A Framework For The Evaluation Of Measurement-based Timing Analyses

Benjamin Lesage, David Griffin, Frank Soboczenski, Iain Bate, Rob Davis

RTNS 2015 - November 3rd

Context pWCET estimation

- **pWCET:** Bound the occurrence of timing events in the system
 - WCET with attached exceedance probability
 - **Sound**: Upper-bound the actual execution time
 - **Tight**: Close to the actual execution time

Context pWCET estimation

- **pWCET:** Bound the occurrence of timing events in the system
 - WCET with attached exceedance probability
 - **Sound**: Upper-bound the actual execution time
 - **Tight**: Close to the actual execution time

Context pWCET estimation

- **pWCET:** Bound the occurrence of timing events in the system
 - WCET with attached exceedance probability
 - **Sound**: Upper-bound the actual execution time
 - **Tight**: Close to the actual execution time

Context pWCET estimation

- Sound and Tight comparisons are difficult without a ground truth
 - Smaller estimates may be optimistic
 - Larger estimates may be pessimistic

Context

MBPTA – Measurement Based Probabilistic Timing Analysis [ECRTS 2012]

- MBPTA: derive a pWCET from runs of the analysed task
 - Predicts the tail of the pWCET using Extreme Value Theory
- Abstraction from the analysed platform and task
 - Sources of execution time variability must be bounded
 - Analysed samples must cover all paths in the application

Context

MBPTA – Measurement Based Probabilistic Timing Analysis [ECRTS 2012]

- MBPTA: derive a pWCET from runs of the analysed task
 - Predicts the tail of the pWCET using Extreme Value Theory
- Abstraction from the analysed platform and task
 - Sources of execution time variability must be bounded
 - Analysed samples must cover all paths in the application

Context

MBPTA – Measurement Based Probabilistic Timing Analysis [ECRTS 2012]

- MBPTA: derive a pWCET from runs of the analysed task
 - Predicts the tail of the pWCET using Extreme Value Theory
- Abstraction from the analysed platform and task
 - Sources of execution time variability must be bounded
 - Analysed samples must cover all paths in the application

Framework for the evaluation of MBPTA Overview

- Program model: Generate the structure of a task
 - Configured by the end-user
- Temporal model: Attach temporal information to blocks
 - Relies on Basic Block Measurements
 - Abstractions allow exact pWCET computation
- Model simulator: Collection of time samples
 - Controlled to satisfy coverage requirements
 - Samples fed to the Timing analysis

Outline

- Context
- Framework for the evaluation of MBPTA
 - Temporal Model
 - Task Program Model
 - pWCET
 - ВВМ
- Evaluation
- Conclusion

Framework for the evaluation of MBPTA Independent Block Model

Basic block: sequence of instructions with a single entry/exit

The behaviour of a block depends on the platform P and its state s

$$P(b),s) = (t', s')$$

Framework for the evaluation of MBPTA Independent Block Model

Basic block: sequence of instructions with a single entry/exit

The behaviour of a block depends on the platform P and its state s

$$P(b),s) = (t', s')$$

- Sources of execution time variability must be bounded
 - Through probabilistic or deterministic mechanisms
 - Contributes to the independence of blocks' behaviour
- Focus on path coverage requirement

Framework for the evaluation of MBPTA Independent Block Model

Basic block: sequence of instructions with a single entry/exit

- The behaviour of a block depends on the platform P
 - Captured by an Execution Time Profile: ETP_h
 - Independent of the execution history
 - Akin to the output of low-level timing analyses
- Path: a finite sequence of basic blocks

The execution time of a path is the convolution of its components

$$\mathsf{pET}(\pi) = \bigotimes_{b \in \pi} ETP_b$$

- Task: a finite set of paths
 - Represented as an Abstract Syntax Tree (AST)
 - Tree nodes map to syntactic structures in code
 - Leafs map to basic blocks in code
- Capture standard programming patterns
- Ease reasoning about WCET computation
- No arbitrary flow between blocks
- No support for flow constraints

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

$$\longrightarrow$$
 COND \longrightarrow BODY \longrightarrow COND \longrightarrow COND \longrightarrow

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

$$pWCET(LOOP) = pWCET(COND)^{iter+1} \otimes pWCET(BODY)^{iter}$$

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path
- The pWCET of a node is a combination of its children
 - Similar to tree-based WCET computation
 - Relies on convolution (⊗) and envelope (□) operations

Framework for the evaluation of MBPTA

Gathering basic block measurements (BBM)

- Capture timings off a real application
 - Ensure representative low level timings
 - Assume independence of blocks
 - Assume covering observations
- Extract the structure of the application
 - Valgrind Instrumentation framework
 - Extract traces of memory accesses
- Collect cache hits/misses at the block level
 - Callgrind instrumentation tool
 - Simulate a randomised memory hierarchy
 - Satisfy architectural requirements of MBPTA
 - Capture probabilistic profiles
- Instrument FFmpeg h264 decoding primitive
 - Readily available input vectors
 - Vast array of basic block profiles

Realism – Experimental conditions

Does the framework produces realistic execution time traces?

- Compare observed and simulated execution times
- Observed: Collect execution time and path for each run
 - Build BBM of blocks across all runs
 - Process ≈8000 frames per input vector
- **Simulated**: Simulate each observed path in the framework
 - Pick execution times in traversed BBM
 - Ignore dependencies between traversed blocks
- Input vectors from the archive.org movie database

Evaluation

Evaluation

Realism - NOSF

Realism - NOSF

Realism - NOSF

Robustness - Experimental conditions

How robust is MBPTA in the absence of path coverage?

- Compare predicted and exact pWCET
 - Metric: Normalised pWCET at 10-9 (over exact value)
- Control coverage of samples fed to the analysis
 - Enforce path coverage during simulations
 - Randomly ban nodes in the AST
 - Only ban non-dominating nodes
- 100 randomly generated tasks
 - Pick ETP in BBM database
 - 8000 runs per sample
 - Remove tasks with un-coverable path set
 - 2 samples per task/per experiment

Evaluation Robustness - Results

Evaluation
Robustness - Results

Evaluation
Robustness - Results

Evaluation
Robustness - Results

Evaluation Robustness - Results

Evaluation
Robustness - Results

Evaluation
Robustness - Results

Conclusion

A framework for measurement-based timing analyses:

- Abstract the superfluous from the platform model
- Rely on observed timing data
- Build upon existing high-level timing analyses
- Detect problems, not their absence

On the robustness of MBPTA:

- Path coverage is an expensive requirement
- Biased samples can produce sound estimates

Future work

- Introduce (controlled) dependencies between blocks
- Introduce (controlled) dependencies between runs

Questions?

- Intel 4004: http://www.intel.com.tr/content/www/tr/tr/history/museum-story-of-intel-4004.html
- Post'it: alegri / 4freephotos.com
- Abascus: HB / Wikimedia.org
- Torn paper: http://imgarcade.com

Realism - KUNG

Realism - KUNG

Realism - PHOP

Realism - PHOP

