
DAG Scheduling and Analysis on Multiprocessor Systems:
Exploitation of Parallelism and Dependency

Shuai Zhao, Xiaotian Dai, Iain Bate, Alan Burns, Wanli Chang

University of York

Outline

➢ Background

➢ Definition of a DAG task

➢ State-of-the-art

➢ Concurrent provider and consumer (CPC) model

➢ A rule-based DAG schedule

➢ Response time analysis (brief)

➢ Experimental results

➢ Conclusion and Future Work

With ever more complex functionalities in emerging real-time applications, directed acyclic

graphs (DAGs) are used to model functional dependencies.

Notable examples include 5G base stations under ultra reliable low-latency communication and

automotive systems, etc. In these applications, system activities are effectively modelled as a

single recurrent DAG task.

In this work, we study a single periodic non-preemptive (NP) DAG running on a homogeneous

multiprocessor platform.

We propose novel methods on modelling, scheduling and analysing a DAG task, to achieve

shorter makespan and tighter analytical bounds.

Background

A DAG task 𝜏𝑥 is defined by a graph 𝒢 = 𝑉𝑥, 𝐸𝑥 .

𝑉𝑥 denotes nodes in the graph. A node 𝑣𝑥,𝑗 ∈ 𝑉𝑥 is a computation unit that must be executed

sequentially. Each node 𝑣𝑥,𝑗 has a worst-case execution time (WCET) of 𝐶𝑥,𝑗.

𝐸𝑥 is the set of directed edges that connect any two nodes. An edge connecting two nodes

(𝑣𝑥,𝑗 , 𝑣𝑥,𝑘) defines the execution dependency.

Definition of a DAG task

𝑣1

𝑣5 𝑣7

𝑣4

𝑣6

𝑣3

𝑣8

𝑣2

1 1

7

3

3

6 2

1

*For simplicity, the subscript of the DAG task (i.e., 𝑥 for 𝜏𝑥) is omitted in the context with only one DAG task.

This DAG has 8 Nodes: 𝑉 = {𝑣1, … , 𝑣8}.

The number at top right of each node gives its WCET.

For any two nodes connected by an edge, e.g., (𝑣5, 𝑣7), the

later node can start only if the former node has finished.

Example:

For a given node 𝑣𝑗:

• 𝑝𝑟𝑒 𝑣𝑗 = {𝑣𝑘| 𝑣𝑘, 𝑣𝑗 ∈ 𝐸}: the set of predecessor nodes that are connected to 𝑣𝑗.

• 𝑠𝑢𝑐 𝑣𝑗 = {𝑣𝑘| 𝑣𝑗 , 𝑣𝑘 ∈ 𝐸}: the set of successor nodes that are connected from 𝑣𝑗.

• 𝑎𝑛𝑐 𝑣𝑗 : the set of ancestor nodes that are (transitively) connected to 𝑣𝑗.

• 𝑑𝑒𝑠 𝑣𝑗 : the set of descendant nodes that are (transitively) connected from 𝑣𝑗.

• 𝒞 𝑣𝑗 = {𝑣𝑘|𝑣𝑘 ∉ 𝑎𝑛𝑐 𝑣𝑗 ∪ 𝑑𝑒𝑠(𝑣𝑗)}: the set of nodes that execute concurrently with 𝑣𝑗.

Definition of a DAG task

𝑣1

𝑣5 𝒗𝟕

𝑣4

𝑣6

𝑣3

𝑣8

𝑣2

1 1

7

3

3

6
2

1

For 𝑣7 in this example:

𝑝𝑟𝑒 𝑣7 = {𝑣5, 𝑣6}, 𝑠𝑢𝑐 𝑣7 = 𝑣8 ,

𝑎𝑛𝑐 𝑣7 = {𝑣1, 𝑣5, 𝑣6}, 𝑑𝑒𝑠 𝑣7 = 𝑣8 ,

𝒞 𝑣7 = {𝑣2, 𝑣3, 𝑣4}.

Example:

In addition, a DAG has the following fundamental features:

• A path 𝜆𝑎 is a node sequence in the DAG.
• 𝑙𝑒𝑛(𝜆𝑎) gives the length of 𝜆𝑎, i.e., the sum of WCETs of all nodes in a path.

