Incremental Physical Resynthesis for Timing Optimization

Peter Suaris, Lungtien Liu, Yuzheng Ding, Nanchi Chou
Mentor Graphics Corporation, 8005 Boeckman Road, Wilsonville, OR 97070
{peter_suaris, lungtien_liu, eugene_ding, nanchi_chou}@mentor.com

ABSTRACT

This paper presents a new approach to timing optimization for
FPGA designs, namely incremental physical resynthesis, to
answer the challenge of effectively integrating logic and physical
optimizations ~ without incurring unmanageable runtime
complexity. Unlike previous approaches to this problem which
limit the types of operations and/or architectural features, we take
advantage of many architectural characteristics of modern FPGA
devices, and utilize many types of optimizations including cell
repacking, signal rerouting, resource retargeting, and logic
restructuring, accompanied by efficient incremental placement, to
gradually transform a design via a series of localized logic and
physical optimizations that verifiably improve overall compliance
with timing constraints. This procedure works well on small and
large designs, and can be administered through either an
automatic optimizer, or an interactive user interface. Our
preliminary experiments showed that this approach is very
effective in fixing or reducing timing violations that cannot be
reduced by other optimization techniques: For a set of test cases to
which this is applicable, the worst timing violation is reduced by
an average of 42.8%.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids — Automatic synthesis,
Optimization; B.7.1 [Integrated Circuits]: Types and Design
Styles — Gate arrays; B.7.2 [Integrated Circuits]: Design Aids —
Layout, Placement and routing; B.8.2 [Performance and
Reliability]: Performance Analysis and Design Aids.

General Terms
Algorithms, Performance, Design.

Keywords
FPGA, Logic synthesis, Placement, Timing Optimization

1. INTRODUCTION

Timing optimization for FPGA based designs has always been an
important aspect, especially because compared with ASIC
technology, FPGA technology has a performance disadvantage
due to the flexibility it offers. Evolution of FPGA hardware has
been addressing this issue, both through improved process
technology (the use of deep sub-micron technologies) and through
architecture enhancements (multi-level, flexible logic resources

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FPGA’04, February 22-24, 2004, Monterey, California, USA

Copyright 2004 ACM 1-58113-829-6/04/0002...$5.00.

with fast internal interconnects and multiple configurations;
dedicated resources for special needs, from memory and
multiplier to custom logic cores; and active routing resources, to
name a few). Such improvements have enabled designs running at
clock frequencies of hundreds of megahertz to be successfully
implemented on FPGA devices, and encouraged more high
performance designs to target FPGA technology.

Logic optimization (logic synthesis and technology mapping)
plays an important role in producing high performance FPGA
based designs, as it shapes the logic structure of the designs.
However, properly modeling timing constraints for logic
optimization has always been a challenge, since such constraints
are expressed with respect to the finished implementation, where
the logically optimized netlist has been embedded onto the pre-
fabricated FPGA device - packed and placed into cells at fixed
locations and connected with existing, though programmable,
interconnects. Such an embedding process (physical optimization,
generally including placement and routing) introduces delay
variations that are not always well correlated to the netlist
structure, and are difficult to estimate a priori.

In the early days of FPGA technology (when architectures were
simpler and devices were slower), delays of logic cells were
dominant, and netlist structure based delay modeling worked well.
Many studies were done using such simplified device and delay
models (see [5] for a review of many algorithms), resulting in a
family of elegant algorithms, some achieving provable optimality
under certain conditions [2]. Some of these are still widely used in
today's FPGA logic optimization procedures.

As the architecture becomes more complicated and interconnect
delays become dominant due to the use of deep sub-micron
technologies, such models become less reliable. To facilitate
effective logic optimization, interests have risen on physical
synthesis, where logic optimization is performed simultaneously
or iteratively with physical optimization, so that each part can
gain more accurate information from, and pass more direct
instructions to, the other part, yielding a better-coordinated effort.

This paper presents a new approach to physical synthesis, which
we call incremental physical resynthesis (IPR). It works on a
completed FPGA design that has unmet timing constraints.
Incrementally, it identifies small critical sections of the design,
and based on the logic and physical structure of the section,
timing requirement, and available logic resources, it tries a set of
logic and physical optimizations in order to improve timing. Each
optimization is a fully integrated logic and physical operation,
bringing logically resynthesized and physically valid changes to
the design, with verified performance improvement. Being
incremental, the time complexity of this approach is manageable
even for the larger designs; moreover, it can be controlled by
either an automatic optimization driver, or a user interface where

the designer can select the spot to optimize and get immediate
feedback. Our preliminary experimental results showed that this is
an effective tool to fix timing (constraint) violations that have not
been fixed by the general optimization procedures including
global physical synthesis: on a set of test cases the average
amount of reduction on timing violations is 42.8%.

The rest of this paper is organized as follows. Section 2 reviews
previous works and presents our motivation. Section 3 describes
the overall IPR approach, followed by detailed discussion of
optimization operations in Section 4. Section 5 discusses some
experimental results; Section 6 concludes the paper.

2. Previous Work and Motivation

Integrating logic and physical optimizations (physical synthesis) is
a challenging task, in that both sub-tasks are by themselves
complicated and time-consuming, and putting them together
would significantly increase the complexity. To deal with this
difficulty, at least two approaches can be used. One is to limit the
types of interaction between the two and/or to limit the types of
optimizations involved (which we refer to as the "reduced
approach"); the other is to limit the scope of the optimizations
(which we refer to as the "incremental approach"), by
incrementally working on small sections. In either case, the
solution space that is being explored is limited. Therefore,
physical synthesis will likely be a restricted version from the
perspective of logic optimization, and serves as an improvement,
rather than replacement, of standard logic optimization.

