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Abstract
We outline how a versatile statistical methodology can

be used in the verification and validation (V&V) process.
This methodology is illustrated on an example of a com-
putation time property for a software implementation of a
non-linear real-time controller defined as a function of con-
troller state variable values. We compare our approach
to verification with some alternative statistical techniques
used for estimating execution times and other measures of
performance. We close with some topics for future work.

1. Problem Overview and Motivation

Verification of embedded systems today is confronting a
crisis. Systems are becoming so complex that they cannot
be reliably verified by traditional methods of testing (e.g.
requirements and structure based testing). At the same time
they are beyond our current ability to model and analyze us-
ing first principles. This paper explores an approach inter-
mediate between these two, a statistically sound and well-
structured testing methodology. The use of empirical data
directly verifies the implementation, by-passing the need to
verify that the implementation complies with an analytic
model. Our methods provide usefully high and quantifiable
levels of confidence for real-world problems, with reason-
able amounts of test data and statistical computation. Our
methods can also provide insight into test design. Collec-
tively, this may lead to both reduced testing effort and in-
creased levels of assurance for systems that otherwise could
only be verified using relatively ad-hoc methods.

2. A Statistical V&V Framework

Our statistical V&V framework is based on Statistical
Learning Theory (SLT) pioneered by Vapnik [4, 5]. Brief
descriptions of the essential mathematical ingredients for
our statistical verification framework are compactly sum-
marized in Table 1.

Roughly, our verification methodology uses empirical
data to select a “best-fitting”(to be defined) region from a
set of predefined regions that ensures near optimal perfor-
mance, relative to a designated property, to within a user-
designated confidence level. Each region can often be de-
scribed by a mathematical function, φα defined on the func-

∗This work was supported in part by the DARPA/AFRL ‘Software En-
abled Control’ program under contract number F33615-01-C-1848.

tion input space ΩX . Collectively the index set and its as-
sociated “region functions” are called a hypothesis space,
denoted by Λ. In Figure 1, the hypothesis index set is
Λ = [0,M ], with each function φα a circle on ΩX ⊆ R2

of radius α (only one function is shown). Sampled data are
labelled or classified. Each of the 20 sampled data values
in classified by a binary label, with 0 (-) as a negative (or
unsafe) data and 1 (+) for a positive (or safe) data. A la-
belled sample is on ΩZ , with z = (x,w) for x ∈ ΩX and
w ∈ ΩW . A “+” classification indicates a desired condition
was observed to hold - for example, execution times less
than T or maximum amplitude less than A.

Other familiar examples of functions that define “sim-
ple” regions in R3 are all cubes, spheres, and pyramids.
Indices for cubes and spheres might be expressed using
a center-point and radius pair, respectively. Pyramids are
compactly represented by their vertices (or defining hyper-
planes). In statistical terms, we seek to find a hypothesis
that “best” explains (i.e. fits) the data. The circle shown in
Figure 1 might best describe the data, depending on the loss
function. Application developers specify hypothesis index

Figure 1. Data Classification Example

set Λ, sample space ΩZ and a set of loss functionQ defined
on Λ and ΩZ . The symmetric difference binary loss,

Q(α, z) = 1 if φα(x) = w and Q(α, z) = 0 otherwise,

is very common. In Figure 1, only the data point with the
“+” label “outside” the circle has a loss of 1.

Making good choices of Λ andQ can be difficult and will
depend on both the application and its requirements. Given
Λ and Q, there is the relationship between η, ε and s that
once two are chosen the third is determined. See Table 1 for
definitions. In turn, Λ and Q affect the sample size s. We
attempt to highlight these tradeoffs.

A measure of complexity, called VC dimension (or
VCD) [4], is associated with the number of sample data



Var Description
ΩZ a sample space from which data is drawn. ΩZ =

ΩX × ΩW . For z ∈ ΩZ , z = (x,w) where x is the
application domain and w is a “training label”. F Z is
an unknown joint probability distribution on ΩZ . The
statistical guarantees are “distribution free” - only mild
regularity conditions are assumed about FZ .

Λ an index set to a predefined set of hypotheses (or region
functions). Each α ∈ Λ identifies a function φα with
domain ΩX .

Q a non-negative loss function on Λ×ΩZ assigns the loss
when selecting z for hypothesis α. Q(α, z) = 0 when
there is “no loss”. For binary Q its range is {0, 1}.

