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Abstract
Safety-critical embedded control systems must support

both periodic and stochastic functions on common hard-
ware. Scheduling techniques that produce a timeline with
predefined blocks for periodic functions are used to guaran-
tee deadlines for critical closed loop periodic control func-
tions (i.e. sensor read, control, actuator write). Aperiodic
processing occurs in periodic timeline gaps. We present
aperiodic response time estimation data using a new au-
tomated binning technique based on a fluid flow analy-
sis coupled with observations on conditional probabilities
for response time values. Prior simulation results showed
good response estimates under a broad range of conditions
for a first-in first-out (fifo) aperiodic server. This paper
presents new response time estimates, collected from a real-
time testbed, using the binning algorithm when an earliest
deadline to start (eds) server is used.1 The eds results are
compared to fifo server results. We discuss benefits, short-
comings, and possible future directions for this statistical
approach.

1. Problem Statement and Some Related Work
Safety-critical embedded control systems must support

both periodic and aperiodic functions on common hard-
ware (e.g. sending messages on a common data bus). Pe-
riodic tasks have a fixed period and a worst case execu-
tion time (WCET). Periodic applications are typically of
the form sensor read, control, and actuator write. State-of-
practice scheduling applications for critical control applica-
tions are often static (e.g. ARINC 653 or messages on a
time-triggered bus) and produce a timeline with predefined
blocks for periodic functions to guarantee deadlines for crit-
ical closed loop periodic control functions.

In statically scheduled systems, aperiodic processing oc-
curs in periodic timeline gaps or equivalently, the back-
ground of the periodic timeline. The stochastic stream
has randomly generated interarrival times (with no mini-
mum inter-arrival time requirement) and service (or mes-
sage transmission) times, and for eds servers, randomly
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1Deadlines in eds and edf (earliest deadline first) are with respect to
start and end of execution, respectively. In eds, started task executions
or message transmissions are not preempted by other tasks from the same
input source. True preemptions on buses are rarely supported.

generated relative deadlines. The aperiodic interarrival and
service rates are denoted by λ and µ, respectively. Applica-
tions that give rise to situations like this include processing
button pushes, remote procedure calls, sending messages
over time-triggered buses, and scheduling stochastic events
in a statically time partitioned system (across multiple time
boundaries over which the task waits or executes). To the
best of our knowledge, the general problem of aperiodic re-
sponse time prediction remains unsolved. The spectrum of
approaches for predicting response times ranges from first
principle analyses to simulation.

Periodic task scheduling and analysis has been well
studied[1]. The literature on purely event driven systems
is huge. Tractable analytic approximations have been suc-
cessfully found when queue lengths are long ([4] for fifo
priority queues and [5] for edf queuing networks) and all
traffic is aperiodic. For predominantly periodic traffic, uti-
lizations can be close to 1, but aperiodic queue lengths re-
main short, in which case approximations based on heavy
traffic theory (with long queue lengths) can provide very
optimistic estimates. Numeric solutions of a stochastic pro-
cess specification can be viable, but for high fidelity models
the solution times tend to be long and solution values are
approximate and specific to the parameter set.

At the other end of the spectrum is simulation or actual
system observation, from which data is collected and an em-
pirical (response time) distribution function (EDF) is con-
structed. Given a sample of k independent and identically
distributed (iid) response time values, {x1, x2, ..., xk}, the
true (unknown) response distribution is pz = Pr[R ≤ z] is
estimated by p̂z,k = k−1[#xj ≤ z]. Using a Kolmogorov-
Smirnov theorem [3] a level 1 − δ confidence band is con-
structed by

P [sup
z

|p̂z,k − pz| > ε] ≤ 2e−2kε2 = δ. (1)

A single empirical distribution function can be compared
to a single simulation in that the results apply only to the
particular setting (viz. system and parameter configurations
such as λ and µ) from which the data was gathered.

We investigate response time data using a binning tech-
nique based on a fluid flow analysis coupled with observa-
tions on conditions for response time values. The same bin
values are used for a fixed periodic timeline, with aperiodic
parameters being permitted to vary. The compact number



of bins yields a parameterized response time representation
suitable for real-time estimation and goodness-of-fit tests
for decision making (See section 3.1).

2. Binning Point Algorithm Outline

Bin generation, illustrated in Figure 1, consists of two
phases. Below, we try provide some intuition for how it
works. Algorithm details are available in [2].

Figure 1. Bins Generation Algorithm

The hyperperiod H is the smallest time for the periodic
message transmission cycle to repeat. Periodic blocking
(busy) intervals alternate with gaps. The ith blocking in-
terval begins at time bi relative to frame start where b1 = 0
and bm+1 = H . The ith gap (idle interval) starts at time gi

and has duration bi+1 − gi.
Define the initial set of binning points BIi = {0 =

b1, g1, ..., bm, gm, bm+1 = H} (i.e. the squares along the
x-axis). This set identifies abrupt changes in the stochastic
flow of aperiodic message transmissions. During a busy in-
terval, arriving aperiodic messages queue and are blocked.
In an aperiodic gap, any queued backlog discharges at an
average rate µ − λ until the queue empties or is again
blocked. Figure 1 illustrates block/gap response time bands
for a static periodic timeline. Aperiodic work (transmission
or execution) occurs only in the shaded bands. The white
bands correspond to blocking intervals.

