
On Priority Assignment for
Controller Area Network (CAN)
when some Message Identifiers

are Fixed

Robert I. Davis1,2, Alan Burns1, Victor Pollex3 , Frank Slomka3

1Real-Time Systems Research Group, University of York, UK
2AOSTE Team, INRIA, Paris-Rocquencourt, France

3Institute of Embedded / Real-Time Systems, Ulm University, Germany

2

Outline
 Background to Controller Area Network (CAN)
 Two priority assignment problems P1 and P2
 Recap of Scheduling model, analysis and priority assignment
 Simple solution to problem P1
 Why the simple solution doesn’t work for problem P2

 Counter example
 Solutions to problem P2 with some constraints
 Case study – some experimental results
 Summary and conclusions

3

CAN Background
 Controller Area Network (CAN)

 Simple, robust and efficient serial communications bus for in-
vehicle networks

 Average family car now has approx 25-35 Electronic Control
Units (ECUs) connected via CAN

 Today almost every new car sold uses CAN

 Information on CAN
 Used to communicate 1000s of small signals packed into 100s

of messages
 Real-time constraints on signal transmission ~ 10ms to 1 sec

4

CAN Protocol: Data Frame Format

Key point: Message Identifier determines priority for access to bus
(11-bit or 29-bit identifiers for messages which must be unique)

5

CAN Scheduling and Analysis
 CAN Scheduling

 Messages compete for access to the bus based on message ID
(priority)

 With each node implementing a priority queue, network can be
modelled as if there was a single global queue

 Once a message starts transmission it cannot be pre-empted
 Resembles single processor fixed priority non-pre-emptive

scheduling

 CAN Schedulability Analysis
 Derived by Tindell in 1994

 Calculates worst-case response times of all CAN messages
 Used to check if all messages meet their deadlines in the worst-case

 Corrected in 2007

 Example: CAN
 Typical automotive config:

 80 messages
 10ms -1s periods
 All priority queues

 x10,000 message sets

 Breakdown utilisation
 Scale bus speed to find util. at

which deadlines are missed
 80% v 30% or less

6

Priority assignment is important!

Optimal
Priorities

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Fr
eq

ue
nc

y

Breakdown Utilisation

Optimal
Priorities

Random
Priorities

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Fr
eq

ue
nc

y

Breakdown Utilisation

7

Priority assignment in practice
 Legacy systems

 Very rarely (if ever) a clean sheet new design
 Networks composed of some existing ECUs and some new ECUs
 Identifiers of some messages may be fixed

 Priority assignment problem

 How to assign the relative priorities of the new messages among
the fixed ones

 Two variants of the problem:
 P1: gaps between the identifiers of fixed messages are all large

enough to accommodate all of the new messages (large gaps)
 P2: the gaps aren’t sufficient (small gaps)

These two problems are the focus of the talk

8

System Model

 Each CAN message has a:
 Unique priority m (identifier)
 Maximum transmission time Cm
 Minimum inter-arrival time or

period Tm
 Deadline Dm
 Maximum queuing jitter Jm

Tm

Rm

Jm Cm

Initiating
event

Transmission
starts

Message queued
ready to transmit

Transmission
completes

Dm

 Compute:
 Worst-case queuing delay wm
 Worst-case response time

 Rm= Jm +wm+Cm
 Compare with deadline

9

Optimal Priority Assignment

 Definition: Optimal Priority Assignment

 For a given system model, a priority assignment policy P is

referred to as optimal if there are no systems, compliant with
the model, that are schedulable using another priority
assignment policy that are not also schedulable using policy P.

 An optimal priority assignment policy can schedule any system

that can be scheduled using any other priority assignment

 May also consider priority assignment policies that are optimal

with respect to a specific (sufficient) schedulability test

according to the test according to the test

10

Robust Priority Assignment

 Drawback of (greedy) Optimal Priority Assignment
 Arbitrary choice of schedulable messages at each priority level
 May leave the system only just schedulable – i.e fragile not robust

to minor changes

 In practice messages may be subject to additional interference
E(α,w,i) function describes this
 E.g. Interference on the bus causing errors and message re-

transmission

 Want a robust priority ordering, able to tolerate the
maximum amount of additional interference

11

Robust Priority Assignment
 Definition: Robust Priority Assignment

 (with an additional interference function E(α,w,i))

 For a given system model and additional interference function, a

priority assignment policy P is referred to as robust if there are no
systems, compliant with the system model, that are schedulable and
can tolerate additional interference characterized by a scaling factor α
using another priority assignment policy Q that are not also
schedulable and can tolerate additional interference characterized by
the same or larger scaling factor using priority assignment policy P.

