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Abstract—The paper presents a probabilistic approach ~ Based on standard probabilistic concepts, this work
to schedulability analysis of uni-processor priority—driven proposes a novel approach to uni-processor preemptive
(e.9.RM and EDF) preemptive periodic task systems with scheduling of periodic task systems with uncertainties
uncertain computation times. The approach is a general j, computation times. Working in a discrete time model,
one but is targeted at Quality of Service (QoS) driven y oo the concept dimed sequence of probabilities

non—critical real-time applications. Execution patterns and . . . .
termination times of tasks are derived as timed sequence (TSP) — a crucially important representation for dealing

of probabilities, allowing the calculation of a range of With uncertainties in all time dependent events, e.g.,
QoS characteristics such as jitter, latency and loss rate. Uncertainties in task execution times and task termination

An example and a stochastic simulation illustrate the probabilities at each and every time instant. The latter
analytical framework and its validity. allows the calculation of a range of QoS performance
indicators (e.g. jitter, response time latency; not given
here for brevity) of tasks individually in a straightforward
When dealing with QoS driven applications, sucimanner. How difficult such calculations are, or their
as modern multimedia applications, the worst case deasibility, is not clear in the works cited earlier.
sign approach suffers from a major limitation, namely, Section Il introduces the probabilistic representation
uneconomic resource utilisation. This is evident fromf uncertainties in execution time and the concept of
the growing number of works devoted to alternativesp. Section Ill presents the proposed approach, while
approaches; some of the key contributions being [IJection IV presents an illustrative example and a stochas-
[2], [3] and [5]. Statistical Rate Monotonic Schedulingic simulation as a verification. Section V concludes the
(SrRM9) [1] attempts a generalisation of the classical rafmper with a summary of achievements.
monotonic scheduling discipline by describing computa-
tion times probabilistically and by maintaining schedu- !l REPRESENTATION OFTASK UNCERTAINTIES
lability through admission control. Based on a series Given a set oh periodic tasksyi, i € 1..n, let their
of stochastic processes called task graphs, Manolacoenputation times and periods be, respectivelyand
et al. [5] present an efficient approach to performandgin a discrete time domain; denotess’s jth instance.
analysis of periodic non—preemptable tasks capturing urasks being periodic, eadh is a fixed quantity. Relative
certainty in task execution times in terms of a continuouask deadlines are assumed to lie within the periods and,
probability distribution function. Diaz et al. [2] proposeas a simplification here, each deadline to coincide with
a stochastic approach based on Markov processes tf@ next task request. Uncertainty in computation times
scheduling periodic tasks with uncertainties in their cons taken care of by letting ead®) to be a random variable
putation times using both static and dynamic schedulicaracterised by a probability mass functiemg) Pg,.
algorithms. Stochastic Time Demand Analysis (STDAjachPc is defined oveK; 4 1 points, denoted by, ,
[3] concerns the determination of a lower bound ok e 0..K;. By definition, a) the values  are assumed to
execution rates in uni—processor fixed priority contekie in the ascending order with increaskdout with the
with periodic tasks having both a guaranteed executiogstriction that; x, < T;, b) ¢ o = 0 andP¢,(Ci = ¢io) =
time and a guaranteed inter-release time. Real-Tieand c)Pc, (Ci = Gix) # 0 for k € 1..K;. Assumptions
Queueing Theory [4] is also a widely known approaclib) and (c) are intended at producing a minimal set of
though queueing theoretic models are considered in jBhass values in the initial specification of uncertainties,
to be “either too simple to characterise the importamthile excluding zero as a possible computation time. A
properties ... or too complex for tractable analysis”. different way to represent amF is as a sequence of

I. INTRODUCTION



‘descending blocks’, as opposed to a ‘rectangular bloodfements can be appropriately indexed.
of computation time as used in deterministic scheduling, ||| ScHEDULABILITY ANALYSIS ALGORITHM

see Figure 1 and Table I.

