Delay Fault Diagnosis Using Timing I nformation

Zhiyuan Wang'

Department of Electrical and Computer Engineering
University of California, Santa Barbara,CA,93106

{wzy,mms}@ece.ucsb.edu

Abstract

In modern technologies, process variations can be quite
substantial, often causing design timing failures. It is
essential that those errors be correctly and quickly diag-
nosed. Unfortunately, the resolution of the existing delay-
fault diagnostic methodologies is still unsatisfactory. In
this paper, we investigate the feasibility of using the circuit
timing-information to guide the delay-fault diagnosis. We
propose a novel and efficient diagnostic approach based
on the timing window propagation (TWP) to achieve sig-
nificantly better diagnostic results than those of an existing
delay-fault diagnostic commercial tool. Besides locating
the source of the timing errors, for each identified candi-
date our method deter mines the most probable delay defect
size. The experimental results indicate that the new method
diagnoses timing faults with very good resolution.

1. Introduction

Due to process-parameters variations, a circuit may fail
to operate at the desired clock speed. A critical task for a
failure analyzer is to locate quickly and accurately the
cause of timing failures. The quality of failure analyzer is
measured by their resolution, which is defined as a ratio of
the number of true faults to the total number of reported
candidates. Unfortunately, the existing delay fault-diagnos-
tic methodologies suffer from very poor resolution. Indus-
trial data suggest that on average, it may take about 240
hours to locate an open via defect by screening under the
microscope the failure candidates reported by diagnostic
tool. If too many candidates are reported by the diagnostic
tool, the time-to-market requirement is hard to satisfy.

Delay fault diagnosis has been studied in the past. How-
ever, most of the existing works explicitly or implicitly
assume that the delay-fault-model-based simulation results
reflect exactly the delay-defect behavior in real silicon [4]-
[7]. However, this assumption is generally not true. It is
well known that different paths in a circuit may have dif-
ferent delays and slacks. A real delay defect can demon-
strate itself only on those sensitized paths whose slacks are
smaller than the delay-size of the defect. Other delay
defects cannot be observed. The matching mechanism used

Malgorzata Marek-Sadowska'

Kun-Han Tsai® Janusz Rajski?

2Mentor Graphics Corporation
Wilsonville, OR, 97070
{hans_tsai,janusz_rajski} @mentorg.com

in some of the existing techniques may produce wrong or
inconclusive results due to mismatches between the delay
fault simulation results and the real defect behavior.

The algorithms based on path-tracing alleviate this
problem [6]. They back-trace the sensitized paths from
each failing PO or a scan-cell. They work based on the
assumption that the failure has been caused by a single
fault. Therefore the real faulty site should be located in the
intersection of the fanin cones of the observed failure POs
or scan-cells. However, in practice, this method produces
still too many candidates.

A more recent work advocates using statistical timing
information to guide the delay defect diagnosis [8][9]
which produces good diagnostic results. In this method it is
assumed that the probability density functions (pdf’s) of
each internal cell/interconnect are known. In reality, how-
ever, the accurate pdf information may not be easily avail-
able.

In [3] the authors describe an approach based on static
timing information targeting the multiple delay-fault diag-
nosis. For each fault candidate, they try to use a robustly
tested path and observe a fault-free situation to determine
the upper and lower bounds for a suspect delay fault. The
experimental results [3] show a much improved diagnostic
resolution when compared to non-timing-based
approaches. However, the resolution is still unsatisfactory
for time-to-market requirements.

In this paper, we propose a delay defect diagnosis
method based on the timing information extracted from the
layout. We apply a simulation-based approach to diagnose
the timing failure responses. For a given design, the circuit
timing information is obtained from the SDF (standard
delay format) file which contains the interconnect delay
and gate pin-to-pin rising/falling delay. Our novel and effi-
cient technique based on the Timing Window Propagation
(TWP), diagnoses the failure responses caused by delay
defects. Experimental results show that our method not
only reports quite accurately the fault candidates (high res-
olution) but also suggests delay-defect sizes of the reported
candidates.

