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ABSTRACT
The capability of estimating the energy consumption of soft-
ware in multi-processor systems-on-chip (MPSoCs) is cru-
cial for enabling quick evaluation of both software and hard-
ware optimizations. However, true high-level power estima-
tion should be applicable at the software level, possibly through
effective power models depending on parameters which can be
derived directly from the characteristics of the applications.
In this work we propose an energy model for the communi-
cation primitives which, in spite of its simplicity, allows to
model the traffic-dependent nature of energy consumption by
means of an abstract parameter, namely, the size of the mes-
sage exchanged during communication.
Preliminary results show that the model has an average error
below 5%.

1. Introduction
Multiprocessor systems-on-chip (MPSoCs) are becoming the
most natural platform for running embedded applications.
They are commonly used in multimedia and mobile devices
and they are expected to become even more widespread in
the future. Two are the distinctive features characterizing
MPSoCs.
First, they are constrained by severe power budgets [1], since
they are often battery-powered. Furthermore, the power dis-
sipation strongly affects reliability, because it depends on the
average working temperature. Therefore, there is an increas-
ing need for solutions that reduce energy consumption, which
requires significant efforts in every phase of the design flow,
from technology to software development. Clearly, increas-
ing the abstraction level when searching for energy-efficient
solutions can provide higher savings, yet it poses significant
challenges for what concerns the ability of predicting the im-
pact of these optimizations, that is, power estimation.
The second characteristic of MPSoCs is their
“communication-centric” nature. The scaling of tech-
nology towards deep submicrometric devices tends to
increase the relative importance of interconnect delays. This
fact, together with the difficulty in developing MPSoCs into a
single clock domain, is causing a shift in the design paradigm
of SoC towards the so-called “Networks on Chip” (NoC).
Communication between processors will in fact become simi-
lar to that of conventional computer networks, possibly with
non-deterministic communication between processors. From
the application point of view, communication tasks are then
earning a central role in the MPSoC scenario, and systems
are becoming more and more ”communication-dominated”.
Under such a scenario, the availability of high-level power
models for the communication primitives has become an es-
sential infrastructure for driving the choice of possible opti-
mizations. Such models should rely only on high level pa-
rameters, available during the application development, or on

factors that can be obtained from fast simulation of the ap-
plication. In fact, even though in principle software power
estimation can always be performed by running the applica-
tion on a full-system power estimator, this approach is too
slow to be useful in the inner loop of power optimization and
design space exploration.
In this work we derive an empirical macromodel which relates
the energy consumption of communication primitives to the
characteristics of the applications running on the system. In-
tuitively, the energy required by a communication primitive
(e.g. sending a message) is a function of the size of the unit to
be exchanged and of the traffic on the shared medium. The
former determines the intrinsic effort required for moving the
data, whereas the latter accounts for the non-deterministic
interference between the activity of the various processors.
Unfortunately, while the “message size” can be easily inferred
from the application source code, “traffic” is poorly quantifi-
able at the application level. The model proposed in this work
removes the dependency on the traffic variable, and reduces
the model to a very abstract dependency between energy and
message size.
For our analysis we leverage on a multiprocessor simulation
platform, fully equipped with power models for the main sys-
tem components. The simulator allows to simulate realistic
applications as well as an underlying operating system, specif-
ically based on message-based interprocess communication. It
is precisely these primitives that we try to model.
Preliminary results show that the proposed macromodel can
be successfully used for the intended purposes.

