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ABSTRACT

In this paper, we present an algorithm for the minimization of total
power consumption via multiple Vpp assignment, multiple Vy
assignment, device sizing and stack forcing, while maintaining
performance requirements. These four power reduction techniques
are properly encoded in genetic algorithm and evaluated
simultaneously. The overhead imposed by the insertion of level
converters is also taken into account. The effectiveness of each
power reduction mechanism is verified, as are the combinations of
different approaches. Experimental results are given for a number
of 65 nm benchmark circuits that span typical circuit topologies,
including inverter chains, SRAM decoders, multiplier and a 32bit
carry adders. From the experimental results, we show that the
combination of four low power techniques is the effective way to
achieve low power budget.

Categories and Subject Descriptors
C.4.4 [Performance of Systems]: Modeling techniques.

General Terms
Algorithms, Performance, Design.

Keywords

Genetic Algorithm, Low Power.

1. INTRODUCTION

Process scaling and aggressive performance improvements
have resulted in power consumption becoming a first-order design
criterion. For example, the latest Intel Pentium 4 processor
(Prescott, 2004) has a power consumption of 103 Watts, almost
four times larger than that of the Pentium III (1999). In addition to
its clear impact on battery lifetime in portable embedded systems,
processor power consumption has also become a primary
constraint on workstation performance. Reducing power
dissipation is a top priority in modern VLSI design.
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Power dissipation in CMOS digital circuits consists of dynamic
power, short circuit power and static power.  Short circuit power
consumption can be kept within bounds by careful design and
tuning the switching characteristics of complementary logic (slope
engineering); it is usually negligible compared to dynamic power
and leakage power. Therefore, we will focus on the latter two
sources of power consumption, as indicated by equation (1).

In this equation, the first term is the dynamic power dissipation
and the second term models the static power dissipation due to
leakage current Iy (A is the switching activity factor for
dynamic power, C is the switched capacitance, and Vpp is the
supply voltage). Dynamic power was once the dominant power
consumption term. However, as the result of technology scaling
and Vpy (threshold voltage) decreasing, leakage power will soon
account for a large portion of total power consumption.

P~ ACVDDZ S Vop (D

Although there are many techniques to reduce power
dissipation, most existing works focus on one technique in
isolation instead of concurrently applying a number of power
minimization techniques. In this paper, we propose a power
optimization framework based on the genetic algorithm. The
optimization strategy combines four power reduction techniques:
multiple Vpp assignment, multiple Vg assignment, gate sizing,
and stack forcing. It simultaneously applies and evaluates the
effects of these techniques to achieve maximum power saving
under a hard timing constraint. The framework can be easily
extended to include other power reduction techniques. To the best
of our knowledge, this is the first power optimization framework
that simultaneously uses all of these four power reduction
techniques

The paper is organized as follows. Section 2 reviews different
power reduction techniques and previous works. Section 3 gives a
brief introduction on genetic algorithm. Section 4 describes our
power optimization framework based on genetic algorithm.
Experimental results are presented and explained in Section 5.
Section 6 presents conclusions and future work.

2. POWER REDUCTION TECHNIQUES
AND RELATED WORKS

Due to the quadratic relationship between dynamic power
consumption and Vpp, reducing the supply voltage is the most
effective way to lower the dynamic power, at the expense of
increasing gate delay. In order to prevent the negative effect on



performance, the threshold voltage (Vy) must be reduced
proportionally with the supply voltage so that a sufficient driving
current is maintained. This reduction in the threshold voltage
causes an exponential increasing in leakage power, which in turn
can raise the static power of the device to unacceptable levels.