For an aperiodic fifo server, the response time is equal
to the pending aperiodic and periodic work at the time of
arrival (including its work), plus all future periodic block-
ing times. Given an arrival at time t (mod H), the response
time must fall in one of the shaded areas when drawing a

vertical line from t up. Further binning points are needed
to classify response times in bands for which multiple ar-
rival times might have occurred. For example, in Figure 1
if an observed response time R ∈ [R1, R2] then the set of
all times during which the arrival might have occurred is
marked along the x-axis using rotated brackets (i.e. [ ). For
a particular response time interval, if there is more than one
time interval (mod H) during which the arrival might have
occurred, we call the set of intervals confounding regions.
For R ∈ [R1, R2] there are three confounding regions.

A final set BIf of binning points over a hyperperiod is
computed by computing confounding regions relative to re-
sponse time intervals defined when transitioning from busy
to idle. Finding these new points (marked by circles on
the x-axis) amounts to solving for points where lines inter-
sect, which is both automatable and computationally very
tractable. We have found that under a range of conditions,
it is sufficient to consider only values of R defined when al-
ternating between blocking intervals and gaps because the
aperiodic process flow behaves linearly within the gaps.

Intuitively, BIf contains points at which changes in
stochastic flow are likely to be observed. If response times
over n hyperperiods are of interest, BIf is expanded to
⋃

1≤j≤n j ·BIf . A compact, fixed size response time vector
is defined by R(BIf ) = [p1, p2, ..., pl] where pi = P [R ≤
bpi] for bpi ∈ BIf . Only in simple cases for fifo servers do
we know how to exactly calculate pi. Instead, we use em-
pirical estimates of pi with confidence bands as specified in
Equation 1. Since we are observing (rather than comput-
ing) response times, our binning point analysis only makes
assumptions about aperiodic work discharge rate (or flow),
which does not depend on the ordering of queue entries.
Hence our algorithm appears to hold for service disciplines
with other orderings, such as eds. Linear interpolation is
used for response time estimation between binning points.

3. Response Time Validation and Discussion
We now compare some results of our binning tech-

niques with the traditional empirical distribution function
estimate and its associated confidence bands. Space lim-
its the amount of data that can be shown. The data was
produced by a synthetic workload on a real-time testbed.
To approximate some avionics and automotive applications,
the percentage of periodic traffic, ρ1, constitutes the ma-
jority of traffic. Table 1 lists values for two different BI ,
the busy/idle binning points in a single hyperperiod H , for
H = 200 ms.

In all figures, the mean arrival and service rates, λ and
µ are measured in tasks per second. The hyperperiod
H = 200 ms. The maximum absolute relative deadline
to start of service is D ms. Task interarrival times are uni-
form on [0, 2λ−1], task (message) durations are uniform on
[0, 2µ−1] and task deadlines are uniform on [−D, D]. The
absolute deadline to start of service is the arrival time plus



m ρ1 BIi = [0 = b1, g1, ..., bm, gm, H] size
BIf = all BPs in H; size(BIf ) = l BIf

3 0.67 BIi = H[0, 0.42, 0.5, 0.7, 0.75, 0.8, 1.0]
BIf = [0, 10, 16, 40, 50, 56, 60, 66, 76,

84, 100, 116, 124, 134, 140, 144, 150, 160,

180, 184, 190, 200] 23

1 0.90 BIi = H[0, 0.90, 1.0]
BIf = [0, 20, 180, 200] 4

Table 1. Initial and Final Binning Point Sets

the random relative deadline. We elected eds service instead
of edf service to avoid task message preemption, which is
not supported on most buses.

Figure 2. M67 EDS Response Time Data

When D = 0, the aperiodic server is fifo. When queue
lengths are often zero or one, fifo and eds (or edf) servers
differ little, sometimes to the point of being statistically in-
distinguishable. When the largest absolute relative deadline
is one to two orders of magnitude larger than the average in-
terarrival time, differences in the fifo and eds response time
distributions appeared most visible.

The three darkest lines in the figures (from left to right)
are task service time, interarrival time, and response time
distributions. 80% confidence bands are computed to
bracket and shade a response time distribution. The faint
vertical lines are binning points. The sample size k = 250.

In Figures 2 and 3, ρ1 = 0.67, µ = 300, and λ = 97.
The response time numbers along the x-axis run from 0 to
75.4 ms. The y-axis is a probability, so runs from 0 to 1.