2. Related Work
Software power estimation and power modeling have been ac-
tively studied in recent years. However, most of the research
has been focused onto single-processor systems. The seminal
work by Tiwari et al. [2] introduced the popular instruction-
level power analysis approach, which builds a model associ-
ating power consumption to instructions or instruction pairs,
based on a set of characterization experiments.
Better accuracy and, above all, better resolution (at the
price of increased execution time), can be achieved by micro-
architectural power models [3, 4], which rely on the knowledge
of the main functional units of a microprocessor (e.g., execu-
tion units, register file, etc.).
All the above-mentioned approaches focus on the CPU, but
software execution consumes power also in the memory sys-
tem, system buses, and peripherals. For this reason, software
power estimation must account for all system components.
Several researchers [5, 6, 7, 8] proposed full-system estima-
tors, that couple instruction set simulators with CPU, mem-
ory, bus and peripherals power models.
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To avoid full instruction-level simulation, several techniques
have been proposed for characterizing software power con-
sumption at a level of granularity much coarser than the single
instruction. Macro-modeling techniques have been proposed
for sub-routine calls [9] within an application program, for
operating system calls [10, 11, 12], and even for entire tasks
[13, 14]. The main advantage of these techniques is that they
can provide early feedback on the power consumed by com-
plex programs, in presence of significant middleware support,
without the computational cost of a detailed instruction-level
simulation.
A completely different class of approaches is based on an ab-
stract representation of the multiprocessor system, in terms,
for instance, of a queue network or a Petri net, where proces-
sors are modeled as requestors, and buses and memories as
queues or places [15, 16, 17, 18]. These approaches provide
analytical performance models which are in principle appli-
cable at a very high-level of abstraction, provided that the
suitable parameters can be extracted from the inspection of
the application.
In this sense, our macromodel is closer in scope to these lat-
ter models in that it is meant for use at the application level.
However, it differs in several aspects. First, it models energy
for a well-defined level of granularity, namely the communi-
cation primitives of the operating system. Second, it is an
empirical model. As such, it requires characterization on a
specified target architecture using pre-validated energy mod-
els for the components of the system. Third, it is based on a
single parameter which can be extracted in a straightforward
way from the analysis of the application.

3. Multiprocessor Platform
The simulation platform used in this work is composed of (i) a
configurable number of 32-bit ARM processors, (ii) their pri-
vate memories, (iii) a shared memory, (iv) a hardware inter-
rupt module, (v) a hardware semaphore module, (vi) the 32-
bit ST Microelectronics STBus interconnect, used to connect
all the above modules. The interrupt device allows processors
to send interrupt signals to each other, while the semaphore
device implements test-and-set operations. Both these de-
vices are mapped in the addressing space and are used for
interprocessor communication and synchronization purpose.
The system is configurable in several of its components, such
as the memory latencies, the number and the size of the
caches, the topology of the bus, and many others. For fur-
ther details, the reader is referred to [19]; Figure 1 shows a
conceptual block diagram of the system architecture.

device
Interrupt

ARM ARM ARMARM

Private Private Private Private
MemoryMemoryMemoryMemoryMemory

SharedSemaphore
device

Interconnection (STBus)

Figure 1: High-Level Architecture of the Platform.

For the experimental part of this work we used a four-CPU
system, with 8 KB instruction cache and 4 KB data cache,
memories with a two-cycle latency, and a shared bus as the
interconnection topology.
The MPARM platform has power models for its components.
The power models are technologically homogeneous, as they
are obtained from foundry data related to the same tech-

nology (STMicroelectronics 0.13 µm). Since the simulations
are cycle-accurate and the power models are invoked at each
cycle, MPARM can, on a cycle-by-cycle basis, provide how
much energy is spent by any of the various component (core,
cache(s), memories and bus).
The platform also includes a complete operating system and
its support APIs. RTEMS [20] is a light-weight OS suitable
for embedded systems, it offers complete support for multipro-
cessing, and provides a complete API for inter-processor com-
munication and synchronization. Applications can directly
use the communication primitives provided by the API to im-
plement parallel programs. The target of this work is exactly
the characterization of these communication primitives.