A number of studies on FPGA timing optimization via physical
synthesis have been published recently [12,16,17,18], concerning
both sequential and combinational logic optimizations.

Sequential logic optimization relies on accurate delay information
in order to balance the delay of the paths; physical synthesis has a
clear advantage here. In [17], retiming optimization is integrated
with placement in two ways. Firstly, cost function of the
placement algorithm is modified to identify paths that are hard to
improve through retiming, so extra effort can be made to optimize
them during placement. Secondly, the standard retiming algorithm
is modified to apply on a placed netlist, while limiting disturbance
to the placement, by avoiding certain situations that will require
more placement changes, and by using an incremental re-
placement algorithm based on overlap removal, to minimize
placement changes when change is necessary. In [18], an
alternative physical retiming algorithm is proposed, where the
register movement is constrained by a "budget" calculated using
layout based delay information. It allows fast, concurrent retiming
of many paths and is effective in practice. This work also includes
local logic transformations to enable otherwise un-retimable logic
to be retimed.

Combinational logic synthesis for timing optimization involves
reduction of path delays, thus also benefits from physical delay
information. In [16], logic duplication is performed after
placement. With the help of a modified packing routine that
strategically leaves logic resources for future logic duplication,
creation of new logic via duplication would not disrupt the
placement. In [12], simultaneous technology mapping and
placement is proposed. Given an initial k-LUT mapping and
placement, the netlist is decomposed in-site using gate
decomposition, then re-mapped for delay minimization, using
layout based delay calculation as guide. Each newly mapped k-
LUT is placed into the site where the "root" gate of the LUT used

100

to reside. This is followed by a separate placement phase for
overlap removal and improvement.

These are global optimization algorithms, and generally follow
the "reduced approach" above, by limiting the integrated
optimizations to certain operations (for combinational logic
optimization, only node duplication, gate decomposition, and
clustering were used in the above works). They also have one
notable common objective, which is to keep the physical changes
minimal, by trying to avoid major disruption to existing
placement, and by tailoring the logic changes towards this
objective. Maintaining stability of overall physical structure is a
very useful strategy in physical synthesis when physical timing
information is not immediately updated during logic
optimizations, since substantial changes in physical layout may
invalidate the currently used timing information, obtained based
on previous physical layout. In this aspect, these works are
fundamentally better compared to a direct iteration of logic and
physical optimizations, which may run into convergence
problems.

While these algorithms are elegant and shown effective for
purposed applications, their power can be limited by the
restriction on the types of optimizations involved. Moreover, they
also used simplified architecture models. Adopting a more
sophisticated set of optimizations and applying on real world
architectures for large designs will substantially increase the
complexity of the algorithms. On the other hand, the "incremental
approach”, if proven useful, can be more intensive and versatile
because it is more focused. These two approaches can compliment
and improve each other to produce better result together. This is
our motivation of proposing the incremental physical resynthesis
(IPR) approach.

In arguing the usefulness of IPR, we consider that in a typical
design flow, a design that is subject to IPR has been processed by
standard logic and physical optimizations, and possibly also
through global physical synthesis (most noticeably retiming and
replication [18]). On such designs, there can be several types of
opportunities unique to IPR.

e Designs that have reached this stage usually only have
relatively few places with timing violations - if a design has
massive violations, it is usually necessary to revisit the
design at a higher level, restructure the constraints, and/or
reconsider the choice of device. So our objective is to "fix"
the problems; being thorough and nimble, IPR can suite the
job well.

e Large designs are usually hierarchical, and due to run-time
and other concerns, are usually optimized hierarchically
during logic synthesis. While the modules may have been
intensively optimized, the inherent redundancy of a module
design can still be revealed when the design enters the
physical domain, where it is flattened onto the device, and
cross-hierarchy logic optimizations are possible. Such
opportunities are generally around the hierarchical
boundaries. Trying to resynthesize the entire flattened netlist
is too costly and a wasted effort to most parts of the design,
while the more focused IPR would fare better.

e The logic cells of a modern FPGA are very versatile, and
different configurations have different logic capacity as well
as different timing characteristics. It is difficult for logic
synthesis and technology mapping to consider all
possibilities, and their consequences, when dealing with a

large design and without knowledge about physical layout.
Therefore, a simplified approach is common place; for
example, LUT-centric logic synthesis is typical for SRAM
based FPGAs. When a small section of the design is
concerned and with accurate information on resource
availability/distribution and timing characteristics, IPR can
do a more thorough search in solution space, and better
utilize the device features.

e The dedicated resources for specific logic (such as
memories) are very efficient instruments with higher logic
density and performance, but their limited present on a
device may occasionally cause layout difficulty that can
nullify or even reverse their advantage. In general, it is best
for logic synthesis to use them as much as possible when
their whereabouts are not clear, and for physical synthesis to
correct the improperly used ones. These are local
transformations and fit IPR well. Similarly, unconventional
use of such resources (e.g. using dedicated memory cells for
logic [8]) is better determined during IPR when resource
availability and distribution are known.

Our IPR approach tries to exploit these opportunities. In addition,
we integrate logic and physical transformations at operational
level, thus is able to alter placement as needed, without worrying
about inaccurate timing information or convergence. To allow
efficient update of timing information, which is needed for the
transformations, we use only combinational logic optimization
operations, without altering the state diagram of the design. This
makes incremental timing analysis possible. Note that this is not a
real limitation, since sequential optimizations such as retiming
[17,18] are inherently global, and can be performed prior to IPR.