• 𝜆∗ is the longest path of the DAG, termed as the critical path.

• Nodes in 𝜆∗ is termed as critical nodes. Other nodes are termed as non-critical nodes 𝑉¬.

• 𝐿 = 𝑙𝑒𝑛(𝜆∗): length of a DAG. 𝑊 = σ𝑣𝑗∈𝑉
𝐶𝑗: workload of a DAG.

Definition of a DAG task

𝑣1

𝑣5 𝑣7

𝑣4

𝑣6

𝑣3

𝑣8

𝑣2

1 1

7

3

3

6
2

1

Critical path: 𝜆∗ = 𝑣1, 𝑣5, 𝑣7, 𝑣8 .

Non-critical nodes: 𝑉¬ = 𝑣2, 𝑣3, 𝑣4, 𝑣6 .

Length and workload of the DAG: 𝐿 = 10, 𝑊 = 24.

Example:

Majority of existing work schedules DAG tasks by a work-conserving scheduler, which never

idles a core if there exists pending workload.

For any work-conserving schedule, the worst-case finish of a DAG is effectively bounded by

the worst-case finish of its critical path, known as the classic approach.

However, this analysis can be pessimistic if the execution order of nodes is known a prior.

State-of-the-art

𝑣1
𝑣5 𝑣7

𝑣4

𝑣6

𝑣3

𝑣8

𝑣2

1 1

7

3

3

6
2

1

With 𝐿 = 10 and 𝑊 = 24, 𝑅 = 10 +
1

2
24 − 10 = 17.

Example:

𝑅 = 𝐿 +
1

𝑚
(𝑊 − 𝐿)

𝑣1 𝑣5 𝑣7

𝑣2𝑣6
𝑣4

𝑣3
𝑣8

0 1 7 9 12 13

With a schedule that guarantees the above execution order, a

worst-case makespan of 13 can be achieved, instead of 17.

For a DAG with an explicit order known a prior, a tighter bound can be obtained.

In this case, a node 𝑣𝑗 can only be delayed by its concurrent nodes 𝒞(𝑣𝑗) that are scheduled

before 𝑣𝑗 , denoted as ℐ(𝑣𝑗).

State-of-the-art

𝑅 = max
𝑣𝑗∈𝑉

𝑓(𝑣𝑗)

𝑓 𝑣𝑗 = max
𝑣𝑘∈𝑝𝑟𝑒(𝑣𝑗)

𝑓(𝑣𝑘) + 𝐶𝑗 +
1

𝑚
×෍

𝑣𝑘∈ℐ(𝑣𝑗)
𝐶𝑘

1 2

𝑣𝑗 can becomes ready only if all nodes in 𝑝𝑟𝑒(𝑣𝑗) have finished.1

2 After ready, 𝑣𝑗 is delayed by concurrent nodes that are scheduled before 𝑣𝑗, i.e., ℐ(𝑣𝑗).

However, this analysis still has certain degree of pessimism, by assuming each node in ℐ(𝑣𝑗)

can cause a delay to 𝑣𝑗, which is not always true due to potential parallel execution.

State-of-the-art

𝑅 = max
𝑣𝑗∈𝑉

𝑓(𝑣𝑗)

𝑓 𝑣𝑗 = max
𝑣𝑘∈𝑝𝑟𝑒(𝑣𝑗)

𝑓(𝑣𝑘) + 𝐶𝑗 +
1

𝑚
×෍

𝑣𝑘∈ℐ(𝑣𝑗)
𝐶𝑘

1 2

𝑣𝑗 can becomes ready only if all nodes in

𝑝𝑟𝑒(𝑣𝑗) have finished.

1

2 After ready, 𝑣𝑗 is delayed by concurrent nodes

that are scheduled before 𝑣𝑗, i.e., ℐ(𝑣𝑗).