R a risk function defined over Λ. The expected loss for
each hypothesis α and a measure of the “fit” of α. In
symbols, R(α) =

∫

ΩZ

Q(α, z)dFZ(z).
α∗ an optimal hypothesis in Λ, one that minimizes the risk.

R(α∗) = argminα∈ΛR(α). R(α∗) 6= 0, necessarily.
For large R(α∗), no hypothesis in Λ fits the underlying
probability space defined on ΩZ well.

Zs a random sample from ΩZ of size s. Zs = z1, z2, ..., zs

where zj = (xj , wj), 1 ≤ j ≤ s. Zs is the sample
data that drives hypothesis selection in the learning pro-
cess. Zs is assumed independent and identically (iid)
distributed. Relaxation of the iid assumption is dis-
cussed at the end of the paper.

R̂s(α) the empirical risk. R̂(α) estimates the true risk evaluated
at hypothesis α, R(α). For sample Zs

R̂s(α) ≡ s−1

s
∑

j=1

Q(α, zj).

α∗
s a hypothesis that minimizes the empirical risk. s is a

reminder of the dependence on the sample Zs.
Finding a value for α∗

s is the computational part of
the verification problem. For any sample Zs, α∗

s ≡

argminα∈ΛR̂s(α).
ε a bound on the distance between the minimum true risk

and the minimum empirical risk, given a sufficiently
large sample. ε is sometimes called the accuracy of the
estimated optimal risk, R̂s(α∗

s).
1 − η a measure of confidence that the estimated optimal risk

is within ε of the optimal obtainable risk.

Table 1. Verification Setup

points that can be “shattered” (i.e. in some sense uniquely
identified by) a loss function over a hypothesis space. The
VC dimension is defined in terms of the maximal number
of subsets of a sample Zs that can be generated by (binary)
loss function values over hypothesis a space.

We illustrate the concept of VCD via example. Consider
ΩX = [0, 10] and Λ = {[x, y] | 0 ≤ x < y ≤ 10}. The
VCD of Λ on ΩX is d = 2 (which is the same as the VCD
of Λ and Q on ΩZ for binary loss Q). This follows since
for any sample (we need only one sample though) of size
2, we can use elements in Λ to generate all 4 possible sub-
sets. Now consider a sample of size 3. Suppose X3 =
{x1, x2, x3}, with x1 < x2 < x3. No element in Λ can
generate the subset {x1, x3} because {x1, x2, x3} ∩ [a, b]
must include x2 if it includes both x1 and x3. (All other
7 subsets can be generated). Another example we will use
later is that the VCD of a set of simplexes in ΩX = Rn is
n(n + 1). Recall, a simplex in Rn is the region contained

in n+ 1 intersecting hyperplanes. The reader might try this
for triangles in R2.

The VCD was illustrated as the largest number for which
all 2s subsets of a sample Zs could be generated and for
which not all 2s+1 subsets of any sample Zs+1 could be
generated, whereNΛ(s) is the maximum number of subsets
that can be generated for any sample of size s. Vapnik [4, 5]
relates NΛ(s) to the VCD of a parameter space and loss
function in Equation 1.

NΛ(s)

{

= 2s for s ≤ d

≤
(

es

d

)d
for s > d, d ≤ ∞.

. (1)

Equation 1 says that the growth rate of different possible
samples increases only with sample size s and VCD d of
Λ with loss Q, not with the dimensionality of the sample
space ΩZ .

When selecting a hypothesis space and loss function, two
objectives often compete. The set of functions {φα|α ∈ Λ}
should be as simple as possible so that VC dimension is
small. The loss function Q on Λ and ΩZ should fit the data
well, that is R(α∗) ≈ 0.

For finite VCD, d, [5] shows that the empirical risk mini-
mization method, which chooses α∗

s to minimize the empir-
ical risk R̂s(α

∗

s
) on the basis of sample Zs, will converge to

the “right” classifier α∗ in the sense thatR(α∗)− R̂s(α
∗

s) is
small. This convergence result is a form of (statistical) con-
sistency, and is a generalization to the Weak Law of Large
Numbers (WLLN). Finding a verifiably safe region using
Equation 3 reduces the verification problem to one of find-
ing a minimizing function α∗

s
using data Zs.