Uncertainties in task computation times give rise to
uncertainties in the availability of the processor for the
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e : ermnistic . . . .
5 04¢ 3 . scheduling processor is available for the execution of the highest

| = priority task with certainty, i.e. with a probability of
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a) As a block diagram of descending steps or workload

one. In a fixed priority context, such & scheduling,

the highest priority task continually enjoys this privilege
right through the execution history. This would not
necessarily be the case in a dynamic scheduling context

2os
3 os 1 such asEDF because of the fluctuation of priorities over
g 04 03 time. In the case of lower priority tasks, the probability
3;5 | ‘ ‘ v of processor being available for their execution progres-
0 . 2 s 4 5 8 execution time sively decreases up to zero with decreasing priorities.
b) As a probability distribution
Fig. 1. Probabilistic representation of task execution requirement&pability
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Table | also shows the representation of computations 1 2 5« 5 s + & s
times used in the analysis, referred to asreed sequence Probability
of probabilities(TsP) and having an obvious relationship*°f
with the survivor functionfc,; F¢, = P(Ci > ¢;) andc
being a sample point of;. Each of its elements/ is
indexed by a time valug with t ranging contiguously
fromci o to Gi . vv't denotes the probability of the task
requiring more thar time units of the processor for its _
execution and tha'sp is termed the workload placed Fig. 2. lllustration of task executiom(with 65 ' = 0.8 att = 0)
by 77 on the processor. For the example aboveTas For the length of time of scheduling, let us consider
may also be shown a$l.0,1.0,0.7,0.1,0.1,0.1,0.0), the Least Common Multiple.Em) £ of the task periods,
assuming a starting time value 0 and implicitly indexinthough a longer length would be required if the model
each of the probabilities in the sequence consecutivelgre to be extended to include deadlines greater than the
with a time value.TsPs are suitable for representingoeriods. Letd!, j € 0..(n— 1), denote the probability of
uncertainty in different kinds of transient data and ndbe processor being available at timn®r the execution
just workloads. In such cases, it is necessary to speaifiythe taskr ., after execution of all its higher priority
the starting time value of thesp concerned so that itstasks, if any. The value® form aTspof the form©! =
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(6! | t € 0..L) with a starting time value of 0. Thesp©! The above process can be expressed in a straightfor-
is referred to here asrocessor availability probabilities ward manner as an algorithm, which is not given here
(PAP). Forj > 0, the actual value of ead®! is dependent for reasons of space. Another important quantity to be
on the actual workloads of the taskg 7, .., 7;. When computed is the termination probabilittyk of 7X at time
j = 0, however,0° has a simple expression, namely; i.e. the probability of* being successfully completed
a Tsp with all 1s, i.e. @ = (1.0,1.0,..,1.0). This exactly at timet and not executing afterwards. It can
is because at any time unit, if it requires, the highebe defined as the probability of¢ being assigned the
priority task has access to the processor with certainprocessor at timét— 1) and at that time there remaining
Determination of othe®ls is dealt with in (1) later. a workload of exactly one time unit. Since the value of
In fixed priority scheduling, it is assumed that theach term‘t"I< is dependent on the workload qf at the
task indices i(in ;) reflect the priority ordering. Thus,time t, "k needs to be computed at each time instant
in RM scheduling tasks are ordered in the ascendiatpngsidee . The valuesft"k also form atsp, denoted
order of task periods. Let us first consider fixed prioritys f'* and referred to here as a timed sequenceask
scheduling (e.grM). Dynamic scheduling (e.@DF) can termination probabilitiegTTP).
then be dealt with a simple rearrangement of the orderwith the knowledge ofreps of , and all its higher

of the computations involved. priority tasks, it is possible to compute thapr ©' as
_kTurning to execution histories of individual tasks, let _

e denote the probability of being under execution i 0 % .

at timet and € the probability ofr; as a whole being o' =0-> ¢ for i>0 (1)

. . f | =
under execution at. The correspondingspks € and !

e are referred to atask execution probabilitie6TEF). with @° consisting of all 1s and using generalised
The derivation ofé*s may be explained as follows.operators+ and — on Tsps. The above is a theorem
Figure 2 illustrates the scheduling of an instance ofgmd can be proved by mathematical inducti@i. so
certain tasky with a workload shown in Figure 2(a), forcomputed is required in the calculation tép of 7, —
convenience, at time 0. Should the processor be availafie task immediately below in the priority ranking.
at time 0 for executings, its workload will be reduced
by one unit of time. However, this would depend on , 4
the availability of the processor. Assuming a value of K
0y ' = 0.8 att = 0, the probability ofrs execution at \ imulai
time 0, that isg), would be 0.8. The remaining workload °*° e
is then given by the original workload less its first unit. °71
of time, but scaled down as a whole by a factor of os |
0.8; see Figure 2(b). This remaining workload will thertz 05 ] a , #
be carried forward for execution from time 1 onwards | i
However, there is also the possibility af missing
execution at time 0, with a probability of 0.2. Should this **] A
happen, the original workload as a whole will be shifted 2 '
by one unit time forward in time, but scaled down by a o1
factor of 0.2; see Figure 2(c). Howevers execution at | |
time 0 is Contingent upon the processor ava||ab|||ty and, 123456 7 8 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30