3. Incremental Physical Resynthesis

In this section, we outline the procedure of our incremental
physical resynthesis (IPR) algorithm. Throughout this and the
next sections we will be using the Xilinx Virtex II architecture
[19] as the platform for presentation. The overall approach applies
to other modern FPGA architectures as well; however, since IPR
is tuned to utilize architectural features, the specific optimization
operations will have to be adapted to and/or modified for each
family of FPGA devices.

Briefly, IPR consists of a number of iterations of localized
optimizations. Each round is usually preceded with physical
timing analysis to reveal where the optimization effort should be
centered. After that, an expandable sub-circuit, which will be the
focus of the optimization, is identified. Depending on the
characteristics of the sub-circuit, a number of logic
transformations may be attempted on it. Each successful and
potentially beneficial transformation (in terms of timing
improvement) is then incrementally placed, and its impact on
physical timing is analyzed. If the benefit is realized through
placement, the transformation is accepted, and this round of
optimization is completed; otherwise it is reversed, the design is
restored to previous state, and this round is also completed.

As stated earlier, we assume that in a design flow IPR is
positioned after regular logic and physical optimizations
(synthesis, mapping, placement and routing) and optionally global
physical synthesis (physical retiming and replication [18], etc.).
Although IPR can incorporate a complete physical optimization
component that performs both placement and routing for each

101

logic transformation, we have only built an incremental placer; the
justification and consequence will be discussed shortly.

3.1 Physical Timing Analysis

As is for any timing optimization algorithm, timing analysis
performs a crucial role for IPR. The basic purpose of IPR is to
eliminate or reduce violations of timing constraints, a.k.a. timing
violations, which are exemplified by logic paths that have larger
delays than that allowed by the design specification. The slack of
a path is defined as the difference between its maximum allowed
delay and the minimum actual delay; a path with a negative slack
is a critical path, and the logic elements and nets along the paths
are critical elements and nets. The smallest, or worst, slack (most
negative if negative slacks exist) usually indicates the most
critical section of the design, where optimization may result in
overall performance improvement. In terms of slacks, the
objective of IPR is to eliminate or improve the negative slacks. A
beneficial optimization improves (increases) the slacks of targeted
paths without worsening the worst slacks of the design.

In the physical domain, the delay of a logic path is the sum of the
delays of the logic elements and the delays of the nets
interconnecting the elements (including the nets that connect logic
elements within a hierarchical logic cell, and the nets connecting
the hierarchical logic cells using general routing). While logic
structure (e.g. fanout size) has impact on the net delay values, it is
not used directly in physical delay calculation. Instead, pin-to-pin
delays are determined based on actual physical layout.

Delay values of the logic elements and the nets that are inside
hierarchical logic cells can be pre-calculated and stored.
Acquiring accurate routing delay requires knowing both the
placement of the connected cells and the routing paths, since
different routing paths may have different delays. In an IPR
procedure, such information is available at the beginning, since
IPR begins with a completed design with both placement and
routing information. On the other hand, our IPR implementation
does not include a router, and consequently, the physical
optimization part of IPR consists of only placement. Therefore,
subsequent physical timing analysis uses a placement based
physical delay calculation routine to estimate the pin-to-pin
routing delay, which approximates the best delay of a route
between the given pair of pins.

We have two reasons to use such an approximation. First, in IPR
each logic transformation requires a physical verification.
Including a good quality router will substantially increase
runtime. Secondly, we are mostly concerned about the accuracy of
the timing information on critical nets, which in most cases will
be afforded one of the best (or near best) routes, given that
modern FPGA devices in general have ample active routing
resources (within a logic utilization limit). Therefore, such an
approximation usually does not result in significant loss of
accuracy for the nets the concerns us.

In our implementation of IPR we also take several measures to
carefully minimize the error in approximation. Firstly, prior to a
transformation, we save the timing information that is relevant to
the sub-circuit under transformation; if the transformation is
rejected, we restore the saved information instead of recalculation,
Secondly, we maintain two components of the timing information,
the original (back annotated from the routed initial design) and
the modification (calculated based on new or modified
placement), separately. The original part remains unchanged,

when a logic element is moved, we only recalculate the delta of
the delay caused by the movement, so that original timing
information can be fully restored if placement change is reversed
at any stage of IPR. Finally, the local and incremental nature of
IPR also limits the disturbance caused by each round of iteration.

Nevertheless, this is an approximation, and occasionally the
inaccuracy can accumulate to a non-neglectable level and affect
the quality of the solution. This more likely happens after a large
number of IPR iterations, and when the selected sub-circuit has a
large number of different critical paths. Overall, however, this is
an acceptable compromise.

At the beginning of the IPR procedure, a full chip physical timing
analysis is performed. Subsequently, physical timing analysis is
performed after each incremental placement; such analysis is
carried out incrementally via the update of delay information on
modified portion of the circuit (using physical delay calculation,
as stated earlier), followed by the update of slacks at the
surrounding pins of the sub-circuit, and the propagation of slack
changes through related paths.

3.2 Seed Selection

Each iteration of IPR first selects one or more seeds which are in
general logic elements that have timing violations (i.e. negative
slacks). The selection is based on the result of physical timing
analysis. If IPR is driven by an interactive user interface, the
designer can do the selection according to timing report, or other
design information; if an automatic driver is used for IPR, the
selection criteria are as follows.