Vapnik [5] also showed the more specific and very im-
portant result in Equation 2 which transforms the impre-
cise “large number” (yes, but exactly how large?) result to
a practical result, quantifiable for a precisely defined finite
sample size. The final equality in Equation 2 is a defining
property for the relationship between η, ε and sample size s.

P (sup
α∈Λ|R(α) − R̂s(α)| > ε)

≤ 4 exp
(

s
[(

d
[

1 + ln
(

2s

d

)]

/s
)

− (ε− s−1)2
])

≈ 4 · exp
(

d
[

1 + ln
(

2s

d

)]

− s · ε2
)

= η
(2)

Equation 3 describes an asymmetric loss that is “safe”.
Loss is incurred only when a negative label appears in the
positive region of the indicator set for α. The effect is to
shrink the size of sets containing negative labels until an α
that contains few to no points with negative labels is found.
This makes Equation 3 “safe” because an α that omits many
positive points will be selected in favor of an α with even
a handful of negative points. A more detailed explanation
of the rationale and mathematical justification is available
in [1]. For the data in Figure 1, the empirical risk (see Ta-
ble 1), R̂20(α) = 0.1

1For comparison, the symmetric binary loss gives R̂20(α) = 0.05.



Q(α, z) =







0 if φα(x) = 0
0 if φα(x) = w = 1
1 if φα(x) = 1 and w = 0.

(3)

3 OAV Controller V&V Example
To provide a greater sense of the V&V procedure, we

include a sketch of a previous application to the iteration
counts of the control law for the “Organic Air Vehicle” (See
Figure 2).2 Space precludes the control law description,
only the mapping into our V&V framework is presented.
A detailed mathematical description of the controller’s trim
computation is available in [2].

Figure 2. Organic Air Vehicle (OAV)

The OAV has a ducted fan propulsion unit, with con-
trol provided by movable vanes in the propwash. The fact
that the vanes are situated in the propulsion airflow results
in significant nonlinear interactions between the propulsion
and the control surfaces. The real-time trim calculation for
the OAV is an iterative algorithm whose computational time
depends on several state variables, like vehicle velocity and
rotation rates. The computation time must be predictable
for reliable control. Accurate assessment of the range of
these conditions leads to a greater operational envelope for
the vehicle.

For simplicity computation time is equated with iteration
count. The number of iterations must be below some thresh-
old in order for the controller to meet its deadlines. We seek
to estimate the largest flight envelope within which we have
a quantifiable statistical confidence that the iteration count
falls within the permissible threshold. Variables used when
formulating the verification problem are introduced and de-
scribed primarily in Table 2.

Consider the set of hypothesis Λ defined by the sim-
plexes (intersected with ΩX ) described in Table 2, which
has VC dimension 4 · 5 = 20. Figure 3 shows a 2-
dimensional slice on (vx, ψ̇). The dark shaded (blue) as-
terisks show the points at which convergence occurred in
two or fewer iterations (i.e. when w ≤ 2, or the “+” exam-
ples). The lightly shaded (green) asterisks show the points
at which convergence occurred but with more than two iter-
ations. The (red) pluses show regions of divergence (when
iteration count > 50).

2The term “organic” refers to the soldier-portable nature of the vehicle.

Var Description

ΩX For x ∈ ΩX , x = (v, ψ̇), where v ∈ [−20, 200] ×
[−20, 20] × [−10, 40] ⊆ R3 is the body axis velocity
vector and ψ̇ ∈ [−2, 2] is the vertical angular rate.

ΩW = {1, 2,> 2}, the interation count labels.
w For z = (x,w) = ((v, ψ̇), w), w = min (iter-

ations to convergence when computing controller trim
values, 50).

Λ the parameter space index set into the set of all simplexes
contained in ΩX . A simplex in R4 is described by 5
vertices.

Q(α, z) is the asymmetric loss function of Equation 3:

Q(α, z) =

{

1 if φα(x) = 1 and w > 2
0 otherwise

Table 2. OAV Control Variables

Figure 3 shows a candidate simplex for the flight enve-
lope with computions requiring two or fewer iterations. The
2 simplex lines run diagonally. The horizontal and verti-
cal boundaries are the lines that result when intersecting the
simplex with ΩX . For Zs where s = 34, 000 and ε = 0.05,
Equation 2 gives η = 1, which gives us no confidence in
our selected classifier. Frequently η is a requirement, so s
is computed once η and ε are known. For example, when
η ≤ 0.0342, using simplexes, we must have a sample size
s ≥ 82, 000.