𝑣1 𝑣5 𝑣7

𝑣2𝑣6
𝑣4

𝑣3
𝑣8

0 1 7 9 12 13

𝑣1 → 𝑣5 → 𝑣7 → 𝑣6 → 𝑣2 → 𝑣3 → 𝑣4 → 𝑣8
𝑓 𝑣6 = 𝑓 𝑣1 + 𝐶6 +

1

𝑚
𝐶5 + 𝐶7

= 1 + 1 +
1

2
6 + 2

= 6

𝑣1
𝑣5 𝑣7

𝑣4

𝑣6

𝑣3

𝑣8

𝑣2

1 1

7

3

3

6 2

1

Example:

2

As for scheduling, the state-of-the-art method schedules nodes by guaranteeing:
1. Critical path first.

2. Early predecessor paths of the critical path first.

However, for the predecessor paths with the same earliness, they are ordered by the length of

their longest complete paths.

This cannot maximize parallelism and can lead to a prolonged finish time.

State-of-the-art

𝑣1 𝑣2 𝑣3

𝑣9

𝑣4

𝑣10

𝑣5 𝑣6

𝑣7 𝑣8

… …

With this method, nodes are scheduled by the order:
1. 𝑣1, 𝑣2
2. 𝑣5, 𝑣7, 𝑣9… ← nodes with an early interference.

3. 𝑣3
4. 𝑣6, 𝑣8, 𝑣10… ← nodes with a late interference.

5. 𝑣4

For {𝑣5, 𝑣7, 𝑣9} or {𝑣6, 𝑣8, 𝑣10}, the order of their lengths can be exact

opposite to their complete paths. This leads to a prolonged finish.

Example:

Based on the above, minimizing the delay on the critical path effectively reduces the makespan.
• This implies the critical path first execution.

However, this can be difficult to achieve because:
1. The critical path can be delayed multiple times by different non-critical nodes.

2. The execution order of these nodes has a direct impact on the delay.

To fully exploit node dependency and parallel, a concurrent provider and consumer (CPC)

model is proposed.

This model divides the critical path to a set of consecutive sub-paths. For each sub-path, CPC

identifies non-critical nodes that can:
1. Execute concurrently with the sub-path.

2. Impose a delay to the start of the next sub-path.

Concurrent provider and consumer model

… … …

sub-path 1 sub-path 2 sub-path 3 sub-path 4

The intuition is, with each critical sub-path executed first on one core, it provides a conceptual

“capacity” for the concurrent non-critical nodes to run on the rest costs in parallel.

This capacity can be well-utilized to execute non-critical nodes, and will not cause any delay

the critical path.

For this reason, the critical path is termed as the capacity providers Θ∗ and the non-critical

nodes are consumers Θ.

Each provider 𝜃𝑖
∗ ∈ Θ∗ offers certain capacity (the length of the provider) for concurrent

consumers to execute in parallel.

Concurrent provider and consumer model

… … …

𝜃1
∗ 𝜃2

∗ 𝜃3
∗ 𝜃4

∗

Starting from the first node in the critical path, a capacity provider 𝜃𝑖
∗ is formed by taking the

following nodes that cannot be delayed by non-critical nodes.
• Only the first node in a provider can incur a delay.

Then, for each provider 𝜃𝑖
∗, its consumer nodes 𝐹(𝜃𝑖

∗) are given by:
• Nodes that execute concurrently with 𝜃𝑖

∗.

• Nodes that can delay the next provider 𝜃𝑖+1
∗ .

Concurrent provider and consumer model

This example has 4 providers:
𝜃1
∗ = {𝑣1, 𝑣2}, 𝜃2

∗ = {𝑣3, 𝑣4}, 𝜃3
∗ = {𝑣5}, 𝜃4

∗ = {𝑣6}.

𝐹 𝜃1
∗ = 𝑣7, 𝑣8 ,

𝐹 𝜃2
∗ = 𝑣9, 𝑣10, 𝑣11 ,

𝐹 𝜃3
∗ = 𝑣12, 𝑣13, 𝑣14 ,

𝐹 𝜃4
∗ = ∅.

