

A Framework For The Evaluation Of Measurement-based Timing Analyses

Benjamin Lesage, David Griffin, Frank Soboczenski, Iain Bate, Rob Davis

RTNS 2015 - November 3rd

UNIVERSITY *of York*

PROXIMA

Context

pWCET estimation

- **pWCET:** Bound the occurrence of timing events in the system
 - WCET with attached exceedance probability
 - **Sound:** Upper-bound the actual execution time
 - **Tight:** Close to the actual execution time

Context

pWCET estimation

- **pWCET:** Bound the occurrence of timing events in the system
 - WCET with attached exceedance probability
 - **Sound:** Upper-bound the actual execution time
 - **Tight:** Close to the actual execution time

Context

pWCET estimation

- **pWCET:** Bound the occurrence of timing events in the system
 - WCET with attached exceedance probability
 - **Sound:** Upper-bound the actual execution time
 - **Tight:** Close to the actual execution time

Context

pWCET estimation

- **Sound** and **Tight** comparisons are difficult without a ground truth
 - Smaller estimates may be optimistic
 - Larger estimates may be pessimistic

Context

MBPTA – Measurement Based Probabilistic Timing Analysis [ECRTS 2012]

- **MBPTA**: derive a pWCET from runs of the analysed task
 - Predicts the tail of the pWCET using Extreme Value Theory
- Abstraction from the analysed platform and task
 - Sources of execution time variability must be bounded
 - Analysed samples must cover all paths in the application

Context

MBPTA – Measurement Based Probabilistic Timing Analysis [ECRTS 2012]

- **MBPTA**: derive a pWCET from runs of the analysed task
 - Predicts the tail of the pWCET using Extreme Value Theory
- Abstraction from the analysed platform and task
 - Sources of execution time variability must be bounded
 - Analysed samples must cover all paths in the application

Context

MBPTA – Measurement Based Probabilistic Timing Analysis [ECRTS 2012]

- **MBPTA**: derive a pWCET from runs of the analysed task
 - Predicts the tail of the pWCET using Extreme Value Theory
- Abstraction from the analysed platform and task
 - Sources of execution time variability must be bounded
 - **Analysed samples must cover all paths in the application**

Framework for the evaluation of MBPTA

Overview

- **Program model:** Generate the structure of a task
 - Configured by the end-user
- **Temporal model:** Attach temporal information to blocks
 - Relies on **Basic Block Measurements**
 - Abstractions allow exact pWCET computation
- **Model simulator:** Collection of time samples
 - Controlled to satisfy coverage requirements
 - Samples fed to the Timing analysis

Outline

- Context
- Framework for the evaluation of MBPTA
 - Temporal Model
 - Task
 - Program Model
 - pWCET
 - BBM
- Evaluation
- Conclusion

Framework for the evaluation of MBPTA

Independent Block Model

- **Basic block:** sequence of instructions with a single entry/exit

- The behaviour of a block depends on the **platform P** and its **state s**

$$P(b, s) = (t', s')$$

Framework for the evaluation of MBPTA

Independent Block Model

- **Basic block:** sequence of instructions with a single entry/exit

b

- The behaviour of a block depends on the **platform P** and its **state s**

$$P(b, s) = (t', s')$$

- Sources of execution time variability must be bounded
 - Through **probabilistic** or deterministic mechanisms
 - Contributes to the independence of blocks' behaviour
- Focus on path coverage requirement

Framework for the evaluation of MBPTA

Independent Block Model

- **Basic block:** sequence of instructions with a single entry/exit

- The behaviour of a block depends on the **platform P**
 - Captured by an Execution Time Profile: ETP_b
 - Independent of the execution history
 - Akin to the output of low-level timing analyses
- **Path:** a finite sequence of basic blocks

- The **execution time** of a path is the convolution of its components

$$pET(\pi) = \bigotimes_{b \in \pi} ETP_b$$

Framework for the evaluation of MBPTA

Representing tasks

- **Task:** a finite set of paths
 - Represented as an **Abstract Syntax Tree** (AST)
 - Tree nodes map to syntactic structures in code
 - Leafs map to basic blocks in code
- Capture standard programming patterns
- Ease reasoning about WCET computation
- No arbitrary flow between blocks
- No support for flow constraints

