
Probabilistic Uni-processor Schedulability Analysis

N. Nissanke†, L. David‡ and F. Cottet∗

† Institute for Computing Research ‡ Campus Universitaire de Beaulieu ∗ LISI–ENSMA
London South Bank University Avenue du Gnral Leclerc 1 Av. Clement Ader, Teleport 2

103, Borough Road, London SE1 0AA, U.K. 35042 Rennes Cedex, France 86961 Futuroscope, France

Abstract— The paper presents a probabilistic approach
to schedulability analysis of uni-processor priority–driven
(e.g. RM and EDF) preemptive periodic task systems with
uncertain computation times. The approach is a general
one but is targeted at Quality of Service (QoS) driven
non–critical real–time applications. Execution patterns and
termination times of tasks are derived as timed sequence
of probabilities, allowing the calculation of a range of
QoS characteristics such as jitter, latency and loss rate.
An example and a stochastic simulation illustrate the
analytical framework and its validity.

I. I NTRODUCTION

When dealing with QoS driven applications, such
as modern multimedia applications, the worst case de-
sign approach suffers from a major limitation, namely,
uneconomic resource utilisation. This is evident from
the growing number of works devoted to alternative
approaches; some of the key contributions being [1],
[2], [3] and [5]. Statistical Rate Monotonic Scheduling
(SRMS) [1] attempts a generalisation of the classical rate
monotonic scheduling discipline by describing computa-
tion times probabilistically and by maintaining schedu-
lability through admission control. Based on a series
of stochastic processes called task graphs, Manolache
et al. [5] present an efficient approach to performance
analysis of periodic non–preemptable tasks capturing un-
certainty in task execution times in terms of a continuous
probability distribution function. Diaz et al. [2] propose
a stochastic approach based on Markov processes for
scheduling periodic tasks with uncertainties in their com-
putation times using both static and dynamic scheduling
algorithms. Stochastic Time Demand Analysis (STDA)
[3] concerns the determination of a lower bound on
execution rates in uni–processor fixed priority context
with periodic tasks having both a guaranteed execution
time and a guaranteed inter–release time. Real–Time
Queueing Theory [4] is also a widely known approach,
though queueing theoretic models are considered in [6]
to be “either too simple to characterise the important
properties ... or too complex for tractable analysis”.

Based on standard probabilistic concepts, this work
proposes a novel approach to uni-processor preemptive
scheduling of periodic task systems with uncertainties
in computation times. Working in a discrete time model,
it uses the concept oftimed sequence of probabilities
(TSP) – a crucially important representation for dealing
with uncertainties in all time dependent events, e.g.,
uncertainties in task execution times and task termination
probabilities at each and every time instant. The latter
allows the calculation of a range of QoS performance
indicators (e.g. jitter, response time latency; not given
here for brevity) of tasks individually in a straightforward
manner. How difficult such calculations are, or their
feasibility, is not clear in the works cited earlier.

Section II introduces the probabilistic representation
of uncertainties in execution time and the concept of
TSP. Section III presents the proposed approach, while
Section IV presents an illustrative example and a stochas-
tic simulation as a verification. Section V concludes the
paper with a summary of achievements.

II. REPRESENTATION OFTASK UNCERTAINTIES

Given a set ofn periodic tasks,τi , i ∈ 1 . . n, let their
computation times and periods be, respectively,Ci and
Ti in a discrete time domain.τ j

i denotesτi ’s jth instance.
Tasks being periodic, eachTi is a fixed quantity. Relative
task deadlines are assumed to lie within the periods and,
as a simplification here, each deadline to coincide with
the next task request. Uncertainty in computation times
is taken care of by letting eachCi to be a random variable
characterised by a probability mass function (PMF) PCi .
EachPCi is defined overKi + 1 points, denoted byci,k,
k ∈ 0. .Ki . By definition, a) the valuesci,k are assumed to
be in the ascending order with increasingk, but with the
restriction thatci,Ki 6 Ti , b) ci,0 = 0 andPCi (Ci = ci,0) =
0, and c)PCi (Ci = ci,k) 6= 0 for k ∈ 1 . .Ki . Assumptions
(b) and (c) are intended at producing a minimal set of
mass values in the initial specification of uncertainties,
while excluding zero as a possible computation time. A
different way to represent aPMF is as a sequence of

‘descending blocks’, as opposed to a ‘rectangular block’
of computation time as used in deterministic scheduling,
see Figure 1 and Table I.