The rest of the paper is organized as follows. In Section
2 we introduce the preliminary concepts and explain
briefly the delay-fault diagnosis algorithm used in the

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

existing commercial tool. In Section 3, we describe our
diagnostic algorithm. In Section 4, we discuss some practi-
cal issues and the feasibility of our method. In Section 5,
for industrial and ISCAS circuits, we report resolution, and
performance. Section 6 concludes the paper.

2. Préiminary

In this paper we assume that a single fault is present in
the circuit and it is modeled as a transition fault [1] (slow
to rise, slow to fall, slow). Due to its simplicity, this model
has been widely used in the majority of the delay fault test-
ing and diagnosis works [12].

Since we will be referring to a commercial, delay-fault
diagnostic tool, for the sake of completeness, we summa-
rize this algorithm here. We call it AlQng timing. The
AlGno timing 1s also based on the single-transition fault-
model.

We say that the fault simulation result covers the failure
response when the faulty effect can propagate to all the
observed failure outputs. It is possible that the fault simula-
tion may cause more primary outputs (PO) to fail.

AIgno_timing:

1. Initialize the fault candidate list using the path-trac-
ing technique. The initial fault candidates satisfy the fol-
lowing requirements which reduce the search space and
improve diagnostic efficiency:

1.1 The fault must reside in the input cone of a failing
PO of the given pattern.

1.2 If a failing pattern affects more than one PO, the
candidate fault must reside in the intersection of all the
input cones of the failing POs (single delay fault per pat-
tern assumption).

2. Simulate each transition fault on the initial candidate
list to see if the simulation results cover the observed fail-
ure responses. If they do, store the fault as a candidate and
assign to it a weight equal to the number of patterns it
explains in the current list.

3. After explaining the entire failing-pattern list, or
when all faults in the initial list have been examined, the
algorithm terminates and reports the possible candidate
sites. Candidate faults are sorted by their weights. The fault
with the greatest weight is reported first.

DL X
DAL DT]

X failing PO [_] passing PO

Fig. 1: Example of cover

Because of the cover relationship between the observed
and simulated results, and based on the single-fault
assumption, we conclude that if indeed a real single-delay
fault has caused the timing failure, then that fault must be
on the reported candidate list. However, the diagnostic
results on real designs produce a large number of candi-

fault simulation result

observed failure responses

dates. The purpose of this work is to improve further the
diagnostic resolution and to prune the unlikely candidates.

3. Our Approach

In this work, we investigate the feasibility and effi-
ciency of using the delay and timing information for delay
fault diagnosis.

We obtain the circuit delay and timing information from
the SDF files (refer to IEEE DASC P1497 SDF Standard
[13] for more details about the file format). SDF file con-
tains the internal gate timing/delay and the interconnect
delay. For each pin-to-pin and interconnect, SDF provides
the rising/falling transition delay if the transition occurs.

3.1 Timing-based Simulator

We have developed a framework which utilizes the
delay information to emulate the real chip and tester timing
behavior during at-speed testing. This framework allows us
to evaluate our diagnostic algorithm. We do not include the
implementation details here due to the page limit. Instead
we give a simple example to show how we emulate the real
circuit timing/delay for given test sets. In this example, we
use a pair of delay values to represent the pin-to-pin rising
and falling delays. All the examples discussed in this paper
are based on this simplification. However, in our frame-
work these values are replaced by pairs of delay ranges
which span from the fastest rising (falling) delay to the
slowest rising (falling) delay.