We assign to each critical element a potential value representing
how likely we can reduce timing violation via improving this and
surrounding logic elements. The potential value is a weighted sum
of four components for a given critical element. It includes the
size of its input sub-netlist of critical combinational logic
elements; the placement sparseness of the region where this sub-
netlist is placed; its slack value; and the number of registers (and
equivalent elements) from which it can be reached and can reach
along a critical path. A larger combinational input netlist provides
a better chance that changes can be made about the seed via
combinational logic optimization, while a sparsely placed
neighborhood allows more freedom in exploring alternative logic
configurations; these two are resynthesis potentials. The worse the
slack is, and the more paths the seed is on, the more helpful its
improvement will be to overall timing constraint compliance;
these are the timing potentials. To determine the values of the
components in the formula, an analysis of all critical elements is
first performed to determine the range of each component, which
is used to normalize the value into a range of (0,1]. The weights
are configurable per design; for quick improvement, higher
weights are given to resynthesis potentials; for better result, higher
weights are given to timing potentials.

There are certain structures (shift registers, carry chains,
multiplexers) in a design that have been optimized and cannot be
further improved. Elements that are part of such structures are
excluded.

The potential values are incrementally maintained in a min-max
heap [9]. Only a top set is kept; lower potential values are leaked
from the bottom of the heap. Automatic selection picks from the
top. When optimization happens, the heap is incrementally

102

updated. If improvement is not possible, the next qualified seed
will be selected (see below).

3.3 Resynthesis Window

A seed (or a set of seeds) derives a resynthesis window, which the
optimization will be focused to. This has two parts, the logic
window, which is a sub-netlist connected to the seed(s); and a
physical window where the transformed logic will be placed. The
logic window may grow if the initial window does not contain
enough logic to facilitate improvement; this is either triggered by
failed optimization on the existing window, or via demand of a
particular optimization operation. The physical window may be
relaxed to allow extra flexibility and additional resource.

If the seed is a dedicated logic element (e.g. a block RAM), or a
register, the logic window will include the seed itself, and the
physical window will be the minimum region that encloses the
cell in which the seed is placed, as well as the logic cells
containing the inputs and outputs of the seed. A logic window so
seeded will not grow; the physical window can automatically
grow to a prescribed relaxation factor.

If the seed is a distributed RAM, the logic window will include all
compatible elements, and their output registers if they exist; the
physical window will be the enclosing region of the logic window
(with a relaxation factor for growth). A logic window so seeded
will not grow.

For a combinational logic seed, the window construction is based
on the concept of fanout-free cone [4].

Given a network and a node v, a fanout-free-cone (FFC) of v is a
node set containing v and some of its predecessors, such that any
path from a member of the set can only reach the outside of the set
by exiting from v. We say it is the FFC of v (denoted FFC(v)),
and v is the root of FFC(v). The maximum FFC (MFFC) of v,
MFFC(v), is the largest of all FFC(v), which according to [4] is
unique and also contains the MFFC of each member.

We can extend these concepts to the case of multiple roots. The
FFC of a set S of nodes is a node set FFC(S) that contains
members of S, as well as some predecessors, such that any path
from a member to the outside has to exit from a member of S. The
subset of S that can exit the FFC without going through others is
the root set of FFC(S) and denoted R(S); we can show that R(S)
exists and is unique for given S. The MFFC of S, MFFC(S), is the
maximum FFC(S), and can be shown to be unique for a given §
and MFFC(S) = MFFC(R(S)). Note that MFFC(S) contains
MFFC(v) for each v in S but may contain other nodes as well.
Finally, we define the minimum containing MFFC of a set S,
MCMFFC(S), which if exists is the smallest MFFC that properly
contains S, and has a root set that is disjoint with S. It can be
shown that for a given set S, MCMFFC(S) is either non-exist, or is
uniquely defined and properly contains MFFC(S) (the proofs are
omitted due to space limit). Figure 1 illustrates some of the
concepts.

Based on these constructs, for a combinational logic seed the
initial logic window includes the logic in the cell (SLICE)
containing the seed, as well as the members of its MFFC and the
other logic in their cells. The (pre-relaxation) physical window is
the region enclosing the hierarchical cells (CLBs) containing these
logic elements. Construction based on multiple seeds follows the
same rule.

If the window needs to grow, the MCMFFC of the current logic
window will be calculated first. If it exists, its root set is used as
the new seeds; otherwise, the current logic window is regarded as
an FFC, and its root set is used as new seeds. If the new seed set is
the same as the old, or if the window size exceeds a pre-set limit,
the growth stops, and all seeds that have been involved in the
series of growth will be disqualified for further consideration.

’ \< MFFG(c)
I
o

* MFFC({c.d})
MCMFFC({c,d})

Figure 1. MFFC and MCMFFC

The benefit of using the MFFC structure to determine the
resynthesis window is that by definition, MFFCs are re-converged
sub-netlists which behave like super logic elements, whose
internal logic transformations only affect the signals from its root
set. This allows maximum flexibility in restructuring the logic and
simplifies incremental timing analysis.

3.4 Windowed Optimization

Once a window is determined, it is analyzed for improvement.
This involves both logic transformation (netlist change) and
physical transformation (placement change). During the process,
changes within the window are freely applied as needed; changes
outside the window are also allowed but only carried out
conservatively. In particular, logic changes to elements outside of
the window must not result in new element or the change of the
type of an element (that will require a different packing slot);
placement changes outside of the window also takes a
conservative approach by limiting itself to iterative overlap
removal (see the next subsection for details). To ensure
consistency of timing data, physical timing information is updated
after each placement change, as stated earlier (and detailed in the
next subsection).

During the optimization of a window, IPR exploits several types
of opportunities and associated optimizations, in the order of the
cost to perform the transformations.

The simplest case is that the logic was sub-optimally associated
with a (hierarchical) cell and cannot be simply relocated during
physical optimization. Via cell repacking, we may be able to fix
such problems. Another similar case is that the logic in a cell is

103

configured sub-optimally; an alternative configuration, revealed
by cell repacking, would reduce its delay.