pr
ob

ab
il

it
y

pr
ob

ab
il

it
y

0

0
execution time

execution time

71 2 3 4 5 6

0.
1

1 2 3 4 5 6 7

0.3

0.6

0.1

0.
6

0.
3

a) As a block diagram of descending steps or workload

a typical
reprsentation
used in
deterministic
scheduling

b) As a probability distribution

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

Fig. 1. Probabilistic representation of task execution requirements

Distribution functions Workload as aTSP

Comp. Probability Survivor Processorwi
t – probability

time mass function time of τi requiring
function FCi = more thant

k ci,k P(Ci = ci,k) P(Ci > ci,k) t time units
0 0 0.0 1.0 0 1.0

1 1.0
1 2 0.3 0.7 2 0.7
2 3 0.6 0.1 3 0.1

4 0.1
5 0.1

3 6 0.1 0.0 6 0.0

TABLE I

PROBABILISTIC REPRESENTATION OF UNCERTAINTIES IN TASK

COMPUTATION TIMES

Table I also shows the representation of computation
times used in the analysis, referred to as atimed sequence
of probabilities(TSP) and having an obvious relationship
with the survivor functionFCi ; FCi = P(Ci > ci) andci

being a sample point ofCi . Each of its elementswi
t is

indexed by a time valuet, with t ranging contiguously
from ci,0 to ci,Ki . wi

t denotes the probability of the taskτi

requiring more thant time units of the processor for its
execution and theTSP is termed the ‘workload’ placed
by τi on the processor. For the example above, itsTSP

may also be shown as〈1.0, 1.0, 0.7, 0.1, 0.1, 0.1, 0.0〉,
assuming a starting time value 0 and implicitly indexing
each of the probabilities in the sequence consecutively
with a time value.TSPs are suitable for representing
uncertainty in different kinds of transient data and not
just workloads. In such cases, it is necessary to specify
the starting time value of theTSP concerned so that its

elements can be appropriately indexed.

III. SCHEDULABILITY ANALYSIS ALGORITHM

Uncertainties in task computation times give rise to
uncertainties in the availability of the processor for the
execution of particular tasks. In a preemptive priority
driven execution process, at a given instant in time the
processor is available for the execution of the highest
priority task with certainty, i.e. with a probability of
one. In a fixed priority context, such asRM scheduling,
the highest priority task continually enjoys this privilege
right through the execution history. This would not
necessarily be the case in a dynamic scheduling context
such asEDF because of the fluctuation of priorities over
time. In the case of lower priority tasks, the probability
of processor being available for their execution progres-
sively decreases up to zero with decreasing priorities.

θ = 0.8
i−1
0with

θ = 0.8
i−1
0with

θ = 0.8
i−1
0with

0 1 2 3 4 5 6 7 8 9 10

1.0

0.5

0 1 2 3 4 5 6 7 8 9 10

1.0

0.5

0 1 2 3 4 5 6 7 8 9 10

1.0

0.5

0 1 2 3 4 5 6 7 8 9 10

1.0

0.5

c) Deferred workload until t = 1 if missed execution at t = 0

b) Remaining workload at t = 1 if executed at t = 0

a) Workload prior to execution at t = 0

probability

probability

probability

probability

d) Workload outstanding at t = 1

t (time)

t (time)

t (time)

t (time)

1.0

0.76

0.22
0.1

0.02

0.2 0.14
0.02

1.0

0.7

0.1

0.8

0.56

0.08

Fig. 2. Illustration of task execution (τi with θi−1
0 = 0.8 at t = 0)

For the length of time of scheduling, let us consider
the Least Common Multiple (LCM) L of the task periods,
though a longer length would be required if the model
were to be extended to include deadlines greater than the
periods. Letθj

t, j ∈ 0 . . (n− 1), denote the probability of
the processor being available at timet for the execution
of the taskτj+1 after execution of all its higher priority
tasks, if any. The valuesθj

t form a TSP of the formΘj =

〈θj
t | t ∈ 0. .L〉 with a starting time value of 0. TheTSPΘj

is referred to here asprocessor availability probabilities
(PAP). For j > 0, the actual value of eachΘj is dependent
on the actual workloads of the tasksτ1, τ2, . ., τj . When
j = 0, however,Θ0 has a simple expression, namely,
a TSP with all 1s, i.e. Θ0 = 〈1.0, 1.0, . ., 1.0〉. This
is because at any time unit, if it requires, the highest
priority task has access to the processor with certainty.
Determination of otherΘjs is dealt with in (1) later.

In fixed priority scheduling, it is assumed that the
task indices (i in τi) reflect the priority ordering. Thus,
in RM scheduling tasks are ordered in the ascending
order of task periods. Let us first consider fixed priority
scheduling (e.g.RM). Dynamic scheduling (e.g.EDF) can
then be dealt with a simple rearrangement of the order
of the computations involved.