Consider the example in figure 2. The numbers shown
beside each gate’s inputs are the corresponding rising/fall-
ing delays from the input to the output of that gate. For
example, if there is a transition on the output of the gate g,
caused by the signal Arising transition, the delay from A to
g, output E is 5. Here we ignore all the interconnect delays
to simplify our explanation. For different patterns (struc-
tural or functional tests), the circuit delays and long(est)
paths may vary.

rising/falling
7.5/7.7

)j

F
g3
6/6.9 [6.5/6.7
Cl ID

Fig. 2: Timing based simulation example

For the pattern P1: { ABCD}: {r 1r 1} (r = rising), there
are 2 rising transitions on E and F. Because the logic value
“1” is controlling for the OR gate g, the circuit delay will
be decided by the earliest transition, which occurs on E. So
even though there is a longer delay on F, its effect cannot
be propagated further. The longest path delay in the good
circuit for this pattern is 5+7=12. The path which contrib-
utes to the circuit delay is from Ato Z.

For the pattern P2: {ABCD}: {f 1 f f} (f =falling) there
are 2 falling transitions on E and F, because 0 is a control-

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

ling value for the AND gates g, and g3. The circuit delay
will be decided by the latest transition, which occurs on F.
Note that F’s delay is defined by C and not by D, whose
delay is longer. The longest path delay in a good circuit
mode for this pattern is 6.24+7.7=13.9. The path which
determines the circuit delay is from C to Z.

3.2 Timing Window Propagation (TWP)

In this section, we describe our novel simulation tech-
nique, the timing window propagation (TWP). The purpose
of this technique is to determine, for a given fault candi-
date, its capability of explaining the failing and passing
pattern responses.

We define the timing window (TW) of a fault candidate
as a delay range [a,b] whose lower bound is the smallest
possible delay size and the upper bound is the biggest pos-
sible delay size.

We define a conventional interval-arithmetic on the tim-
ing windows. Assuming Ty = [tyty] and Tp = [tt], we
have:

N+T =[t,+1, t,+ ty]
L-1,=[t,-t, t,-t)]
NI, = [max(t, t), min(t, ty)]
Lol,=[min(t, t), max(t, £,)]

For a given pattern P and a fault candidate f under eval-
uation, we begin the timing-fault simulation from the
faulty location f by assigning there an initial timing win-
dow (TW) [0,T]. The lower bound of this window is O,
which means that the minimum delay for f is O. The initial
upper bound for f is the operating clock period T. For each
candidate, those windows will be propagated (and possibly
shrunk) along the sensitized paths.

The examples in figure 3 show how the timing windows
are updated as they propagate through an AND gate. For
other gate types and combinations of rising and falling sig-
nals, the rules are similar. If the f’s faulty effect propagates
to a signal line, the corresponding TW can also propagate
to this line. The symbol R (F) stands for rising(falling)
transition on the signal line.

[max(a,(t2-t1)),b] [a,b] [ab]
R|Z Z|R
q 0 ‘F F | t1 t2
R‘ R F R ‘ R d
[a,bk (b [a,b}“ Igc,]

(@) (b) (©

Fig. 3: Timing Window Propagation Examples
The example in Figure 3(a) shows how the lower bound
of a TWis updated. Suppose the faulty effect propagates to
A and the TWon A is [a,b], and the current simulating pat-
tern produces rising transitions on both A and B. To propa-
gate the delay effect from A to Z, the delay value on A and
B must satisfy the condition ¢ +a> ¢, , where t1 and t2
are the fault-free delay values calculated as described in

Section 3.1. In Figure 3 examples, we assume that the pin-
to-pin rising and falling delay values are the same for A-Z
and B-Z. The lower bound of the TW must be equal to or
greater than max(a, (t,-t1)). The new TW at Z becomes

[max(a, (tp-ty),0].
For fanout branches as shown in Fig. 3(b), the TWS sim-
ply propagate to each branch from the stem.