4. Characterizing Communication Primitives
4.1 Macromodeling
Our target is to determine the energetic cost of the communi-
cation operations performed by an application and, by aggre-
gation, the energy spent by the whole application in its com-
munication tasks. Generally speaking, the energy required by
an operation consists of the product of two terms: a capaci-
tive factor modeling the intrinsic cost of the operation and the
time required for that operation. All capacitive factors can
be considered technology constants, so that energy models
actually reduce in this context to timing models.
Intuitively, the energy cost is a function of the size of the
unit to be exchanged (the message size, hereafter), and of the
traffic in the system. The former quantity determines the in-
trinsic effort required for moving the data around, whereas
the latter account for the non-deterministic interference be-
tween the activity of the various processors. However, while
the message size can be easily inferred from the application
source code, traffic is a dynamic quantity. Furthermore, the
two factors are not independent: traffic depends in fact on
the message size, since larger messages imply higher amount
of traffic.
In a message passing environment, such as the one consid-
ered here, characterizing communication primitives amounts
to characterize the sending and the reception of a message.
For simplicity, let us focus on the “send” operation, with ref-
erence to the target architecture of Figure 1.
Sending a message implies some bus and memory accesses,
each one requiring a variable amount of time. However, while
the time required for a memory access can be regarded as
constanti, depending only on technological parameters and
on the platform specifications, the time spent for a bus access
is strictly related to the instantaneous traffic on the (shared)
medium. Therefore, the main difficulty to overcoming the
estimation of the energy spent in the communication is to
obtain an estimation of the traffic on the medium. Such traf-
fic depends on the execution patterns of all the processors,
not only the ones which initiates the data exchange, and this
cannot be predicted without accurate simulations or, at least,
some kind of analytical traffic models.
Our challenge here is to model the communication cost as a
simple function of the message size. In other words, we try to
hide the dynamic nature of the traffic inside a very high level
parameter. The motivation is that to send a message, an ap-
plication does many operations, as synchronization, memory
allocation, memory validation and so on. All these operations
are composed of a large number of assembly instructions, each
one requiring a variable amount of time and energy which can-
not easily be determined at a high level of abstraction. But
the total energy consumption of a message exchange is the
sum of all such contributions, and this will tend to mask the
non-deterministic behavior of the individual terms.
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So, it should be possible to obtain a good estimation of the
time (and thus energy) spent by a message passing primitive
of an operating system. As a result, it should be possible to
obtain also a high level macromodel with an acceptable error
(say, below 10%).
The main drawback of any macromodel approach is its strong
dependency on the target platform. The model must require
the characterization of the target architecture and, in case the
latter changes, the characterization should be repeated from
scratch. From the programmer perspective, however, this is
not an issue, since the platform is usually completely defined
when the application development is starting. Reconfigurable
systems are an exception to this situation; however, they offer
a limited degree of variability on the configurable features, so
in principle it is possible to build several macromodels, to
cover the whole range of variations.

4.2 RTEMS Interprocessor Communication
In this section we will analyze the communication primitives
of the operating system running on our platform, in order to
understand how to apply the above modeling principles. We
will provide a high level description, in order to give an idea
of the system’s behavior during a data exchange.
In RTEMS, the basic application-level inter-thread com-
munication primitives are message queues. Threads com-
municate by writing/reading messages into/from a queue,
using two system calls: rtems message queue send and
rtems message queue receive (send and receive, for short).
Assuming that the processor P1 sends a message to processor
P2, the operation executed are:

1. P1 obtains a pointer to a buffer in shared memory.

2. P1 fills the buffer with the desired data using the memcpy()
function of the standard C library.

3. Once the shared buffer has been manipulated, P1 notifies
(via an interrupt) to P2 that it can proceed.

4. P2 gets the address of the shared buffer.

5. The data are explicitly copied from this shared buffer to a
local buffer (via memcpy).

6. P2 sends an acknowledge response to P1.

The receive system call works in a similar manner, although
not fully symmetrically. The memcpy function is used to ac-
tually carry the data, while many other tasks have to be per-
formed, as synchronization and the exchange of the address
of the shared buffer.

4.3 Statistical analysis
The six macro-operations described in the previous section are
actually complex operations, each one consisting of a large
number of machine instructions. These instructions can be
classified into two categories: instructions which access the
bus and the memory (remote instructions), and instructions
which can be completed using only the cache without requir-
ing an access to the shared bus (local instructions). Under
a zero-miss assumption in the cache, the first class consists
only of instructions which access shared objects, which are
not cached. In fact, all other instructions accessing the pri-
vate memories will not need to access the bus, because the
required data can always be found in the cache. Such as-
sumption is justified by experimental data, that show hit rates
higher than 98%, on average.
Based on this considerations, the energy spent for executing
a local instruction can be considered as a constant, since it
does not depend on the traffic. Conversely, the energy spent
executing a remote instruction will depend on the traffic on

the bus, which impacts the time and, as a consequence, the
energy required from a processor to gain the access to the
medium.
We can thus write an expression of the energy spent for a
communication primitive (send or receive), as a function of
traffic and message size, as follows:

Ecomm =

N0�

i=1

Elocal

i +

N1(S)�

i=1

Eremote

i (Ui) (1)