Turning to execution histories of individual tasks, let
ei,k

t denote the probability ofτ k
i being under execution

at time t and ei
t the probability ofτi as a whole being

under execution att. The correspondingTSPs ei and
ei,k are referred to astask execution probabilities(TEP).
The derivation ofei,ks may be explained as follows.
Figure 2 illustrates the scheduling of an instance of a
certain taskτi with a workload shown in Figure 2(a), for
convenience, at time 0. Should the processor be available
at time 0 for executingτi , its workload will be reduced
by one unit of time. However, this would depend on
the availability of the processor. Assuming a value of
θi−1
0 = 0.8 at t = 0, the probability ofτis execution at

time 0, that is,ei
0, would be 0.8. The remaining workload

is then given by the original workload less its first unit
of time, but scaled down as a whole by a factor of
0.8; see Figure 2(b). This remaining workload will then
be carried forward for execution from time 1 onward.
However, there is also the possibility ofτi missing
execution at time 0, with a probability of 0.2. Should this
happen, the original workload as a whole will be shifted
by one unit time forward in time, but scaled down by a
factor of 0.2; see Figure 2(c). However,τis execution at
time 0 is contingent upon the processor availability and,
hence, neither of the scenarios concerning the remaining
workload is absolute. Therefore, the workload outstand-
ing at time 1 is the point by point summation, shown
in Figure 2(d), of the workloads, shown in Figures 2(b)
and (c). This process can be continued successively for
time values 1, 2, 3, etc., thus working outei

1, ei
2, ei

3, etc.
and, eventually,ei as a whole. When scheduling eachτi ,
this process needs to be continued for all time values
in L, appropriately renewing instances of various tasks
τl , l ∈ 1 . . i as they are requested.

The above process can be expressed in a straightfor-
ward manner as an algorithm, which is not given here
for reasons of space. Another important quantity to be
computed is the termination probabilityf i,k

t of τ k
i at time

t; i.e. the probability ofτ k
i being successfully completed

exactly at timet and not executing afterwards. It can
be defined as the probability ofτ k

i being assigned the
processor at time(t−1) and at that time there remaining
a workload of exactly one time unit. Since the value of
each termf i,k

t is dependent on the workload ofτ k
i at the

time t, f i,k needs to be computed at each time instant
alongsideei,k. The valuesf i,k

t also form aTSP, denoted
as f i,k and referred to here as a timed sequence oftask
termination probabilities(TTP).

With the knowledge ofTEPs of τi and all its higher
priority tasks, it is possible to compute thePAP Θi as

Θi = Θ0 −
i∑

l =1

el for i > 0 (1)

with Θ0 consisting of all 1s and using generalised
operators+ and − on TSPs. The above is a theorem
and can be proved by mathematical induction.Θi so
computed is required in the calculation ofTEP of τi+1 –
the task immediately belowτi in the priority ranking.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time over LCM of task periods

P
ro

b
ab

ili
ty

 o
f

ex
ec

u
ti

o
n

Task 1 (Probabilistic)

Task 2 (Probabilistic)

Task 3 (Probabilistic)

Task 1 (Simulation)

Task 2 (Simulation)

Task 3 (Simulation)

Fig. 3. Probability of task execution underRM scheduling over the
simulation cycle: probabilistic analysis vs. simulation

The time complexity of the algorithm concerned for
all tasks up to thenth priority task τn is given by

3
2LC

(
n∑

i=1

Ti

)
and, therefore, is of the orderO

(
n∑

i=1

Ti

)

per unit time ofL, with C denoting an aggregate cost
of the computational operations such as multiplication.
Since task periods are usually greater than unity the sum

n∑

i=1

Ti grows faster thann. An insight into the com-

putational complexity may be obtained by considering
several special and extreme cases. For example, if the
LCM of task periods is not affected by a new taskτn+1

then with its addition to the task set the complexity rises
by Tn+1. If all tasks have the same period, resulting
in Ti = L, i = 1 . . n, the complexity over theLCM

is of O(n). On the other hand, ifTis conform to a
geometric progression of the formTi = T qi−1, q being
an integral constant, then the complexity is ofO(q2n)
over theLCM. These being extreme cases, the complexity
in most practical situations lies somewhere in between.