Similarly, if by modifying certain logic we could reconnect
certain critical signals via a faster interconnect, or from a faster
equivalent source, via signal rerouting, we can achieve immediate
delay reduction.

A related, but more complicated case is when a specific type of
resource was used, and due to resource distribution on the device,
large external interconnect delay was introduced. Via resource
retargeting we can map the logic onto alternative resources, and
use the extra freedom in physical optimization to improve timing.

Finally, the extra delay may be due to a sub-optimally synthesized
sub-netlist; logic restructuring would explore possible
improvements.

Note that these are not mutually exclusive. For example, signal
rerouting is helped by limited logic restructuring that generates
required signals. Such cross-references are made as needed.

These transformations, in the above order, are considered in the
current window, and attempted if applicable,. If one type of
optimization is successful but timing violations associated with
the current window still exists, the subsequent types of
optimizations may also be considered, provided that the preceding
types have not made the subsequent ones inapplicable. Each type
of optimization is evaluated (via placement and physical timing
analysis) and accepted or rejected separately.

It should be noted that these transformations, when computed, are
of a tentative nature, since their benefit has to be verified before
they are accepted. To make the necessary reverse transformation
easy, a temporary hierarchy can be created surrounding the logic
window. In so doing, the application and reversal of the
transformation becomes toggling between two implementations
(the original and the new views) of this artificial hierarchy, which
is a simple operation. It is important, though, to also properly
associate relevant physical and timing information with the two
views, and apply and de-apply them accordingly.

3.5 Incremental Placement and Evaluation
Some logic optimization operations in IPR, basically those that
transforms one general combinational logic sub-circuit into
another one (as opposed to e.g. memory conversion or register
movement), may first be evaluated using a simple internal timing
model to determine if there is enough potential benefit in the
transformation. This model is based on netlist structure as
commonly used in technology mapping algorithms [5], but delays
of various logic elements and interconnects are varied to reflect
the difference caused by their different types. This model is used
before and after the logic transformation, to compute a nominal
worst delay throughout the target sub-circuit; if this becomes
worse after transformation, the transformation is rejected without
invoking placement.

If a transformation passes this test (or if the test does not apply),
physical optimization/evaluation is invoked. As stated earlier, we
only perform an incremental placement for this purpose.
Therefore, IPR maintains a legal placement throughout the
optimization iterations, but routing may not be complete at the
intermediate states (after IPR, all signals will be routed). Modern
FPGA devices usually have sufficient routing resources for
designs with reasonable logic utilization ratios; therefore this is

usually not a problem. To minimize the possibility of generating
un-routable placement, congestion and utilization control is
enforced throughout the placement routines. In all of our
experiments, routing can always complete.

The incremental placer consists of three components.

The first component is a quick area placer. It uses a quadratic
programming formula to initially place, with possible overlaps,
the newly generated/modified logic elements to the best locations
based on their peripheral connections. This step is carried out
once the logic transformation is applied and old logic elements
unplaced from the chip (after this information has been saved). If
the new elements form a special packing group, such directive is
followed. Since this step is relative to the peripherals, global
timing information is not needed. At the end of this step, all new
elements have valid placement (but not necessarily legal, due to
overlaps), allowing physical delay calculation to be carried out,
and incremental physical timing analysis to be completed by
adjusting slacks at the peripherals of the transformed sub-circuit,
and propagating the slack changes through associated paths.

The second component performs overlap removal, with two
possible modes. In a simple mode, it just moves the least preferred
element out of an overlapped location to the best vacant location.
This is mainly used as an intermediate step. Alternatively, a
competitive displacement approach is used, where a displaced
element may bump another placed element out of its location if
the former is deemed more fitting to that location. This can be
used as a final placement step in situations where minimum
disturbance to existing placement is preferred; for example, when
placement disruption outside the physical window is necessary (in
which case displaced elements outside of the window may bump
placed elements inside the window), or when only a small portion
of logic is re-placed. At the end of this step, the design becomes
legally placed (or the transformation rejected if legalization fails).

The third component is a timing driven iterative improvement
placer which operates mainly in the physical window, but can be
relaxed to push some elements outside of the window (in the case
of new overlap, they will be re-placed using competitive
displacement). This is the most effective, yet timing consuming,
portion of placement. While an annealing algorithm may be used,
a structural placement is preferred because the trade-off between
quality and runtime can be better controlled.

Note that thw two latter placement components only involve
movement of already placed logic elements. Consequently, we
can keep the timing information up to date throughout the
movements, by updating the delays associated with moved
elements and their nets, and updating and propagating slack
changes, immediately after each movement; this can be done very
efficiently. Moreover, by recording the sequence of movement,
the movements can be completely reversed and the placement
undone (with timing information fully restored as well); therefore,
if at a time during placement the transformation is deemed non-
beneficial, the original logic/timing/placement can be restored,
and the transformation rejected, without side effect.

4. Physical Resynthesis Operations

In this section we will detail and exemplify each type of
optimizations used by IPR. As noted earlier, these optimizations
are tuned towards FPGA specific architectures. The descriptions
in this section apply to the Xilinx Virtex II series FPGA devices.

104

While these #ypes of optimizations should be applicable to other
modern FPGA devices, certain operations will not be applicable if
the specific architectural features they depend on are not
available; while other operations can be similarly developed for
architectural features not available or used in the following
discussion.

4.1 Cell Repacking

This applies to logic ranging from one regular cell (SLICE) up to
one higher physical hierarchy (CLB), depending on the type of
seeds and the content of the window. We assume that, as the result
of the (regular) logic and physical optimizations the precedes IPR,
simple swapping of swappable elements among regular cells will
not improve timing. We consider the following cases.