To counter the loss in performance while improving the power
efficiency, multiple Vpp [1] and multiple Vyy [2] techniques have
been proposed. The gates on critical paths operate at the higher
Vdd or lower Vth, while those on non-critical paths operate at the
lower Vdd or higher Vth, thereby reducing overall power
consumption without performance degradation. These techniques
have been successfully implemented. For example, IBM’s ASIC
design flow can fully take advantage of the power-performance
tradeoff by using their voltage island concept and multiple-Vth
standard cell library [3]. Gate sizing [4] is another powerful
method of power optimizing. Logic gates on critical paths may be
sized up to meet timing requirement, at the expense of higher
power consumption; while those on non-critical paths can be sized
down to reduce the power consumption. Hamada et al. [5]
examined multiple supply voltages, multiple threshold voltages
and transistor sizing individually and derived a set of rules of
thumb for optimal supply voltages, threshold voltages and
transistor sizing. A good summary of these three techniques is
presented by Brodersen et al [6].

To tackle the ever-increasing leakage power, besides multiple
Vth technique, another solution is stack forcing. It has been
shown that the stacking of two off transistors can significantly
reduce leakage power than a single off transistor [7]. Therefore,
we can force a non-stack device to a stack of N devices without
affecting the input load. Figure 1 shows a stacking force example
for an inverter when N=2. By ensuring the input load unchanged,
we guarantee that the previous stages’ delay and dynamic power
consumption are not affected. The logic gate with stack forcing
has much lower leakage power, however, at the expense of a delay
penalty, because the effective device width Weff becomes W/N?
after stack forcing. It is similar to replacing a low-Vt device with
a high-Vt device in a multiple-Vt design.

Figure 1. Stacking force example for inverter.

To achieve the most power efficient design, all these power
reduction techniques have to be balanced. Stojanovic et.al. [8]
combined gate sizing and supply voltage optimization to minimize
power consumption under a delay constraint. Roy et al. [9]
presented a heuristic algorithm to combine dual-Vdd and dual-Vth
techniques. Augsburger [10] evaluated the -effectiveness of
multiple supply voltage, transistor sizing, and multiple thresholds
independently and in conjunction with each other, showing that
the order of application of these techniques determines the final
savings in active and leakage power.

Recently, researchers have looked at the joint optimization of
these techniques, because it can help to achieve maximum power
savings compared to a sequential application of a single variable
optimization. Sirichotiyakul et al/ [11] presented an algorithm for
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joint optimization of dual-vt and sizing to reduce leakage power.
Karnik et al [12] developed a heuristic iterative algorithm to do
device sizing and dual-Vt allocation simultaneously to exploit the
timing slack for reduction of total power consumption. They
found that joint dual-vt and sizing can reduce the power by 10%
and 25% compared with pure Vt allocation or pure sizing method,
respectively. Srivastava et al. [13] were the first to investigate the
effectiveness of simultaneously multiple supply and threshold
voltage assignment for total power saving. Their algorithm is
based on linear programming approach. Nguyen et al. [14]
developed another linear programming algorithm that can
simultaneously perform the threshold voltage assignment and
sizing optimization, and then apply the supply voltage
optimization as a sequential step. Lee et al.[19] proposed heuristic
algorithms for simultaneous state, Vth and gate oxide assignment.
Srivastava et al.[20] proposed a sensitivity-based algorithm to
perform concurrent sizing, Vdd and Vth assignment.

In this paper, we present a GA-based power optimization
framework that can simultaneously exploit four power
optimization techniques: multiple supply voltage assignment,
multiple threshold voltage assignment, gate sizing and force
stacking. To the best of our knowledge, none of the previous
works can do simultaneously joint optimization of more than three
techniques, and the framework can easily be extended to include
other techniques such as multiple gate oxide assignment.

3. GENETIC ALGORITHM

Genetic algorithms (GA) [15] are a class of search and
optimization methods that mimic the evolutionary principles in
natural selection. The solution is usually encoded into a binary
string called chromosome. Instead of working with a single
solution, the search begins with a random set of chromosomes
called initial population. Each chromosome is assigned a fitness
that is directly related to the objective function of the optimization
problem. The population of chromosomes is modified to a new
generation by applying three operators similar to natural selection
operators — reproduction, crossover and mutation. Reproduction
selects good chromosomes based on the fitness function and
duplicates them. Crossover picks two chromosomes randomly and
some portions of the chromosomes are exchanged with a
probability Pc. Finally, mutation operator changes a 1 to a 0 and
vice versa with a small mutation probability Pm. A genetic
algorithm successively applies these three operators in each
generation until a termination criterion is met. It can very
effectively search a large solution space while ignoring regions of
the space that are not useful. This algorithmic methodology leads
to very time-efficient searches. In general, a genetic algorithm has
the following steps:

1. Generation of initial population.

2. Fitness function evaluation.

3. Selection of chromosome.

4. Reproduction, Crossover and Mutation operations.
4. POWER OPTIMIZATION
FRAMEWORK

Our power optimization flow uses a genetic algorithm and is
shown in Figure 2. The circuit configuration information, such as



supply voltage assignment and gate sizing, are encoded into
binary strings called chromosome. The optimization flow begins
with a random generated initial population, which consists of
many randomly generated circuit configurations. The optimization
flow is an iterative procedure. The chromosomes with better
fitness will survive at each generation and are applied three
different operations (reproduction, crossover and mutation) to be a
new set of chromosomes — or new circuit configuration. The
iteration continues until the termination criterion is met.

100100
Initial population 010011
101100
Tt
N
Fitness evaluation
| Reproduction |
I
100100 1001]11
Crossover
| | 010011 0100[00
M utation 010000 =5011000

Figure 2. The power optimization flow.

4.1 Chromosome encoding
Given different power reduction techniques, we can encode all
the tuning variables into a binary chromosome string. Figure 3
shows both the structure of a chromosome and an encoding
example, representing N gates in a circuit. This encoding example
is based on the assumption that we use a dual-Vdd, dual-Vth
library with four discrete sizes for each type of gate, and the gate
has one forced stacking version. While the Vth allocation and
force stacking can be done in transistor level, for simplicity we
assume the granularity is at the gate level. For example, in Figure
3, the chromosome shows that Gate 1 is assigned to use lower
Vdd, higher Vth, size 3 and no force stacking. Note that only the
tuning variables are encoded into the chromosome. The type of
each logic gate and the circuit topology information are known
apriori to calculate the power and delay based on the chromosome
configuration.
chromosome

A
/ N
Gate 1 Gate 2 Gate N
[1]ofor]ofafafaafo]==fo]a]11]1
| T— stacking effect
size
threshold
voltage

Figure 3. The structure of a chromosome.
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This encoding scheme is easy to extend for more complicated
standard cell library. For example, if a standard cell library has
more than two supply voltage choices or more than two threshold
voltage choices, we just need more bits in the chromosome.
Increasing the flexibility of the library simply increases the bits
required for each gate. Since the chromosomes are randomly
generated and we are using binary bit string for chromosome, in
some case, the chromosome configuration may not be valid. For
example, for a library with three threshold voltage choices, we
have to use two bits for the Vth configuration and there will be
one invalid configuration. We tackle this problem using a penalty
function, as described in section 4.2.

4.2 Fitness function

The fitness function, which decides the surviving chance for a
specific chromosome, is related to the power consumption and the
delay of the circuit, as well as the validity of the chromosome.

4.2.1 Power

In our power optimization framework, the goal is to find a
configuration such that the power consumption for the circuit is as
low as possible. Therefore the fitness of a chromosome should be
related to the power consumption of that particular configuration,
which can be calculated using equation (1) discussed in section 1.
For the dynamic power of the gate, the switching activity is
obtained by exhaustive simulation with the assumption that the
input probabilities of being high or low are equal and independent.
The gate leakage and sub-threshold leakage were also
characterized by similar simulation. Our method is general
enough and more accurate power estimates can be used, if more
information on probabilities is available.

When using multiple supply voltages in a circuit, level
converters are required whenever a logic gate at the lower supply
has to drive a gate at the higher voltage [4]. The overall power
consumption for the circuit should also include the level
converters’ power consumptions.

4.2.2  Delay

It should be noted that the power optimization is under a
specified timing constraint. If the critical path delay in a circuit is
longer than the timing requirement, the configuration is not
desirable and the corresponding chromosome should have little
chance to survive. The delay calculation of the circuit is based on
logical effort [16]. Again, the delay from level converters is taken
into account.

