
8-169XAPP 027.001

Application Note BY PETER ALFKE AND BERNIE NEW

Summary

This Application Note discusses various approaches that are available for implementing state machines in LCA
devices. In particular, the one-hot-encoding scheme for medium-sized state machines is discussed.

XAPP 027.001

Implementing State
Machines in LCA Devices

Demonstrates

State Machine Design
One-hot Encoding

LCA Family

XC3000/XC3100/XC3100A

Introduction

State-machine methodology defines the contents of every
flip-flop in a design under every circumstance that might
arise. It also defines all the possible transitions that can
cause the design to go from one of these states to another.
In its simplest form, this is just a rigorous way of designing
synchronous logic, like 4-bit counters. For more complex
designs, the state-machine approach gives the designer a
tool to analyze all possible operating conditions, and so
avoid overlooked hang-up states or undesired transitions.
LCA devices with their abundance of flip-flops lend them-
selves well to state-machine designs.

Using the 5-input function generator of the XC3000 family
devices as a 32-bit ROM, a state machine with up to 32
states with no conditional jumps uses only five CLBs. Five
registered CLB outputs drive the five function generator
inputs of five CLBs in parallel. This implements a fully
programmable sequencer such as a synchronous counter.

For a smaller number of states, some inputs can be used as
conditional jump inputs. Encoding these condition codes,
however, may require an additional level of logic which
reduces the maximum clock rate.

Synchronous Counters

Using only two CLBs, it is possible to construct fully syn-
chronous 4-bit counters with arbitrary count sequences,
Figure 1. The CLB Clock Enable inputs even provide count-
enable control. The count length, count direction, and even
the code sequence is determined by the configuration. The
number of possible count sequences is factorial 15, i.e.,
more than 1012. All four outputs are available, and while the
counter cannot be preset to an arbitrary value, it can be
cleared by an asynchronous input.

Table 1 shows four common count sequences. Of particular
interest is the Gray code, which offers glitch-less decoding,
since only one bit changes on any transition. A Gray-code
counter can also be reliably read asynchronously. In con-
trast, if a binary counter is read during its transition between
7 and 8, for example, any code might be detected.

Decimal Binary Gray X3 Binary X3 Gray

0 0000 0000 0011 0010
1 0001 0001 0100 0110
2 0010 0011 0101 0111
3 0011 0010 0110 0101
4 0100 0110 0111 0100
5 0101 0111 1000 1100
6 0110 0101 1001 1101
7 0111 0100 1010 1111
8 1000 1100 1011 1110
9 1001 1101 1100 1010

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Figure 1. Synchronous 4-Bit Counter in 2 CLBs Table 1. Four Common Binary Count Sequences

Any Sequence:
3

2

1

0

3

2

1

0

3

2

1

0

Q
Q
Q
Q

Q
Q
Q
Q

Q

Q

Q

Q

Binary

Gray

BCD

X3

X3-Gray

Biquinary

Etc.

X3086

Function
Generator

Function
Generator

D Q

D Q

D Q

D Q

Implementing State Machines in LCA Devices

8-170XAPP 027.001

Four-bit counters constructed as described above can
easily be concatenated into longer, four-bits-at-a-time ripple-
carry counters. For each 4-bit digit, a third CLB is used to
detect an arbitrary terminal count value, and AND this with
the incoming Count Enable to provide the Count Enable to
the next digit.

Waveform Generator

Arbitrary binary waveforms of any length up to 32 clock
periods can be generated using only three XC3000 series
CLBs, Figure 2. The waveform generation is fully
synchronous, and may be paused at any time, using the
CLB Clock Enable. It may also be restarted, using the
asynchronous clear.

Five flip-flops, Q0-4, form a linear feedback shift-register
counter. The 5-input combinatorial function generator, F0,
determines both the modulus and the count sequence;
there are no illegal or hang-up states. The function genera-
tor, F1, operates as a ROM, and can be programmed to
provide any conceivable decode of the counter. Flip-flop,
Q5, synchronizes and de-glitches the decoder output.

The following examples demonstrate the arbitrary nature of
the waveforms that can be generated.

Example 1. + 28 counter with its output High at times
T2, T3, T10, T22 through T27

Example 2. +19 counter with its output Low at times
T9, T12, T15, T18.

Simple State Machines

The simple state machine shown in Figure 3 uses only 10
CLBs, and has up to 16 states. Each of eight outputs
decode/encode any combination of states. The state
machine is based on a 5-CLB next-state look-up table.

Each state corresponds to two look-up table locations that
store two arbitrarily defined next states. From any state, the
C input controls a two-way branching by selecting which of
the two possible next states is asserted. For hold loops, one
of the next states should be the current state; and to avoid
branching, both destination states should be made equal.

Figure 3. Simple Sate Machine

8

(1 CLB)

Activate 8-Way Branch

C

B

A

CONTROL
INPUTS

State
Machine
Output

32 Word
Next-State
Look-Up

Table
(5 CLBs)

State
Reg

Decode/
Encode
(4 CLBs)

X3085

Figure 2. Synchronous 5-Bit Waveform Generator in 3 CLBs

0

4

3

2

Q
Q
Q
Q

Q

X3087

1Q 2Q 3Q 4Q

Q
1

0

5

4

3

2

Q
Q
Q
Q

Q

Q
1

0

1F

0F

Encoded Output
(any pattern)

270

e.g.