Framework for the evaluation of MBPTA

Generating tasks

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

Framework for the evaluation of MBPTA

Generating tasks

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

Framework for the evaluation of MBPTA

Generating tasks

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

Framework for the evaluation of MBPTA

Generating tasks

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

Framework for the evaluation of MBPTA

Generating tasks

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

Framework for the evaluation of MBPTA

Generating tasks

- Start from the root of the tree
- Randomly pick node type
 - Selection constrained by user
- Generate relevant node type parameters
- Generate subtree for all node children

Framework for the evaluation of MBPTA

pWCET computation – An example

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

Framework for the evaluation of MBPTA

pWCET computation – An example

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

Framework for the evaluation of MBPTA

pWCET computation – An example

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

Framework for the evaluation of MBPTA

pWCET computation – An example

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

Framework for the evaluation of MBPTA

pWCET computation – An example

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path

Framework for the evaluation of MBPTA

pWCET computation – An example

$$pWCET(LOOP) = pWCET(COND)^{iter+1} \otimes pWCET(BODY)^{iter}$$

- The behaviour of a node is independent of the execution history
 - Both in timings and execution path
- The pWCET of a node is a combination of its children
 - Similar to tree-based WCET computation
 - Relies on convolution (\otimes) and envelope (\sqcup) operations

Framework for the evaluation of MBPTA

Gathering basic block measurements (BBM)

- Capture timings off a real application
 - Ensure representative low level timings
 - Assume independence of blocks
 - Assume covering observations
- Extract the structure of the application
 - **Valgrind** Instrumentation framework
 - Extract traces of memory accesses
- Collect cache hits/misses at the block level
 - **Callgrind** instrumentation tool
 - Simulate a randomised memory hierarchy
 - Satisfy architectural requirements of MBPTA
 - Capture probabilistic profiles
- Instrument **FFmpeg** h264 decoding primitive
 - Readily available input vectors
 - Vast array of basic block profiles

Evaluation

Realism – Experimental conditions

Does the framework produces realistic execution time traces ?

- Compare observed and simulated execution times
- **Observed:** Collect execution time and path for each run
 - Build BBM of blocks across all runs
 - Process \approx 8000 frames per input vector
- **Simulated:** Simulate each observed path in the framework
 - Pick execution times in traversed BBM
 - Ignore dependencies between traversed blocks
- Input vectors from the archive.org movie database

Evaluation

Realism - PLAN

Evaluation

Realism - NOSF

Evaluation

Realism - NOSF

Evaluation

Realism - NOSF

Evaluation

Robustness - Experimental conditions

How robust is MBPTA in the absence of path coverage ?

- Compare predicted and exact pWCET
 - Metric: Normalised pWCET at 10^{-9} (over exact value)
- Control coverage of samples fed to the analysis
 - Enforce path coverage during simulations
 - Randomly ban nodes in the AST
 - Only ban non-dominating nodes
- 100 randomly generated tasks
 - Pick ETP in BBM database
 - 8000 runs per sample
 - Remove tasks with un-coverable path set
 - 2 samples per task/per experiment

Evaluation

Robustness - Results

Conclusion

A framework for measurement-based timing analyses:

- Abstract the superfluous from the platform model
- Rely on observed timing data
- Build upon existing high-level timing analyses
- Detect problems, not their absence

On the robustness of MBPTA:

- Path coverage is an expensive requirement
- Biased samples can produce sound estimates

Future work

- Introduce (controlled) dependencies between blocks
- Introduce (controlled) dependencies between runs

Questions ?

- Intel 4004: <http://www.intel.com.tr/content/www/tr/tr/history/museum-story-of-intel-4004.html>
- Post'it: alegrí / 4freephotos.com
- Abascus: HB / Wikimedia.org
- Torn paper: <http://imgarcade.com>

Evaluation

Realism - KUNG

Evaluation

Realism - KUNG

Evaluation

Realism - PHOP

Evaluation

Realism - PHOP