4.2.3  Validity

As we have discussed in section 4.1, since we use binary string
to represent a chromosome, when the number of choices for a
tuning variable is not 2N (for example, a gate has six discrete sizes,
or three threshold voltage choices), we may end up with an invalid
configuration during the population initialization or chromosome
operations. For those chromosomes representing invalid
configuration, the chance of surviving should also be very small.
Based on the above argument, the fitness function can be defined
as

1

Fitness = ———
Total power

— Penalty (2)



where the penalty is a big number if timing violates or the
chromosome is invalid, such that those valid chromosomes with
lower power and meet timing requirement have better fitness to
survive.

4.3 Control parameters

While generating the initial population, we have to set an
appropriate population size, and the crossover probability Pc, as
well as the mutation probability Pm. If the population size is too
small, the genetic diversity within the population may not increase
for many generations. On the other hand, a large population size
increases the computation time for each generation but it may take
fewer generations to find the best solution. Schaffer er .al [18]
have conducted extensive simulation on a wide range of functions
and concluded that a small population of size 20 to 30, a crossover
probability in the range of 0.75 to 0.95, and a mutation probability
in the range of 0.005 to 0.01 perform very well. In our
implementation, we set the population size to be 100, crossover
probability Pc to be 0.9 and the mutation probability Pm to be
0.01.

The termination of the iterative evolution can be user defined.
We set a maximum generation and specify that if the power
reduction is less than 0.001% during the last 100 generations, the
evolution stops without going through all generations.

S. EXPERIMENTAL RESULTS

We implement our algorithm in C. To test our algorithm, we
construct a dual-Vdd and dual-Vth standard cell library using 65
nm process. The logic gates in the library are inverter, NAND2,
NOR2, XOR2 and a level converter. The level converter
implementation [4] is shown in Figure 4.

=

_L_

Figure 4. The implementation of the level converter.

Both Vth allocation and force stacking can be done at a
transistor level and the gates may have several discrete sizes.
However, for simplicity, we assume the granularity of Vth
assignment and forced stacking are at the gate level and the gates
have only two discrete sizes, such that we need only 4 bits to
encode the tuning variables. Increasing the flexibility only
increases number of bits to represent each gate’s configuration.
Based on the conclusion in [13] that the optimal second Vdd in
dual-Vth system should be ~50% of the higher supply voltage, the
possible gate supply voltages for our library are 1V, 0.5V. For
NMOS (PMOS) transistors, the high threshold voltage and the
low threshold voltage are 0.22V (-0.22V) and 0.12V (-0.12V)
respectively. The library was characterized using Berkeley 65 nm
BSIM predictive model [17]. The gate leakage and sub-threshold
leakage were pre-characterized.
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The benchmark circuits we choose to map to our library span
typical circuit topologies, including a circuit from ISCAS 85
benchmark, an inverter chain, a 32-bit carry-ripple adder, an 8x8
carry-save multiplier, an 8-t0-256 SRAM decoder and three
manually generated circuits. The circuit sizes range from 8 gates
to 1050 gates. The circuits were first optimized for maximum
speed (e.g. using all higher Vdd and lower Vth on the critical path)
and then were optimized for lowest power consumption. We then
perform power optimization with the timing constraint relaxation
percentage. The runtime for our benchmark on an Intel Pentium 4
processor (2.8 GHz 512M RAM) ranges from 0.57s to 497s,
depending on circuit sizes and timing constraints.

Figures 5 and 6 present the static power and dynamic power
breakdown for maximal speed optimized circuit and minimal
power optimized circuit respectively. With our 65nm library, the
static power accounts for average 74% of the total power while
the dynamic power accounts for 26% of the overall power. After
applying all four power reduction techniques without any timing
constraint circuits, the static power accounts for only about 20%
of the overall power while dynamic power accounts for 80%. A
significant part of overall power reduction are from the static
power reduction by using these four techniques together. Overall
84% of the power reduction was from the static power reduction.

