution
is bounded by the Berry-Esséen Theorem.

6 A UA Scheduling Algorithm

The EDF optimality is only meaningful for satisfying
job critical times—it does not maximize accrued utilities,
which is one of our objectives. Therefore, we develop
a UA job scheduling algorithm, calledUJSsched , that
possesses the following properties:

• If all job critical times can be satisfied by EDF, then
UJSsched should be able to do so and accrue at
least the same utility as EDF does; and

• In case that not all jobs critical times can be satis-
fied, UJSsched seeks to accrue as much utility as
possible.

We desire a fast job scheduling algorithm. This is par-
ticularly true in the context of PS, where the PS mecha-
nism itself may be implemented by another scheduling
algorithm, such as EEVDF [11]. Thus, we adopt the
Highest Utility Density First (HUDF) heuristic as a way
to improve accrued utility. Our rational for doing so is
because HUDF is easy to implement, incurs small over-
head, and exhibits high performance during both under-
loads and overloads.

Let t0 be the time instant when a scheduling event
occurs. The Utility Density (UD) of a jobJ is de-
fined as the ratio of its utility at predicted completion
time over its remaining execution time. That is,UD =
u (t0 + c(t0)) /c(t0), whereu() is the TUF of jobJ and
c(t0) is J ’s remaining execution time at instantt0.

The design of theUJSshced algorithm closely fol-
lows its desired properties. As shown in Algorithm 2,
the algorithm first examines if the set of ready jobs are
schedulable under both EDF and HUDF, assuming jobs
are executed on a slow processor with an execution rate
of ρi. If they are, the highest utility density job is se-
lected. If the jobs are only schedulable under EDF, then
the earliest critical time job should be executed. In case
that the jobs are not schedulable, the next job is selected
by HUDF.

Input : a queue of ready jobs, denoted asRQ

Output : job Js to be executed next; or
NULL

if RQ is emptythen
SelectNULL job;

Let Ud be the accrued utilities of all jobs inRQ
under EDF;
Let Uh be the accrued utilities of all jobs inRQ
under Highest Utility Density First (HUDF);
if RQ is feasible under EDFthen

if RQ is feasible under HUDF andUh > Ud

then
Select the highest utility density job;

else
Select the earliest critical time job;

else
Select the highest utility density job;

Algorithm 2: UJSsched Algorithm

Givenn jobs in the ready queue, the worst-case com-
plexity of UJSsched is O(n). Further,UJSsched has
the following important property:

Lemma 2. If all job critical times can be satisfied by
EDF, thenUJSsched is able to do so and accrues at
least the same utility as EDF does.

This lemma directly follows Algorithm 2.

7 Conclusions, Future Work

This paper presents resource allocation and schedul-
ing algorithms for real-time systems with TUF time con-
straints. The algorithms consider the two-fold objective
of probabilistically satisfying lower bounds on task-level
accrued utilities and maximizing system-level total ac-
crued utilities, for a stochastic task model.

There are several directions for future research. An
important problem is to probabilistically satisfy lower
bounds on task-leveland system-level accrued utili-
ties. Particularly, a tradeoff mechanism is desired
when system-level assurance requirement contradicts
task-level requirements and vice versa.

References

[1] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms
and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor.Real-Time
Systems, 2(4):301–324, November 1990.

[2] R. Clark et al. An adaptive, distributed airborne tracking
system. InIEEE WPDRTS, pages 353–362, April 1999.

[3] R. K. Clark.Scheduling Dependent Real-Time Activities.
PhD thesis, Carnegie Mellon University, 1990.

[4] GlobalSecurity.org. Bmc3i battle management, com-
mand, control, communications and intelligence.
http://www.globalsecurity.org/space/
systems/bmc3i.htm/ .

[5] GlobalSecurity.org. Multi-platform radar technology in-
sertion program.http://www.globalsecurity.
org/intell/systems/mp-rtip.htm/ .

[6] J.-F. Hermant and G. L. Lann. A protocol and cor-
rectness proofs for real-time high-performance broadcast
networks. InIEEE ICDCS, pages 360–369, 1998.

[7] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time systems. InIEEE RTSS,
pages 112–122, December 1985.

[8] C. D. Locke.Best-Effort Decision Making for Real-Time
Scheduling. PhD thesis, Carnegie Mellon University,
1986.

[9] D. P. Maynard et al. An example real-time command,
control, and battle management application for alpha.
Technical Report TR-88121, Carnegie Mellon Univer-
sity, 1988.

[10] J. Regehr and J. A. Stankovic. HLS: A framework for
composing soft real-time schedulers. InIEEE RTSS,
pages 3–14, London, UK, Dec. 2001.

[11] I. Stoica, H. A.-Wahab, et al. A proportional share
resource allocation algorithm for real-time, time-shared
systems. InIEEE RTSS, pages 288–299, 1996.

[12] H. Wu, B. Ravindran, et al. Energy-efficient, utility ac-
crual scheduling under resource constraints for mobile
embedded systems. InACM EMSOFT, September 2004.

[13] H. Wu, B. Ravindran, et al. Utility accrual scheduling un-
der arbitrary time/utility functions and multiunit resource
constraints. InIEEE RTCSA, August 2004.