For a register seed packed in an IOB, movement to a regular cell
within current physical window, between (and including) the cells
of its logic inputs and its current location, is explored for timing
improvement. Similarly, for a register that exclusively drives an
IOB, movement towards the IOB is considered. (A register not
directly connected to IOB has been optimized during retiming
[18] so is not considered here.)'

For a combinational logic seed, its MFFC is analyzed. If the logic
fits a pattern that can be implemented using the cascade chain [19]
but was not implemented as such, and the required cells can be
repacked to vacate the needed resources for the chain without
creating worse timing violations, the MFFC is transformed into
the form and packed into the cells. An example is shown in Figure
2. This transformation applies only to architectures with a fast
cascade chain feature.

This technique only applies to FPGA architectures with fast
cascade chains built into logic cells.

HE T —]
Ziii it it RN}
| |asberbd efgrety | | ad' +bed st
| u g
i
| 0
\\ | 1 ‘]
S i
M —_— = |
N /
1l / 1L
it ' it
1| asw) |/
\ /
\ !
\\-...‘_‘ J/

Figure 2. Repacking into cascade chain

4.2 Signal Rerouting

This applies to a LUT seed S with a critical connection that uses
external interconnect. We assume that due to the preceding
optimizations, it is impossible to convert this into internal signal
simply by repacking logic. We consider two cases: if the signal

! This is not resynthesis in the strict sense, but is something
current physical optimization may not do, since IOB register
packing is often done during logic synthesis.

can be internally regenerated, or if a faster external source can be
found.

In the first case, we consider the optimization of a critical input if
its driver is also a LUT (while other inputs can be driven by
anything), by trying to convert S into a MUX. In doing so, logic of
its input elements may change but their types (LUT, MUX, etc.)
can not be changed. If this is possible, we will attempt to convert
S into a MUX and pack the critical driver into the same cell
(again, using iterative overlap removal) to improve timing. (See
Figure 3 for example.) If a single critical output of S drives a
LUT, the same approach also applies.

—
e —
e —
o —
e
e —

[11]

[EEE!

F(a,b,c,d) Glefg) xG(e,f,9)
m— §>

L]] Ll

[EEX! ¥ I EEE!

H(hij.k) :‘Eg‘”"F' H'(h,i,jK)

Figure 3. Rerouting via MUX

Moreover, a single critical output may drive a register through its
set/reset port, where the register effectively has an OR gate of S
and its data input D attached onto it (with parity, determined by
register attributes). If D is a LUT, and S and D share an input ¢
that is unate to both, but in different phases, we can reprogram S
and D to exclude ¢, move the OR function from the register to a
MUX controlled by ¢, and use the MUX to drive the data input of
the register, thereby converting the critical signal to internal. An
example is in Figure 4.

The second case (exploring alternative signal source) applies
when the driver D of the critical signal is a combinational logic
element. We use a precompiled table that maps each logic element
to a signature of its primary input set (the non-combinational
elements that can reach it via a path of combinational logic
elements). First we select each element L in the MFFC of the seed
S that has a better slack than D, and has the same primary input
set as D. Then, we examine if L produces an equivalent, or
inverted, signal as D does; if so, L will be a candidate to replace
D. If that fails, then we examine if a new LUT can be formed
using the inputs of L to produce such a signal, and can be placed
to maintain a better slack than D without adding timing violations
to others. Once a replacement is found, the signal is rerouted to it.
Functional comparisons are done using BDDs and are aborted if
intermediate BDD size exceeds a preset limit. This heuristic
search of equivalent signal can be improved by an SPFD based
approach [7], which is currently under development.

In all cases, the change to logic as well as physical structure is
local and minimal.

105

| R
aF(b,c,d)

Figure 4. Rerouting for register

4.3 Resource Retargeting

This type of optimization involves the use of dedicated logic
resources such as block RAMs and multipliers. Several cases are
considered.

First, if a memory element implemented in block RAM has timing
violations (that cannot be reduced by placement improvement
alone), it is considered for retargeting, according to the following
criteria:

If the critical signals are data signals, we will try to split the
memory into sections according to the placement of the source
and/or destination of the signals, so that each section can be
placed closer to those signals. Each section is first targeted for
block RAMs. If block RAM resource is not available at
designated region and the actual memory size of the section is
small, then it will be converted further into distributed RAMs
(with necessary auxiliary logic and registers), provided that there
are enough resources, and the functionality can be readily
implemented using distributed RAMs. An example is shown in
Figure 5 (which is part of a real design), where a critical output
signal was separated and the block RAM was converted into a
mixture of block and distributed RAMs, thereby fixing the timing
violation on the output signal (worst output slack is improved
from -2.05ns to +2.23ns).

If the critical signal is a read address, we will try to split the
memory into two block RAMs using other address lines, and
decode this critical read address outside the memory while trying
to place the decoding logic near the source of the address, and/or
the output destinations.

In other cases, the block RAM will be fully converted into
distributed RAMs (plus necessary auxiliary logic and registers) if
possible. This transformation is considered only when the actual
memory size is small and the physical window is sparsely used.