Power breakdown with fastest delay time W Static
100% O Dynamic
5 80%
3
2 60%
-
°
£ 40%
2
& 20%
0%
c17 SRAM INV100 FA32 testbench1 testbench2 testbench3 MUL
Decoder Circuits
Figure 5. Power breakdown for speed-optimized circuits.
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Figure 6. Power breakdown for power-optimized circuits.

Figure 7 shows the change in power consumption with the
application of our algorithm. The timing constraint (cycle time)
and power consumption are both normalized to the fastest speed
case. This plot is for 32-bit carry-ripple adder. We can see that
when the timing constraint is relaxed to be twice long as the
fastest speed, the power reduction we can achieve is about 45%.
Further relaxation we can achieve more than 65% when the



requirement is 4 times as long as the fastest critical delay. We can
also see that most of the power reduction comes from the static
power reduction.

Power vs. Timing Constraint Relaxation

Normalized Power

Figure 7. Power reduction as timing constraint is
relaxed.

Figure 8 shows the power reduction techniques that are used in
the circuits when the timing constraint is relaxed. The number of
gates using a specific configuration is normalized to the
maximum-speed optimized case. It is observed that as the timing
constraint relaxed from 0% to 400%, the gates tend to use the less
power consuming configuration, i.e., lower Vdd, higher Vth,
smaller size and force stacking. The interaction of these four
tuning variables (Vdd, Vth, sizing and force stacking) can also be
observed from our experiments, which are represented by the
fluctuations of four curves.
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Figure 8. Low Power Techniques Combinations.

Figure 9 shows the power reduction process for the testbench
circuit with 1050 gates under different timing relaxation. We can
see that for very tight timing constraint (1% timing relaxation),
the algorithm achieves a maximum power saving within
3000-4000 generation under the timing constraint. Running more
generations won’t help much. If we relax the timing constraint,
the convergence can be achieved much faster (within 1000
generations).

Figure 10 shows the power consumptions between
configuration with stacking force and without stacking force. The
comparison is conducted with all four low power techniques
available and all techniques except stacking force. As we can see
from the picture, the gap between two curves gets closer when the
timing constraint is relaxed more. This means that when timing
constraints is tight, the configuration without stacking force will
consume more static power. With relaxed timing constraints, there
is more flexibility in obtaining low power solution close to the
best even without stacking
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Figure 9. Power reduction over entire run.
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Figure 10. Comparison of power consumption with/without
stacking force.

Figure 11 shows the comparison of power consumption with
only one low power technique available at a time to one equipped
with four low power techniques. The reason for some curves not
showing the point from the beginning is that they simply can not
meet timing requests at that point. We can easily see from the
graph that the dual Vdd is the most effective way to reduce power
while the dual Vth is the less effective one. But dual Vth can still
maintain good timing constraint achievements compared to the
other three techniques. The curve with all available techniques can
easily maintain low power consumption without incurring
performance degradation.
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Figure 11. Different Technique Comparisons.



Comparison to ILP approach

Compared to the ILP approach that were used by [13] [14], one
advantage of our GA approach is that the parallel nature of genetic
algorithms suggests parallel processing as the natural route to
explore. We implement a parallel version of our algorithm, by
dividing the population processing among multiple processors.
We notice that in average more than 3X run-time speed-up on a
4-processor workstation against the single-processor version of
our algorithm (The reason that we cannot achieve a 4X speedup is
the interaction overhead among parallel processes). Another
advantage is that for ILP approach, the running time for a large
circuit may be prohibitively long; while for our GA-based strategy,
we can set a proper termination criterion to tradeoff the runtime
and power saving.

6. CONCLUSION

We present a power optimization framework based on genetic
algorithm. The optimization strategy can simultaneously perform
multiple-Vdd assignment, multiple-Vth assignment, gate sizing in
conjunction with stack forcing technique to minimize total power
consumption, while maintaining performance requirements. The
framework can be easily extended to include other power
reduction techniques, such as multiple gate oxide [19].
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