Example:

𝑣1 𝑣2 𝑣3

𝑣8

𝑣5

𝑣11

𝑣9

𝑣7 𝑣10

𝑣6

𝑣14

𝑣12

𝑣13

𝜃1
∗ 𝜃2

∗ 𝜃3
∗ 𝜃4

∗

𝐹(𝜃1
∗)

𝐹(𝜃2
∗) 𝐹(𝜃3

∗)

𝑣4

In addition, there can be certain nodes that are not in 𝐹 𝜃𝑖
∗ , but can execute concurrently with 𝜃𝑖

∗ ,

denoted as 𝐺(𝜃𝑖
∗).

• Nodes in 𝐺(𝜃𝑖
∗) can execute concurrently with 𝐹(𝜃𝑖

∗).
• This imposes a delay to the finish of 𝐹(𝜃𝑖

∗), and hence, the start of 𝜃𝑖+1
∗ .

Concurrent provider and consumer model

This example has 4 providers:
𝜃1
∗ = {𝑣1, 𝑣2}, 𝜃2

∗ = {𝑣3, 𝑣4}, 𝜃3
∗ = {𝑣5}, 𝜃4

∗ = {𝑣6}.

𝐹 𝜃1
∗ = 𝑣7, 𝑣8 ,

𝐹 𝜃2
∗ = 𝑣9, 𝑣10, 𝑣11 ,

𝐹 𝜃3
∗ = 𝑣12, 𝑣13, 𝑣14 ,

𝐹 𝜃4
∗ = ∅.

𝐺 𝜃1
∗ = 𝑣9, 𝑣12 ,

𝐺 𝜃2
∗ = 𝑣12, 𝑣13, 𝑣14 ,

𝐺 𝜃3
∗ = ∅,

𝐺 𝜃4
∗ = ∅.

Example:

𝑣1 𝑣2 𝑣3

𝑣8

𝑣5

𝑣11

𝑣9

𝑣7 𝑣10

𝑣6

𝑣14

𝑣12

𝑣13

𝜃1
∗ 𝜃2

∗ 𝜃3
∗ 𝜃4

∗

𝑣4

𝐺(𝜃1
∗) 𝐺(𝜃2

∗)
𝐹(𝜃1

∗)

Based on CPC, a rule-based scheduling method is proposed to minimize the makespan.

Rule 1. Provider nodes first.
★ This provides the maximum capacity for non-critical nodes to execute in parallel.

Rule 2. Early consumer group first.
★ This minimizes the interference to a consumer group 𝐹 𝜃𝑖

∗ , from nodes in 𝐺 𝜃𝑖
∗ .

A rule-based DAG schedule

𝑣1 𝑣2 𝑣3

𝑣8

𝑣5

𝑣11

𝑣9

𝑣7 𝑣10

𝑣6

𝑣14

𝑣12

𝑣13

𝜃1
∗ 𝜃2

∗ 𝜃3
∗ 𝜃4

∗

𝐹(𝜃1
∗) 𝐹(𝜃2

∗) 𝐹(𝜃3
∗)

𝑣4

𝑣6

𝑣1 𝑣2

𝑣8

𝑣7

𝑣3

𝑣11

𝑣9

𝑣10

𝑣4 𝑣5

𝑣14

𝑣12

𝑣13

Apply
Rules 1-2

Example:

Then, for each 𝐹 𝜃𝑖
∗ , the objective is to minimize its finish time. However, simply applying

certain heuristic is not sufficient as each 𝐹 𝜃𝑖
∗ can form a smaller local DAG 𝒢′ = 𝑉𝑥

′, 𝐸𝑥
′ .

Therefore, the CPC is applied recursively to form inner CPC models, with Rules 1-2 applied on

each inner CPC model. This process repeats until paths in a consumer group are independent.

Then, the final rule is applied to independent consumer paths in each inner-most CPC.

Rule 3*. Longer path in a consumer group first.
★ This maximizes node-level parallelism and minimizes the finish time of 𝐹 𝜃𝑖

∗ .

A rule-based DAG schedule

𝑣1 𝑣2

𝑣9

𝑣3

𝑣10

𝑣5 𝑣6

𝑣7 𝑣8 𝑣11𝑣4
𝑣9 𝑣10

𝑣5 𝑣6

𝑣7 𝑣8 𝑣11𝑣4

inner CPC

construction

Apply
Rule 3

If 𝐶9 > 𝐶5 and 𝐶10 > 𝐶6:

• 𝑣7 → 𝑣9 → 𝑣5
• 𝑣8 → 𝑣10 → 𝑣6

Example:

Different from existing schedule, the proposed method performs the following:
1. Transform the DAG to the proposed CPC model.