8-171XAPP 027.001

The state machine can also perform 8-way branches from
any state so programmed. The branch destinations must all
fall in two quadrants (0..3, 4...7, 8...11 or 12...15). The
choice of the two quadrants is arbitrarily programmed into
the look-up table; C selects between the two quadrants, and
A and B select the state within the quadrant.

Activation of the 8-way branch mechanism is controlled by
a fifth state bit that is set during the transition into the state.
This bit controls a multiplexer that replaces the two LSB of
the destination state with the control inputs A and B. Note
that as the fifth bit is independent of A and B, it must be set,
or not, on a per quadrant basis during an 8-way branch.

Examples:

• From state 3, if C = High, go to 5, else go to 8

• From state 7, if C = High, go to 3, else stay in 7

• From state 9, unconditionally go to 2

• From state 6, execute the truth table below

Truth Table

A B C = Low C = Hig h

0 0 12 0

1 0 13 1

0 1 14 2

1 1 15 3

One-Hot Encoded State Machines

The state machines described have encoded state bits. For
an N-state state machine, fewer than N flip-flops are used

(but ≥ log2N), and a unique combination of these flip-flops
is set in each state; each flip-flop is set in several states.
While this minimizes the number of flip-flops, it increases
the complexity of the logic controlling each flip-flop.

In LCA devices, flip-flops are plentiful, and there is no need
to conserve them. Consequently, for medium-sized state
machines, it is better to use a One-Hot encoding scheme
(OHE). OHE increases the number of flip-flops required,
but reduces the logic complexity associated with each of
them, thereby boosting performance.

In an OHE state machine, one flip-flop is assigned to each
state. It is set during that state, and only during that state.
The state machine is implemented as a shift-register-like
structure, where a single One is passed from flip-flop to flip-
flop, sometimes holding in the same flip-flop, skipping bits
of the shift register or moving to a parallel shift register,
Figure 4a and b.

The control logic associated with each state bit involves
ORing the transitions into the state, including any hold loop.
Each of these transitions will involve a previous state,
which, by design, is represented by a single bit. This bit
may, or may not, be ANDed with some decode of the control
bits inputs.

It is the localization of the control logic that leads to the
performance increase. For each state bit, the control logic
only involves the limited number of state bits from which
there are transitions and the conditions that control those
transitions. This permits shallow logic structures between
flip-flops, often only requiring the function generator asso-
ciated with the state-bit flip-flop. In addition, no state decod-
ing is necessary, and state encoding can only require the
ORing of state bits.

ST 0 ST 1 ST 2 ST 3 ST 4 ST 5 ST 6

C8C

C1 C2
C4

C1

C4

C8B

ST 7 ST 8

C2

C8A
Control
Bits

X3088

Figure 4a. Prototype OHE State Machine

Implementing State Machines in LCA Devices

8-172XAPP 027.001

Figure 4b. State Diagram for Prototype OHE State Machine

0

1

2

3

4

5

6

7

8

C4
C4

C2

C1

C8C

C8B

C8A

C1

C2

X3089

8

7

R
e
g

XC3220

32K x 8 EPROM

Data Addrs

Control
Inputs

State Machine
Outputs

X5315

Figure 5. Rudimentary Complex State Machine

Complex State Machines

Small- and medium-sized state machines can easily be
implemented within an LCA device, as shown above. For
large, complex state machines, however, it is better to use
the LCA device to implement a simple microsequencer, and
store the control program externally, Figure 5.

For fastest operation, a high-speed SRAM should be used
for the control program. This may be loaded from a micro-
processor, or shadowed by an EPROM. For slower opera-
tion requiring non-volatility, an EPROM can be used di-
rectly. When an EPROM is used, the number of compo-
nents can be reduced by storing both the LCA configuration
data and the state-machine control program in the same
device.

If an XC3020 is configured in the Master Parallel mode and
it reads its configuration data out of a 256K (32K x 8)
EPROM, it only requires 6% of the addresses, from the top
location 7FFF (32K) through 77FF (about 30K). The re-
maining 94% of the EPROM can be used as a next-state
look-up table with a capacity of 240 states.

Eight state bits are read out of the EPROM and registered
in the LCA device which can perform any required decoding

or encoding of the state-machine outputs. The registered
state bits also form part of the new EPROM address,
defining a block of 128 possible next states. The 7-bit
condition code completes the EPROM address and selects
which of 128 next states is actually asserted.

Each transition is, in effect, a 128-way branch. However,
the branching complexity will normally be reduced by
assigning identical values to many of the 128 possible next
states.

Since the top 16 address locations are used for configura-
tion data, the state codes, which form the 8 MSBs of the
EPROM address, are limited to 240 different values, 0...239.
The control inputs provide the seven LSBs of the EPROM
address. If the control inputs are asynchronous, they must
be registered for reliable operation.

This rudimentary state machine can thus have 240 different
states, and can jump from any state to any one of 128
arbitrarily defined next states, according to a 7-bit condition
code. In its simplest form, this basic design consumes no
CLB resources in the LCA, just IOB flip-flops for the state
register. Even so, it permits a number of states and a multi-
way branch complexity far in excess of any normal need.

The user has all the logic resources of the LCA available to
add features like the following.

• State decoding/encoding
• Stack registers
• Loop counters
• More sophisticated branch logic, etc.

This design is straightforward, inexpensive, compact and
extremely flexible. Its speed is limited primarily by the
control store access time; faster access times can be
obtained using SRAMs in place of EPROMs.