 Of all feasible priority assignments, the robust priority assignment
tolerates the most additional interference (largest α)

12

Sufficient Schedulability Test S1
 Blocking

 Queuing delay

 Response time

k
mhpk k

bitk
n
m

mmm
n
mm

n
m C

T
JwCBCwEw ∑

∈∀

+











 ++
+++=

)(

1),max()(τ

)(max
)(

k
mlpk

m CB
∈

=

mmmm CwJR ++=

13

Robust Priority Assignment (RPA) for
problem P1

for each logical priority level k, lowest first
{

for each unassigned msg m from the set of NEW msgs
and the lowest priority unassigned fixed msg
{

 determine the largest value of α for which msg m
 is schedulable at priority k assuming that all
 unassigned msgs have higher priorities
 }
 if none of the above msgs are schedulable at priority k
 {
 return unschedulable
 }
 else
 {
 assign the schedulable msg that tolerates the
 max α at logical priority k to logical priority k
 }
}
return schedulable

 P1: Gaps are large
enough to
accommodate all
freely assignable
messages

 Simple solution based
on Audsley’s (greedy)
OPA algorithm

 Works with Exact E1
and sufficient S1, S2
tests

14

Why does this work for problem P1?
OPA (&RPA) algorithm applicability

 OPA algorithm provides optimal priority assignment w.r.t. any
schedulability test S for fixed priority scheduling provided that
three conditions are met…
Condition 1: Schedulability of a task may, according to the test, be dependent

on the set of higher priority tasks, but not on their relative priority ordering
Condition 2: Schedulability of a task may, according to the test, be dependent

on the set of lower priority tasks, but not on their relative priority ordering
Condition 3: When the priorities of any two tasks of adjacent priority are

swapped, the task being assigned the higher priority cannot become
unschedulable according to the test, if it was previously deemed
schedulable at the lower priority

 Tests meeting these conditions referred to as OPA-compatible

Powerful idea as we have said very little
about the actual schedulability test

hence broad applicability

15

What about problem P2?

 P2: Recall some gaps are not large enough to accommodate all
freely assignable messages

 Assume when constraint is broken => unschedulable
 P1 and P2 can ignore cases where fixed ID messages have

priorities swapped as this cannot give a valid and so “schedulable”
ordering

 P2 swapping fixed and new messages in the logical ordering can
violate the constraint (gap size) => the three conditions are NOT
met

Suspicion that a greedy approach won’t always work

Prior work by Schmidt [23] on Robust Priority Assignment for
problem P2 uses a greedy approach…

 Computed values of α (additional
interference tolerated)

 16

Counter example for P2
(Exact test E1)

 Assume just 4 priorities possible
 Message parameters

Task C T D

ΜA 125 1000 750

ΜF 125 1000 350

ΜB 125 1000 750

ΜC 75 1000 1000

Priority

Message

ΜA ΜF ΜB ΜC

4 300 NS 300 550

3 300 NS 300 -

2 NS 375 -

1 - - -
 Exact test E1

 Priority 4: All messages have WCRT of 450
 Priority 3: Again all messages have WCRT of 450
 Priority 2: Forced to assign fixed message MF but it’s not schedulable!
 Algorithm gives up => unschedulable

Order ΜC (highest), ΜF, ΜA, ΜB is schedulable
Response times of 200, 325, 450, 450 respectively (α = 800, 25, 300, 300)

 Computed values of α (additional
interference tolerated)

17

Counter example for P2
(Sufficient test S1)

 Assume just 4 priorities possible
 Message parameters

Task C T D

ΜA 125 1000 750

ΜF 125 1000 350

ΜB 125 1000 750

ΜC 75 1000 1000

Priority

Message

ΜA ΜF ΜB ΜC

4 175 NS 175 475

3 250 NS 250 -

2 NS 375 -

1 - - -
 Sufficient test S1

 Same issues slightly different numbers

Order ΜC (highest), ΜF, ΜA, ΜB is schedulable
Response times of 200, 325, 450, 525 respectively (α = 800, 25, 300, 175)

 Real systems
 More priority levels but same problem arises

18

Partial solution to Problem P2
 Make an approximation A1:

 In the analysis consider all messages to have the same max length
(need not actually be the case)

 With test S1 and approximation A1 we can prove (in the
paper) that if a schedulable ordering exists there are optimal
and robust orderings where all freely assignable messages are
in D-J monotonic priority order (partial order)

 Problem reduced to finding a merge between
D-JMPO for new messages and the fixed order of existing
(fixed) messages