Figure 3. OAV Controller Trim Convergence

We previously verified the controller specification using
parallel axis simplexes in R4 which has VC dimension 8.
In that analysis ε = 0.05 and s = 34, 000. An application
of Equation 2 gives η = 0.0395.

Choosing a hypothesis space with smaller VC dimension
always provides greater confidence for a fixed sample size s
and fixed accuracy ε. Often, hypotheses with increased VC
dimension can be found to better fit the data. The cost is
an increased number of samples, and also the possibility of
overfitting the data.



4 Some Other Verification Techniques

When an application’s design is sufficiently complex, a
tractable mathematical analysis for its required properties
becomes infeasible and simulation becomes the tried-and-
true verification method. Virtually all control engineers are
familiar with Monte Carlo techniques as a tool to “test”
their designs, yet the question “how much testing is needed”
rarely seems to be asked, let alone answered. There does
seem to be an acknowledgement that when not enough sim-
ulations are run, the results might not be reliable.

The time and cost for systems integration and field test-
ing of any non-trivial vehicle are well known to dwarf the
sum total of all design verification activities. More times
than not, the simulation test environment is rarely the same
as the target environment. Our statistical verification ap-
proach not only applies on real world data and targets imple-
mentation code, but has the potential to work well in those
settings, factoring in hardware effects (e.g. caching, pipelin-
ing, out-of-order execution, faults) that contribute to execu-
tion time variability. Our study used iteration count and
an assumed WCET per iteration, but our method could be
used with actual controller execution time measurements,
had they been available. This is in contrast to traditional
formal methods approaches (e.g. model checking), where
only a model can be verified.

An alternative to estimating worst case values is to use
extremal statistics, developed specifically to describe the
tails (vs. the mid-range) of a distribution. Burns et. al [3]
report some preliminary success using an extremal distri-
bution to predict WCETs. More generally, they propose a
probabilistic framework for schedulability analysis. Within
their framework, they propose modeling response times as
random variables because schedulability analyses for sys-
tems using only WCETs is far too pessimistic. Within this
framework they are exploring the use of copulas (a sort of
normalized joint distribution representation) to capture the
dependencies of the tasks’ random execution times when
summing them. Because copulas are partially ordered, there
is a “worst case” copula that could be used to provide a
pessimistic estimate of the sum. If the bound is not overly
pessimistic, this might be useful in practice.

5. Some Future Directions
The assumption of an independent and identically dis-

tributed iid sample is common for statistical tests. In
practice, assumptions of stationarity and independence are
rarely met. Consider the task execution times that are de-
pendent on the time varying hardware configuration af-
fected by applications’ uses of caches, schedulers, etc. The
Law of Large Numbers (LLN) over an abstract parameter
space Λ lies at the basis of SLT, and we have been assuming
iid samples. Many variants of the LLN exist, including the
use of dependent and time varying random samples. Under-

standing of how application requirements and implementa-
tions map to the underlying probability space to appropri-
ately apply theoretical variations can be challenging.

The number of samples needed for moderately high lev-
els of assurance is large (10’s to 100’s of thousands). This is
because the SLT forumlation makes almost no distributional
assumptions on FZ - in essence, a most pessimistic distri-
bution is assumed. Sharper bounds on required sample size
can and have been found when additional distributional as-
sumptions on FZ are made (e.g. when data labels are known
to be noise-free). Nonetheless, estimating only the proper-
ties of interest may require fewer samples than first estimat-
ing a joint distribution which is known to be combinatoric
in the number of variables.

The risk function is an average, and the convergence of
the empirical risk to the true risk is based on the LLN. This
raises questions about the suitability of SLT for predicting
extremal (i.e. worst case) statistics. Estimating fixed per-
centiles (e.g. 98th) may be viable. By design, many worst
case estimates are not critical. For example, most control
algorithms can sustain an occaisonal lost input value. We
advocate the codesign principle of coordinated development
of control algorithms with fault and resource management
infrastructures as a viable mechanism for reducing the sig-
nificance of the requirement to “know” extremal values.

Reporting real-valued losses may benefit the further de-
sign of critical tests as well as provide a more realistic risk
evaluation. Under the assumption that “not all faults are
equally bad”, we may want to recognize the really severe
faults and assign greater loss to them.
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