τ1(T1 = 5) τ2(T2 = 6) τ3(T3 = 10)
Comp. PMF† Comp. PMF† Comp. PMF†
time (histogram‡) time (histogram‡) time (histogram‡)

1 0.4 (0.398) 1 0.3 (0.293) 2 0.3 (0.298)
2 0.4 (0.394) 3 0.5 (0.507) 4 0.6 (0.598)
4 0.2 (0.208) 5 0.2 (0.200) 6 0.1 (0.103)
† – used in in analysis ‡ – used in simulation (in parentheses)

TABLE II

PROBABILITIES OF TASK COMPUTATION TIMES(Ci S)

τ k
1 τ k

2 τ k
3

k RM EDF RM EDF RM EDF

1 1 (1) 1 (1) 0.68 (0.69) 0.84 (0.78)0.15 (0.19) 0.58 (0.55)
2 1 (1) 1 (1) 0.75 (0.73) 0.53 (0.51)0.21 (0.24) 0.32 (0.35)
3 1 (1) 0.89 (0.86)0.81 (0.79) 0.91 (0.91)0.34 (0.41) 0.47 (0.54)
4 1 (1) 0.80 (0.80)0.81 (0.76) 0.82 (0.83)
5 1 (1) 0.78 (0.80)0.84 (0.76) 1 (1)
6 1 (1) 0.15 (0.22)
analytical results: without parentheses; simulation: in parentheses

TABLE III

TERMINATION PROBABILITY OF TASK INSTANCES

In fixed priority scheduling, each task may be sched-
uled right through all time values ofL and then schedule
the next task in the priority order in the same manner.
Turning to dynamic scheduling (e.g.EDF) all what is
required is to consider schedulability of all tasks at each
time value and then progress to the next time instant,
obviously re-evaluating the priority order of the tasks
at each time value. In the algorithm concerned, this
corresponds to an alteration of the execution order of
the computations (nesting order of loops) involved.

IV. I LLUSTRATIVE EXAMPLE

The example involves three tasks with characteris-
tics given in Table II. Shown in parentheses are the
histograms of the data used in a simulation over a
period of 2,000 LCM cycles. As an illustration, the
execution patterns of the tasks (TEPs) underRM is shown
in Figure 3. The results (not all reproduced here for

reasons of space) show thatTEPs under bothRM andEDF

scheduling due to probabilistic analysis and simulation
are sufficiently close. Similar results are obtained for
task termination probabilities (TTPs) over theLCM under
RM and EDF regimes; these are summarised in Table III
giving the overall termination probabilities (success rate)
of individual task instances within their periods.

V. CONCLUSIONS

This paper presents a probabilistic approach to
analysing schedulability of periodic tasks with uncertain
computation times in a uni–processor context under
both RM and EDF scheduling regimes. Uncertainties
in computation times are specified asPMFs but are
represented astimed sequence of probabilities(TSP) – a
general representation used for representing uncertainties
in different events, including the execution pattern and
termination of task instances at particular instants in
time. The latter for each task are computed progressively
by considering the probability of processor availability
at each instant in time, which depends on the workloads
and execution patterns of its higher priority tasks. Once
both theseTSPs are known, various QoS indicators may
be computed, including the completion rate of tasks,
their mean response time latency, failure rate, jitter, etc.
(not given here for reasons of space). A major benefit
of the proposed approach is that it allows addressing
specific QoS indicators of tasks individually. Complexity
analysis shows that the cost of computations involved
grows additively with task periods and in proportion to
the LCM of task periods. An example and the results of a
stochastic simulation, conducted as a verification of the
approach, demonstrate the approach and its validity.

Acknowledgement
The authors extend their gratitude to K. Gupta of the IIT,
Guwahati, Assam, India, for his valuable comments.

REFERENCES
[1] A. Atlas and A. Bestavros. Statistical rate monotonic scheduling.

In 19th IEEE Real-Time Systems Symposium, Madrid, 1998.
[2] J. L. Diaz, D. F. Garcia, et al. Stochastic Analysis of Periodic

Real-time Systems. In23rd IEEE Real-Time Systems Symposium,
Austin, Texas, 2002.

[3] M. Gardner. Probabilistic Analysis and Scheduling of Critical
Soft Real–Time Systems. Ph.D. Thesis. University of Illinois at
Urbana–Champagn. 1999

[4] J. P. Lehoczky. Real–time Queueing Theory. Proceedings of the
17th IEEE Real-Time Systems Symposium. December 1996.

[5] S. Manolache, P. Eles and Z. Peng. Memory and Time-efficient
Schedulability Analysis of Task Sets with Stochastic Execution
Time. 13th Euromicro Conference on Real–Time Systems. 2001.

[6] H. Zhang. Service disciplines for guaranteed performance service
in packet-switching networks, (Invited paper). Proceedings of the
IEEE. 83(10), 1995.