Where N0 is the number of local instructions, N1 is the num-
ber of remote instructions and S is the message size. Elocal

i is
the energy spent for a local instruction, inclusive of the energy
spent by the core and of the energy used for the cache access;
Eremote

i is the energy spent for a remote instruction (taking
into account the bus and the memory access also), and Ui is
the bus utilization (i.e. the traffic) when executing the i-th
instruction.
Equation 1 shows that Eremote

i is a function of the traffic on
the bus, while Elocal

i can be treated as a constant, with respect
to S and Ui. Furthermore, N0 is a constant, because it rep-
resents the number of instructions that perform “accessory”
operations of the given primitive (e.g. preparing a message);
conversely, N1 strongly depends on the message size S, be-
cause it directly affects the inner loop of the memcpy. The
dependency of N1 on S can be written as:

N1 = C0 + C1 · S (2)

The term C0 models the fact that a fixed number of accesses
to shared objects are needed for the synchronization and val-
idation, while the actual data exchange requires a number of
elementary bus transfers linearly dependent on the message
size. In fact, for a data bus with of D bytes, the transfer of
S bytes requires S/D elementary bus transactions.
Our purpose is now to remove the dependence on Ui’s, obtain-
ing a model which is only dependent on S. Abstracting the
traffic variable from Eremote

i transform this quantity into a
random variable, whose probability density can, in principle,
be estimated by measuring it on a large number of operating
conditions, and whose average and variance are respectively
µremote and σ2

remote. This operation yields:

Ecomm = N0 · Elocal + N1(S) · µremote (3)

In the first term we have emphasized the independency of
Elocal of S, while in the second term the value Eremote

i (Ui)
has been replaced by its average value.
Substituting now Equation 2 into Equation 3 we have:

Ecomm = (N0 · Elocal + C0 · µremote) + C1 · µremote · S (4)

from which the linear dependency of Ecomm on S is exposed.
The absolute error of this model is roughly

√

N1 · σremote,
which is the standard deviation of the second term in Equa-
tion 1. This value corresponds to the standard deviation of
a sum of N1 random variables, assuming statistical indepen-
dence among the variables Eremote

i .
The relative error is the ratio of the absolute error and the
target measure:

εr =

√

N1 · σremote

Ecomm

(5)

=

√

N1 · σremote

N0 · Elocal + N1(S) · µremote

(6)

The expression shows that the relative error is small if N0 is
greater than N1 (as it occurs in practice), and it decreases
when N1 increases.
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4.4 Results
We have used Equation 4 as a model template, and computed
the actual model as follows. First, we have run characteriza-
tion tasks, in which we have measured the quantity under
measure Ecomm for many different operating conditions. For
this purpose we have written a few synthetic benchmarks pa-
rameterized with respect to S, and relative to a four-processor
configuration of the simulation platform. In these benchmarks
one of the processors sends a message to another one, while
the others two generate tunable dummy traffic on the bus.
For the various runs, energy values are collected so that a
distribution of the energy consumption for different message
sizes can be built. Figure 2 shows the plot of the distribution
for send.
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Figure 2: Distribution of Energy for send.

We observe a multi-modal distribution, with peaks related to
the various message sizes used in the characterization. We
also notice that, as expressed by Equation 5, the absolute er-
ror (the support of the sub-distributions) is small compared
to the the average value, yielding a small relative error. For
instance, the two rightmost peaks (larger energy values) have
roughly the same support (the base of the peak), but differ-
ent average values. This assesses the result that the error
decreases for larger values of S (and thus of energy).
Finally, we have applied least-mean square regression to the
set of collected points in the (Ecomm, S) space to extract the
actual model, getting an equation of the type

Ecomm = α + β · S

as in Equation 4. Clearly, we have different models for sends
and receives.
Such model fits quite well the collected data, showing an in-
trinsic average error below 2%. Maximum errors are about
10% for the send and about 13% for the receive, but these
worst-case errors occur very seldom, and the average error is
the most typical case.
In order to evaluate the validity of the model, we ran several
simulations, with message sizes different from the ones used
in the characterization phase, and with a different traffic be-
havior. The resulting average errors are below 5% for both
send and receive while the worst case errors are below 11%
and 18% respectively.

5. Conclusions
In MPSoC, modeling of bus traffic is central for characterizing
the time and energy cost of communication primitives. In this
work we show that very good accuracy can be achieved by
means of simple empirical macromodels which depend only
on a very abstract parameter such as the size of exchanged
messages.
Our analysis shows that the non-determinism of bus traffic
can be hidden inside a higher-level parameter, with negligible

loss in accuracy.
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