In Fig. 3(c) we have the fanout reconvergence situation.
The faulty effect propagated to both inputs from different
fanout branches of the failure’s source. The timing window
at Ais TWx = [a,b] and at B is TWg = [c,d]. Suppose that
the AND gate’s inputs have rising transitions. We first
derive the delay value range at Z before deriving the TW,
range at Z. In this example, the delay range at A is Dy =
[ty+4a, t;+Db] and the delay range at Bis Dg = [ty,+C, t,+d].
The delay range at Z is the [max(t;+a,t,+c), max(t;+b,
t+d)].

Next we determine the TW,. We need to consider two
cases separately.

Case 1: D, Dy = ® which implies that the delay on one
of the inputs dominates the delay at Z regardless the delay
changes at the other input. In this case, we simply propa-
gate the TW from the input which has a bigger delay to Z.

Case 2: UynDz#® which implies that both inputs may
contribute to the delay at Z. We will analyze the overlapped
delay range only. The non-overlapped delay range is the
same as the case 1 above. Here, we assume Dp=Dg.

Case 2.1 If TWyn THy#® then W, = Th O Th |
which means that a defect of any size in the timing window
A or B could produce a failure at Z. We merge these two
timing windows with no loss of information.

Case2.2 If 7W,nTH, =& then TWyand TWg are
disjoint. It is possible to merge these two TWSs to form a
bigger timing window. But this will degrade the resolution.
This is so because some delay values which are neither in
TW),, nor in TWg could be included within the new timing
window. To overcome this problem, we can save all the
information about TWj and TWg and propagate them.
However, the more the disjoint timing windows we keep,
the more the performance of the simulation degrades. In
our implementation we store up to four disjoint timing win-
dows on each signal. If the number of disjoint timing win-
dows exceeds four, we merge the closest windows.
Experimental results show that this heuristic achieves good
resolution and performance trade-off.

We perform the timing window propagation applying
all test patterns for the given fault candidate. If the timing
window can propagate to any primary output under a given
pattern P, we use a tuple with four components, {f, P, PO;,
TW} to record this information. It records that the candi-
date f’s timing window TW; can propagate to the primary
output PO; under the pattern P.

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

So far we have discussed only how the lower bound of a
timing window is updated. Now we explain how to update
the upper bound using the passing point information.

Suppose that for a given pattern P we cannot observe a
delay failure on the output PO; at the capture time. If, how-

ever, we recorded a tuple at PO; under P, the upper bound
of TW; must be smaller than 7- Jp, , where T is the oper-
ating clock and Jp, is the delay value at PQ; calculated
from the fault-free circuit simulation.

In Section 3.4 we will explain how to extract a useful
information from those tuples and further prune the
unlikely candidates.

3.3 The Diagnostic Algorithm

We propose a novel algorithm to diagnose the delay
defects using the timing information and delay simulation.
Our algorithm is based on the assumption that each failing
pattern attributes its response to a single fault location.
However, our algorithm is capable of identifying multiple
fault locations as long as each failing pattern is affected by
one fault only. We make another assumption that, if two
candidates have the same explanation capability for a set of
failing and passing patterns, and we have the delay size
information for each candidate, the smaller delay size can-
didate has a higher probability of being the real defect. Our
experimental results and the results in [8] support this
assumption.

The algorithm proceeds as follows:

1. Back-tracing diagnosis: The set of initial fault candi-
dates, Fjnitig» 1s determined by using the algorithm
Algno_timing-

2. Timing Window Propagation (TWP) and Pruning: For
each candidate in the Fjjtjz we apply the TWP technique,
simulate the patterns, and record the tuples. We prune the
unlikely candidates checking the rules (which will be
described in detail in the Section 3.4). The candidate set
after pruning is denoted as Fapter TP

3. Refinement: If a group of candidates in the Fgger Tp
has the same explanation capability for a set of failing and
passing patterns, we use the tuple information obtained
from the observation points to deduce the most likely delay
size of each candidate in this group. Then the candidates
are ranked by their delay sizes. Candidates with smaller
sizes are reported earlier.