Similarly, synchronized distributed RAMs can be retargeted to
block RAM implementation. For a given seed, the set of
compatible RAMs and output registers are in its logic window.
These are first grouped into sections based on their proximity to
the input and output elements, and combined size; then each
section is converted into a block RAM, one block RMA a time, in
order of criticality. The converted block RAM(s) are placed and
evaluated; if timing is worsened, it is rejected. An accepted block
RAM will be subject to further improvement if its most critical
signal is a data of read address signal, using the technique
described earlier, if possible.

|EE£I| e Pl [gal g ld B ob 0
ER " ot B EI T | __,/a'ifsi
| i 3 I f
I\E’g\f‘ll . 'Ei@' EI ﬂ| n':" i T4l ||L ¥
<0 B | E‘|_ il g S on
- y i] || _Ban Land B,
a o[o]
! Eﬁl_ﬁ_‘._ﬁg _:_Eéﬂg
) L oo [l el
7
Lo
B n
4

T] D 1]
on—— N DDA pOl O
i T Op—b b | i3]
C ,_:._J i _Eg_-_ul.p_ﬁp_._,ﬁb_
] i i i | || oo g || |
| O |instance: nch_interface fIQ/bram512%36/85
D e E mrat>_ost;gct-z.uf;gwwtm(z)
. i ‘ i B B) | a g;:s;misin;mp;’mmdstn
BRI Lo IEEIREIN
:) i (IHEEE|N
bl E/;/"n b i IR TR
Mg 5 bt g gt
e pemmrrumti(|[EWES 5
.u//ﬂuga/ | gq| | el | - |_'g_
o4 5 || gqgu | lwp | 2 .ood | b
(I lelfzB || [zoE | [[=00 | B
l;;lggl o E_ ED | _E ED HELE
oo after B o =7 En o
[a a] pa| |1 g o] o
o oo o B :_%u] o =L'r
I I LR) = A6 -1
B L T e : B LETF B
fﬁ’_,/ (11l 7 .
_,g T)DW E=hal by -
4 :m/ = 7 Lmimoe:ncs_'nmrhceﬁa 512%36/%95
OB | 2 gty
i il Site: RAMB16_X1¥3 (RPM Grid X44Y67)
b o F‘y =]
n/;l’ e 0 A Y|:| ’E(r _E_
P 117 i L [Th] o]
] |- | paps [Go]
2! | op
1 g o oA, oiiodn 0 o [i73]
ﬁu’ B I uyuf? DL 0o o i
1 g gt ¥ §7 b ‘\ b -
1§)
13 1]] a 3 a
';‘"}ﬁ:u uEﬂ 'ﬂ"ug__ﬁ__
DI, o [N i
3] oo T a]
i - T .
i B o 0 E a0 | 0| oo
0 |E | Db oa 10 70 0op |0 B
‘ ngj o i0 | id s B
] o D 0| i gl | oo

Figure 5. Resource retargeting for memory implementation

Finally, for a (grown) window of combinational logic elements,
where all seeds are driving compatible registers, and the total
input size is within the maximum address width of the block
RAM resource, the logic in the window (as well as the output
registers for synchronized block RAM) will be tentatively
converted to a block ROM [8] to verify timing improvement.
When seeds are automatically selected and windows are
automatically grown, this is invoked only when a window of
combinational logic has grown to its maximum size.

We are currently investigating transformations between block and
distributed multipliers.

For different architectures, the rules of conversion may differ.

4.4 Logic Restructuring

This type of optimization applies to a window of combinational
logic elements and attempts to reduce the delays from the most
critical inputs of the window to a seed, without increasing overall
timing violations.

First, a seed with the worst slack is selected, and the sub-netlist
containing elements in the window that have the same slacks are
constructed and decomposed into MFFCs. Then, the MFFCs are
converted into blocks, by selecting in large MFFCs extra elements
as block roots, and by duplicating and merging smaller MFFCs
into their output blocks, to make the block size at least 4 and at
most 8. The decision on promoting an element into a root or
demoting one from a root is according to a ranking based on the
location, type, and output size of an element; an element placed
further away from its outputs, a MUX element, and one that has
more outputs are favored, as they are more likely to be
implemented as roots of logic elements in a efficient optimization
solution. Highest/lowest ranked element will be
promoted/demoted unless doing so violates the size constraint.
After the block partitioning, the elements in each block should
have relatively close placement (not counting the duplicated
portions). Then, each block is processed, in the order of the
distance from the seed. First, the block (which has a single output
at its root) is collapsed into a single logic function. Then, we
attempt several logic optimizations, in the following order.

e If the block fits a pattern recognized for cascade chain and
fits the area constraint (see cell repacking), the cascade
configuration will be attempted, with an initial placement to
the nearest eligible cell to the block root. The result is
accepted if the placement can be made feasible, the delay of
this block is reduced and the overall timing violation in the
window is not increased.?

e Delay based functional decomposition [1,3,11] is used to
produce a tree of 4-LUTs. Initial placement will keep the
root LUT in its current position. If placement is possible,
block delay is reduced and the overall timing violation of the
window is not worsened, the result is accepted.

e Multi-level Shannon expansion is attempted on all inputs and
results are filtered for eligibility according to cell budget: for
a budget of one/two/four, one/two/three levels of expansions,
with final cofactors of no more than 4 inputs, are acceptable
since they can fit into as many cells. The acceptable
configurations are ranked in order of delay (not counting
external routing delay) and tried for placement; the first one
that reduces block delay without worsening others is
accepted.

If none of the above succeeds, the next block will be processed; if
any of the above succeeds, the transformation is committed, and
the next block will be processed based on updated physical and
timing information. This procedure ends when the slack at the
seed becomes non-negative, or when all blocks have been
processed. If there are other seeds that still have timing violations,
the same procedure is repeated on the next worst seed. To prevent
unsuccessful blocks from being attempted multiple times, we

% This differs from cell repacking in that this may cover only a
part of the MFFC of a seed, or may cover elements outside of
the MFFC.

cache the root and the inputs of such blocks, and skip the
processing in subsequent optimizations if the same block is being
considered again.