Figure 2 is an eds server with D = 6000 and Figure 3
is a fifo server. The eds confidence band in Figure 2 is un-
changed in Figure 3 to illustrate the contrast between fifo
and eds at the same parameter settings. The shallower left
hand rise and smaller right tail in response times are char-

Figure 3. M67 FIFO RT Data in EDS CB

acteristic when comparing a fifo server to an eds server.

Figure 4. M90 EDS RT Data in FIFO CB

In Figure 4, ρ1 = 0.9, λ = 7, µ = 100, and D = 7000.
The x-axis response time numbers run from 0 to 618.2 ms.
The confidence bands were computed for a fifo server at
the same parameter settings. Since aperiodic queues are
rarely longer than 1, no statistically significant difference
in response times between the servers was observed. Total
measured system utilization is 97%. Note how the binning
points capture many of the inflection points in the aperiodic
response time curve when periodic traffic is heavy.
3.1 Some Advantages of Binning Points
The number of bins is compact and deterministic. The num-
ber of support points (x-values with non-zero probability) is
defined by the number of bins n, not the number of sample
points k. One can also attempt to reduce the final number



of binning points. Points in BI that are close to one another
might be collapsed (e.g. delete one or use an average).

Because the number of bins n depends only on the time-
line generated by periodic message transmission, the sup-
port points are known a priori so response time values ob-
served on-line can be quickly recorded. One benefit of on-
line real-time response time estimation using observed data
in a networking environment is an efficient and compact
representation when passing information to higher level de-
cision making protocols.

Alternatively, decisions might be made locally using sta-
tistical tests to detect changing local conditions. Suppose
Fn and Gn are response time estimates where Fn was com-
puted earlier in time than Gn, where n is the number of
binning points. Since all points reside on a common sup-
port, when comparing two different binned response time
estimates, statistical tests to detect changes in latencies
are O(n) compared to O(k2), where often k � n. The
value of k depends on desired significance level and power
of the tests. The two-sided Kolmogorov-Smirnov statistic
Dn = supx |Fn(x) −Gn(x)| might be applicable to detect
changes at level α ≤ 0.2 using the test

Reject H0 : F = G at level α for Dn >
√

−(ln(α/2))/k.

3.2 Some Disadvantages of Binning Points
Our approach is not without potential shortcomings. We
have observed that when queue lengths are very long, also
with long response time values (say, 10 or more hyperperi-
ods long) closed form heavy traffic models ([4, 5] are likely
to provide a reasonable and more compact approximation.

We have observed cases where the linearly interpolated
binning point response time confidence bands do not con-
tain the observed empirical distributions. Space restrictions
preclude illustrations here. Examples where linear interpo-
lation is not a good estimator along with candidate remedies
can be found in [2].

When tasks complete early and idle periods are not in-
serted for the remaining duration (e.g. a preemptive fixed-
priority scheduler), the upper band structure shown in Fig-
ure 1 is not exact. For fixed release times, the lower block-
ing bands appear unchanged. The selection of a “good” set
of upper band binning points will depend on the variability
of the periodic tasks’ execution times. Our bands provide
an upper bound estimate given available response time data
when periodic tasks use their WCETs. There may be cases
where average periodic task execution times might deter-
mine useful upper bands.

4. Some Future Directions
Our response time estimation procedure appears to work

best when aperiodic message transmission durations are
small relative to H and when the majority of aperiodic re-
sponse times span at most a few hyperperiods (e.g. aperi-
odic ack/naks or interrupts). Our technique is applicable for

estimating response times for soft real-time aperiodics, and
possibly for finding reliable estimators that might be used
for hard-deadline aperiodics (e.g. a value for which 95% of
all messages arrive with high probability).

Formulating system models so data can reliably be used
in statistical tests with quantifiably high assurance can be
challenging. Suitable data might not be available (i.e. too
little data, not iid data, etc.) or statistical tests might not
even exist. When estimators are used only for non-critical
applications, rigorously quantifiable statistical claims may
not be required (from a certification perspective).

Heuristics are common real-time change detection
mechanisms for dynamic adaptation. Accurate differenti-
ation between transient fluctuations and long term system
state changes is a challenge when applying (or develop-
ing) statistical tests for quantifiable detection of dynamic
changes in system configuration.

We evaluated two different aperiodic servers; fifo and
eds. Our analysis used only the fluid flow discharge rate
and made no explicit assumptions about message ordering
provided deadlines are independent of both message arrival
and service times. Other server disciplines might also work.
We previously evaluated exponential servers and interar-
rival time distributions. We suspect that our binning tech-
nique might also work with other distributions.

We have ignored the practical concerns of message over-
heads such as context switching and bus arbitration. Arbi-
trating among distributed aperiodic queues on a multi-drop
bus at the end of a periodic busy interval is a difficult prob-
lem in its own right. Lastly, our response time estimation
procedure was applied to aperiodic traffic over only a single
periodic timeline (as defined by a single bus or processor).
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