. . . .. Time over LCM of task periods
hence, ne'lther of the scenarios concerning the rema‘”E’.é’. 3. Probability of task execution undem scheduling over the
workload is absolute. Therefore, the workload outstangz, ation cycle: probabilistic analysis vs. simulation
ing at time 1 is the point by point summation, shown
in Figure 2(d), of the workloads, shown in Figures 2(b) The time complexity of the algorithm concerned for
and (c). This process can be continued successively &ir tasks up to thenth priority task =, is given by
time values 1, 2, 3, etc., thus working agjt €, €, etc. 5rc0 n T d. therefore. is of the ordat n T
and, eventuallye as a whole. When scheduling eagh 2 ; i | and, theretore, 1s ot the or ; !
this process needs to be continued for all time valupsr unit time of £, with C denoting an aggregate cost
in £, appropriately renewing instances of various taskd the computational operations such as multiplication.
7,1 €1..i as they are requested. Since task periods are usually greater than unity the sum
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Y T grows faster tham. An insight into the com- '€asons of space) show thatrs under bottRM andEDF

— scheduling due to probabilistic analysis and simulation
putational complexity may be obtained by consideringre sufficiently close. Similar results are obtained for
several special and extreme cases. For example, if tigk termination probabilitiesfps) over theLcm under
Lcm of task periods is not affected by a new task: rm andEDF regimes; these are summarised in Table I
then with its addition to the task set the complexity risegiving the overall termination probabilities (success rate)
by Tni1. If all tasks have the same period, resultingf individual task instances within their periods.

in Ty = L,i = 1..n, the complexity over the.cm
is of O(n). On the other hand, ifis conform to a
geometric progression of the forfi = T d~!, q being

V. CONCLUSIONS
This paper presents a probabilistic approach to

an integral constant, then the complexity is @fg™) analysmg' schgdulab!llty of pgrlodlc tasks with uncertain
mputation times in a uni—processor context under

over theLcMm. These being extreme cases, the complexi‘f . . -
oth RM and EDF scheduling regimes. Uncertainties

in most practical situations lies somewhere in between. ) . >
In computation times are specified &MrFs but are

m(Ti =5) 72(T2 = 6) 73(Ts = 10) represented aimed sequence of probabiliti€ssp) — a

Comp. PMFf Comp. PMF{ Comp. PMFf general representation used for representing uncertainties
“Te (giztc(’gr;‘g”g)) “Te (gigt‘()grs‘grg)) “g‘e (gigtc(’grzagng)) in different events, including the execution pattern and

5 04 (0:394) 3 05 (0:507) 1 06 (0:598) tgrmlnatlon of task instances at particular mstants_ in

4 0.2 (0.208)| 5 0.2 (0.200)| 6 0.1 (0.103) time. The latter for each task are computed progressively
T — used inin analysis T — used in simulation (in parentheses) by considering the probability of processor availability
at each instant in time, which depends on the workloads
and execution patterns of its higher priority tasks. Once

both thesersps are known, various QoS indicators may

TABLE 1l
PROBABILITIES OF TASK COMPUTATION TIMES(CiS)

X s . be computed, including the completion rate of tasks,
K RM 1EDF RM 2 EDF RM 2 EOF their mean response time latency, failure rate, jitter, etc.
11 1(1) [0.68(0.69) 0.84 (0.78D.15 (0.19) 0.58 (0.55) (not given here for reasons of space). A major benefit
518 os%a ((t)% 8-;? Eg-;gg 8-3? Eggigéi Eg-i‘l‘; 8-‘315 82451; of the proposed approach is that it allows addressing
41 (1) 0.80 (0.80)0.81 (0.76) 0.82 (0.83) 7 specific QoS indicators of tasks individually. Complexity
51 (1) 0.78 (0.80)0.84 (0.76) 1 (1) analysis shows that the cost of computations involved
6/1 (1) 0.15 (0.22 grows additively with task periods and in proportion to
analytical results: without parentheses; simulation: in parenthes%eLCM of task periods. An example and the results of a
TABLE IlI stochastic simulation, conducted as a verification of the
TERMINATION PROBABILITY OF TASK INSTANCES approach, demonstrate the approach and its validity.
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