3.4 Pruning Rules

Here we introduce the rules for pruning the impossible
candidates. The rules are derived based on the timing win-
dows relations at the observation points.
Rule 1: For two tuples {f, P, PO;, TW;} and {f, P, PO,,
TW,}, if at-speed failure responses are observed on two

primary outputs PO; and POy, but 7H, nTH, =@

then f is not a candidate. In this case the timing windows
have a conflict as shown in figure 4.

TWq TW)

e Delay

0 a b c d

Fig. 4: Timing Window Conflicts

This rule eliminates those cases when there is no consis-
tent delay value for f which would propagate its effect to
both failing POs.

Rule 2: We calculate slacks along the paths propagating the
failure f to PO, and to PO,. If the timing failure is only
observed on PO4 but not on POy, and the slack S; to PO is
bigger than Sy, the slack to PO,, then f is not the candidate.
Figure 5 illustrates this situation.

. CS PO1 failing
$2__|PO2 passing

Fig. 5: Example of Rule 2.

Rule 3: For a tuple {f, P, PO, TW,}, if we observe a failure

on PO4, but the summation of the upper bound of TW; and

the path delay value calculated on PO, is less than the

clock period T, f is not the candidate. Figure 6 shows this
situation where t1 is the fault-free delay value calculated as
described in section 3.1.

[1 @l
0 tl tl+a tl+b T
Fig. 6: Rule 3.
Rule 4: If we do not observe failure on PO, but the sum-
mation of the lower bound of TW; and the delay value cal-
culated on PO is greater than the clock period T, f is not
the candidate for P.

if 5;>s,, fis not
the candidate

> Delay on POI

| |, W

» Delay on POI
0 tl Ttl+a tl+b

Fig. 7: Rule 4.

For each candidate and every failing/passing pattern,
after applying the above checking rules, we prune many
unlikely candidates. In our implementation, instead of
deleting a candidate which fails the rules, we assign a pen-
alty for each failed rule. After simulating all the fault can-
didates, we rank them based on their penalty scores. The
better-matched candidates have a higher rank.

3.5 Refinement

In the refinement step, we consider globally all the fail-
ing and passing patterns which can be explained by the
fault candidates. For each candidate fault, we combine the
tuples for different observation points and different pat-
terns, and then we determine the timing window distribu-
tion of each candidate.

For each fault we collect TWSs and construct the delay
distribution graph, wave(t). The wave(t) is built such that
for each delay t, we assign a value equal to the number of

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

TWs which cover t. For each fault, the delay value/range
which has the highest weight is the greatest possible delay
size for this fault. We measure the waveforms of the candi-
dates by their integrals from O to t, which yield the total
area Area(t) covered by a wave(t):

t

Area(t) = J.WaVe(t))di. We define the percentage

0
function as Percentage(t) = Area(t)/Area(7) . For each
candidate we determine three points - tp, tig, and ty, - by
setting the percentage(t) to be 0.3, 0.5, 0.7 and solving the
percentage function.

A fault candidate which has a clustered distribution
graph is more meaningful than the candidate which has a
sparse distribution graph. The clustered distribution dem-
onstrates that the candidate’s delay size is within small
range as long as it can be activated. This can be quantified
by the density function density(f) = [Area(t,y)-Area(t;y)] /
(tuo - tp). A higher density indicates that the candidate’s
delay value is more clustered at a smaller delay range. In
the example in figure 8, when all waveforms cover the
same area, the candidate which has the delay distribution
(a) is better than the candidate which has the delay distribu-

tion (b).
A\ AN

0 T O T 0 T
(a) (b) (©)

Fig. 8: delay distribution graph example

After obtaining all the distribution graphs for all the
faults, it may happen that two faults have about the same
density. Based on our assumption stated in Section 3.2, the
fault which has a smaller t,;4is better than the fault which
has a bigger t,;4. In figure 8, if the three candidates have
the same capability to explain all the failing and passing
pattern responses (and their waveforms cover the same
area), we can use the density function and t.g to rank
them. In this example, the ranks of three candidates are (c)
> (a) > (b).