Many possible merges are possible preserving order of both
sets

19

OPA Algorithm for Problem P2

 Builds a logical priority order
of new and fixed messages

 Prefer to assign new
messages to the lowest
possible priorities

 Proved optimal w.r.t. test S1

and approx. A1 in the paper

 Complexity O(n2) single
message schedulability tests

20

OPA for Problem P2 example

Fix-5

Fix-4

Fix-3

Fix-2

Fix-1

Fix-0

New-7

New-6

New-5

New-4

New-3

New-2

New-8

D
-J

M
PO

Fixed messages

New-1

New messages

New messages at the
lowest possible priorities
comensurate with
schedulability

21

RPA Algorithm for Problem P2

 OPA for P2
 Suffers from the classic OPA problem –

the assignment may be fragile – only
just schedulable

 RPA Algorithm for P2
 Intuition

 Start with OPA assignment (new
messages at lowest priorities)

 Identify message that constrains
robustness to smallest α

 Move it up in logical priority above next
higher priority fixed message

 Ripple all higher priority new messages
up to maintain D-J partial order

 Repeat until no longer possible to
increase robustness (e.g. constrained by
spacing or a fixed message

22

RPA for Problem P2

Fix-5

Fix-4

Fix-3

Fix-2

Fix-1

Fix-0

Fixed message

New-7

New-6

New-5

New-4

New-3

New-2

New-8

New-1

New message

23

Case Study: Automotive
 Specific configuration from an automotive supplier
 10 ECUs, 85 messages, nominally 500 Kbit/s

 Message periods in range 10 to 1000 ms
 1-8 data bytes in each message (60 of max length)

24

Case Study: Automotive

Expt. Schedulability
test

Priority
order

Min. bus
speed

Max. bus
Utilisation

1 Exact E1 OPA 275.8 Kbit/s 84.7%

2 Sufficient S2 D-JMPO 276.3 Kbit/s 84.5%

3 Sufficient S2 & A1 D-JMPO 302.5 Kbit/s 77.2%

4 Exact E1 Specified 750.9 Kbit/s 31.1%

 Default, all freely assignable messages

25

Case Study: Automotive
 10 ECUs, 85 messages, nominally 500 Kbit/s
 Messages sent by ECUs 1 and 6 fixed IDs

26

OPA using S1 and A1

Min bus speed
408.6 Kbit/s

Max bus Util.
57.1%

Robustness

α = 863
bit times

(5 msg re-tx)

New messages
have lowest priorities

Fixed messages
have highest priorities

27

RPA using S1 and A1

Min bus speed
378.8 Kbit/s

Max bus Util.
61.7%

Robustness

α = 1268
 bit times

(7 msg re-tx)

Interleaved New and
Fixed messages

28

Summary and Conclusions
 Investigated problem of priority assignment when some

message IDs (priorities) are fixed
 Very common problem in practice due to integration of legacy

ECUs / ECUs which cannot be easily reprogrammed to use
different message IDs

 Two variants of the problem

 P1: gaps between fixed messages are enough to
accommodate all freely assignable messages

 P2: gaps are not large enough

29

Summary and Conclusions
 Problem P1 admits a simple solution using an exact test

(or sufficient tests)

 Problem P2 is harder to solve
 Greedy approach doesn’t work – counter example given to

prior work on Robust Priority Assignment
 Can solve the problem when using sufficient test and an

approximation in the analysis (messages of same length)
 Finding a tractable solution for exact test or even sufficient

tests without the approximation A1 is open and an interesting
area for further research

 Brute force approach is no use – case study has over a
googol (10100) different priority orderings possible

30

Recommendations
 Avoid problems P1 and P2 occurring in the first

place
 Use CAN middleware that allows message

identifiers to be re-programmed post production

 Spread out the Message IDs used
 The assignment problem is then P1 and can be

solved easily

 Use a Robust Priority Assignment
 Gives maximum tolerance to interference

 Don’t use ad-hoc methods of priority assignment

 The resulting max bus utilisation is very poor
(An easy way to waste half the bandwidth)

Fixed IDs

31

Questions?

	On Priority Assignment for �Controller Area Network (CAN) when some Message Identifiers�are Fixed
	Outline
	CAN Background
	CAN Protocol: Data Frame Format
	CAN Scheduling and Analysis
	Priority assignment is important!
	Priority assignment in practice
	System Model
	�Optimal Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Sufficient Schedulability Test S1
	Robust Priority Assignment (RPA) for problem P1
	Why does this work for problem P1? OPA (&RPA) algorithm applicability
	What about problem P2?
	Counter example for P2�(Exact test E1)
	Counter example for P2�(Sufficient test S1)
	Partial solution to Problem P2
	OPA Algorithm for Problem P2�
	OPA for Problem P2 example�
	RPA Algorithm for Problem P2�
	RPA for Problem P2�
	Case Study: Automotive
	Case Study: Automotive
	Case Study: Automotive
	OPA using S1 and A1
	RPA using S1 and A1
	Summary and Conclusions
	Summary and Conclusions
	Recommendations
	Questions?