2. Statically order the execution of each node.

3. Schedule the nodes at run-time based on the pre-planned order.

Steps 1-2 can be performed offline if the input DAG is known before run-time, which effectively

reduces its scheduling cost to that of the traditional Fixed-Priority Scheduling.

A rule-based DAG schedule

𝑣1

𝑣5 𝑣7

𝑣4

𝑣6

𝑣3

𝑣8

𝑣2
Step 1:

Construct

CPC model

Step 2:
Static

ordering

1

2 3

7

4

6

8

5 Step 3:
Run-time
schedule

Run-time Scheduler

Ready queue

2 63 54 …

1

Scheduled node

Providers Early consumer groups Late consumer groups

1

7

3

3

6

1

2

1

With CPC and schedule proposed, a new response time analysis is developed to achieve

tighter bounds than existing methods.

The analysis provides two bounds:
• The first bound assumes critical path first with any execution order of non-critical nodes.

• The second bound assumes critical path first with an explicit execution order of non-critical nodes.

The analysis computes the worst-case finish of a DAG by:

1. bounds 𝛼𝑖 for each provider 𝜃𝑖
∗ ∈ Θ∗, and applies it as a safe reduction on the delay of critical path.

2. Bounds the delay caused by the interfering workload of each 𝜃𝑖
∗ ∈ Θ∗, i.e., the worst-case finish of

nodes in 𝐹 𝜃𝑖
∗ .

Response time analysis (brief)

𝜃𝑖
∗

𝜶𝒊

𝐹 𝜃𝑖
∗

𝐹 𝜃𝑖
∗

𝐺 𝜃𝑖
∗

𝐺 𝜃𝑖
∗

Parallel workload

… …𝜃𝑖+1
∗

Interfering workload

The worst-case start of 𝜃𝑖+1
∗

t

𝐹 𝜃𝑖
∗

𝐺 𝜃𝑖
∗

m

m-1

Experimental Results

The experiments aim to demonstrate the effectiveness of proposed schedule and analysis.

Evaluated methods:
• The proposed analysis that only assumes critical path first execution (rta-cpf).

• The proposed analysis for explicit execution order (rta-cpf-eo).

• The proposed rule-based execution order (EO).

• The classic analysis for any work-conserving schedule (classic).

• The state-of-art schedule and analysis methods (He et al. 2019 [1]).

System Setting:
• Number of cores 𝑚.

• A parallelism indicator 𝑝.

• The length of critical path %𝐿.

[1] Q. He, N. Guan, Z. Guo et al., Intra-task priority assignment in real-time scheduling of DAG tasks on multi-cores, IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 10, pp. 2283–2295, 2019.

Experimental Results

Evaluation of worst-case makespan:

The proposed methods leads to shorter (more accurate)

makespan when:
1. The number of cores is relatively high.

2. The parallelism of the DAG is relatively low (for rta-cpf only).

3. The critical path is long.

With random 𝑝 and %𝐿 With 𝑚 = 4 and random %𝐿

With 𝑚 = 4 and 𝑝 = 8

Experimental Results

Effectiveness of the proposed schedule and analysis:

The proposed schedule has a better performance:
1. A higher percentage and significance of improvement.

2. A higher number of advantage cases.

Similar observations are also obtained for the

proposed and existing analysis.

Conclusion

In this work, we proposed:
• A novel concurrent provider and consumer model.

• Captures node parallelism and dependency.

• Can be applied recursively to fully phrase a DAG.

• A rule-based scheduling method.
• Improves node-level parallelism.

• Reduces the makespan of the DAG.

• A response time analysis.
• Fully exploits parallel execution.

• Tightens the worst-case makespan approximations.

In future work, we aim to:
• Further optimizing the proposed methods.

• Supporting multi-DAGs with a work-conserving approach.

Thank you for your attention!