The complete diagnosis flow is shown in figure 9.

Start

Al gno_ti ming

TWP for each candidate

v
Rule Checking

v

Digtribution Graphs

\

Report

Fig. 9: Diagnosis flow.

4. Practical issues

4.1 Soringthetiming information

Since the timing information may require a huge space,
storing it efficiently is an issue. It is common to find in a
circuit the networks of gates which logically correspond to
a large AND/OR gate. Such structures are referred to as
super gates and can be efficiently detected [10]. We pro-
pose using super gates to reduce the storage requirements.
The delay information can be stored for super gates instead
of for individual gates.

B

0 X3

S5

x1 X

X6

X3 x4 X5 X6

a) Before transformation b) After transformation

Fig. 10: SG transformation

We will use the example in Fig. 10 to explain how to
store the delay information using the supergates (SGS).
Suppose we obtained the timing information (rising/fall-
ing, interconnect) for each gate and interconnect in fig.
10(a). Because the extracted super gate is fanout-free, the
delay value of any path from X; to B (either rising or fall-
ing transition on that path) can be lumped to the boundary
of the SG All the information we need to store are the
lumped delays and the inversion status on the boundary of

The experimental data on ISCAS circuits show that the
supergate circuit transformation yields a factor of 5-7 stor-
age space reduction.

4.2 Propagating TWPs

To achieve higher performance and memory-efficiency,
we use the PPSFP (Parallel Pattern Single Fault Propaga-
tion) technique to simulate 32 patterns at a time. We apply
the event-driven simulation technique to improve the mem-
ory efficiency.

5. Experimental Results

We evaluated the diagnostic capabilities of our algo-
rithm using the delay fault simulation framework. Since
obtaining accurate timing information has not been the
main purpose of this work, we used the static timing/delay
information as a substitute for accurate timing information
obtained from either SPICE simulation or SDF files.

In our experiments, we used ISCAS’85 and full-scan
versions of ISCAS’89 benchmark circuits bigger than 1K
gates. We injected randomly into the circuits, random-size
delay-faults (slow-to-rise, slow-to-fall, or slow), performed
delay-fault simulation, and collected the failure responses.

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

The failure responses were captured when the path delay
values on the observation points were bigger than the sys-
tem operating clock. The 100%-fault-test-coverage transi-
tion-fault test-pattern set was generated by a commercial
tool. We fed those failure responses into an existing com-
mercial delay-fault diagnostic tool. The candidates
reported by the commercial tool served as the initial fault
candidates for our algorithm. The experimental results
show that our algorithm can significantly improve the diag-
nosis resolution. Also, when we use the refinement step,
the real fault sites have much higher rank than other candi-
dates.

In Table 1, we list the pertinent data for the circuits used
in our experiments. The first and second columns list the
circuit’s name and size. The third column shows the size of
the transition fault tests sets.

Table 1: Circuit Information
Circuit | #Gates | #Pat. # Gates | # Pat.
C5315 2631 186 C6288 2480 80
C7552 3883 287 $9234 6325 364
s13207 10139 549 $38417 27320 301

$35932 20492 78 s38584 | 24083 360

Our diagnostic algorithm ranks the identified faults so
that the most probable faults (based on the matching and
refinement steps) are reported first. It is important that the
rank of the first fault which matches the injected fault on
the ordered list is as low as possible. The position of the
first true fault is often referred to as the first hit rank
(FHR). A low FHR can save time on chip screening for a
failure analyzer.

Circuit

The results in Table 2 have been obtained by averaging
100 random-injected test-cases for each benchmark circuit.
Since the first hit rank is not reported by the commercial
tool, we list only the first hit rank of our algorithm. We also
list the number of candidate sites reported by the commer-
cial tool and our algorithm. The reported sites are represen-
tative faults of equivalence classes after transition fault
collapsing.

Table 2: Experimental Results for ISCAS Circuits

Initial # | Reported Runtime
Circuit Faults #Faults | FHR (sec)
C5315 313 6.9 4.4 3.75
C6288 33.2 11.2 4.6 1.27
C7552 47.1 6.5 2.2 5.66
$9234 33.2 5.7 3.6 10.33
s13207 26.3 5.9 2.5 23.09
$38417 35.8 5.3 2.7 32.98
$35932 30.6 5.7 3.1 10.23
$38584 28.6 5.4 2.3 38.47
Average 33.2 6.58 31 15.72

Our algorithm significantly increases the diagnostic res-
olution and produces very low first hit ranks.

The performance of our algorithm is proportional to the
circuit size. The runtime depends on the number of initial
fault candidates and on the number of test patterns used for
diagnosisis.

6. Conclusion and Future Work

In this work, we have investigated the feasibility of
using timing/delay information to guide the delay defect
diagnosis. Our algorithm improves significantly the diag-
nostic resolution.

In the future we will use the timing information to study
the timing failures caused by multiple delay defects and
distributed delay defects.

Acknowledgement

This work was supported by the California MICRO Pro-
gram and Mentor Graphics Corporation.

References

[1] Z. Barzilai and B. Rosen, “Comparison of ac self-testing pro-
cedures”, Proc. Intl. Test Conf, 1983. pp. 89-94.

[2] K.-T. Cheng, H.C. Chen, “Delay testing for nonrobust untest-
able circuits”, Proc. Intl. Test Conf, 1993. pp. 954-961

[3] J.G. Dastidar, N.A. Touba, “A systematic approach for diag-
nosing multiple delay faults”, Proc. IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI Systems,
1998. pp. 211-216.

[4] J.G. Dastidar, N.A. Touba, “Adaptive techniques for improv-
ing delay fault diagnosis”, Proc. VLSI Test Symposium,1999,
pp- 168-172

[5] P. Girard, C. Landrault, S. Pravossoudovitch, “An alternative
to fault simulation for delay-fault diagnosis”, Proc. European
Conference on Design Automation, 1992. pp. 274 -279.

[6] P. Girard, C. Landrault, S. Pravossoudovitch, “Delay-fault
diagnosis by critical-path tracing”, IEEE Design & Test of
Computers, 1992, pp.27-32

[7] Y.-C. Hsu, S.K. Gupta,” A new path-oriented effect-cause
methodology to diagnose delay failures”, Proc. Intl. Test
Conf, 1998, pp. 758-767.

[8] A. Krstic, L.-C. Wang, K.-T. Cheng, J.-J. Liou, T.M. Mak,
“Enhancing diagnosis resolution for delay defects based upon
statistical timing and statistical fault models”, Proc. Design
Automation Conference, 2003. pp. 668-673.

[9] A. Krstic, L.-C. Wang, K.-T. Cheng, J.-J. Liou,M. S. Aba-
dir,”Delay Defect Diagnosis Based Upon Statistical Timing
Models — The First Step”, Proc. Design Automation and Test
in Europe, 2003.

[10]K.-H. Tsai, J. Rajski, M. Marek-Sadowska, “Star test: the the-
ory and its applications”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Volume: 19
Issue: 9, 2000,pp. 1052 -1064.

[11]N. Tendolkar, R. Raina, R. Woltenberg, X. Lin, B. Swanson,
G. Aldrich, “Novel techniques for achieving high at-speed
transition fault test coverage for Motorola's microprocessors
based on PowerPC/spl trade/ instruction set architecture”,
Proc. VLSI Test Symposium, 2002. pp.3 -8

[12]“IEEE DASC Standard Delay Format (SDF)”, http://
www.eda.org/sdf/

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

	Main Page
	ISQED'04
	Front Matter
	Table of Contents
	Author Index