For placement of each block, the competitive displacement placer
is used since the tasks are rather small and localized. After all
seeds are processed, the timing driven improvement placer is used
for further optimization.

If no transformation has taken place during the operation, the
current window may grow, either by expanding to the MCMFFC
of current window, which introduces new seeds, or by expanding
current window to its MFFC, which may add new predecessors; in
each case new block structures may be introduced. The cached
unsuccessful blocks will be used to avoid the reprocessing of un-
improvable parts.

5. Experimental Results

We have implemented a prototyping IPR system based on the
approach described in the preceding sections. As stated earlier, the
system can be driven via an automatic optimizer that identifies
critical sections and applies the appropriate optimizations; or via a
user interface, where critical sections are defined by manually
selected seeds. We report some preliminary experimental results
in this section.

Since our optimization techniques are geared towards real world
FPGA architectures and complicated designs, It is difficult to
evaluate their effectiveness using simplified device models and
MCNC benchmarks. Therefore, we tested our system on a set of
real designs from our customers’, in the setting of real design flow
targeting Xilinx Virtex II series FPGAs. Prior to entering IPR,
these designs were first compiled and synthesized using the
Precision RTL Synthesis system [15], placed and routed using the
Xilinx ISE placement and routing tools [20], then synthesized
using the Precision Physical Synthesis system [14] which
performs retiming, replication, and placement improvement. After
IPR, Xilinx ISE placement, routing and timing report tools were
run again to complete routing and get accurate timing information.

For the automatic flow, we set a limit on the maximum number of
resynthesis windows initiated by the driver to 16, and the number
of windows for resource retargeting to four*. This ensures
reasonable run-time, and avoids accumulation of timing
inaccuracy due to the approximated routing delays in our physical
timing model. In seed selection, we set the weight for timing
potentials to be twice as high as resynthesis potentials as such
setting is more effective than a few other tested combinations.

Table 1 summarizes the design and device characteristics and pre-
IPR/post-IPR status for each of the test cases. Columns 2-5 give
the number of logic elements (including LUTs, MUXes and other
gates, 10 buffers, special logic cells and others) in the design,
number of used cells (used SLICEs on the Xilinx Virtex II series

3 These are actually the “difficult” designs we use for quality
testing. Some of them are also intentionally over-constrained to
push optimization limits.

* This does not include iterations due to incremental window
growth upon unsuccessful logic restructuring. Also IPR may
stop early if it becomes clear that no further improvement is
possible, e.g. if the worst path is no longer resynthesizable.

107

FPGA devices), overall utilization (logic/IO), and (rounded) target
clock frequency (if multiple clocks exist, the one we were
optimizing for is listed). Column 6 shows achieved clock
frequency prior to IPR. Columns 7 and 8 show the number of
windows IPR attempted on, and number of successful
optimizations; Column 9 shows the achieved clock frequency
after IPR, and Column 10 the reduction of timing violation. As
indicated by the results, these are difficult designs with few places
improvable; still, IPR is effective on most of these designs, and on
average cut the timing violations by 42.8%, while improving
overall frequency by 10.3%.

It should be noted that while theoretically IPR should result in no
degradation, the physical timing model we used is not 100%
accurate, and errors can accumulate. Therefore, it is possible that
the post-IPR performance becomes worse, as shown in a couple of
test cases (for which the number of applied transformations is
relatively large). We are working on improving the modeling, and
identify "good" transformations that only minimally disturb the
timing correlation.

With global physical synthesis [14] skipped, the overall IPR
results were only slightly better, indicating that IPR and global
physical synthesis compliment, rather than compete with, each
other.

We have also experimented with the interactive flow, in particular
for signal rerouting (a case of truly simultaneous logic and
physical transformation) and resource retargeting (a case involves
complicated placement), and found it effective. One example is
partly shown in Figure 5 of the previous section, where a block
RAM is converted into a smaller block RAM and a set of
distributed RAMs (the highlighted logic elements in the “after”
snapshot, form a sub-netlist that is logically equivalent to the
highlighted block RAM in the “before” snapshot) to eliminate the
negative slack on a data output. For that design (of ~11,000 logic
elements), by applying the optimizations on 3 block RAMs, we
were able to completely remove the timing violations.

The run-time for each integrated logic/physical operation is
typically within a minute on an engineer PC.

6. Discussions and Future Work

We have presented a new approach to FPGA physical synthesis
for timing optimization. Our IPR approach takes advantage of the
characteristics of a logically and physical optimized design, and
focuses on small, critical sections of the design for timing
improvement. This focused nature allows IPR to explore a large
spectrum of resynthesis optimizations, and tightly link them to the
specific features of modern FPGA devices, to achieve design
improvements not reachable by other means.

As designs become larger, and FPGA devices become more
versatile, traditional FPGA design flow will have difficulty in
achieving timing closure. Physical synthesis will become
increasingly important in meeting timing requirements; and tools
such as IPR will be essential to allow the designer to claim the last
a few megahertz.

We are currently integrating some of the features of IPR into the
Precision Physical Synthesis system [14] system, while also
improving the algorithms. At the same time, we are incorporating
some of the techniques proven useful in IPR to traditional RTL
synthesis for FPGAs, including a logic synthesis and technology
mapping algorithm utilizing cascade chain structure.

REFERENCES

R. Ashenhurst, "The decomposition of switching functions," Proc.
Int. Symp. Theory of Switching Functions, pp.74-116, Apr. 1957.

J. Cong and Y. Ding, "FlowMap: An optimal technology mapping
algorithm for delay minimization in lookup-table based FPGA
designs," IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 13, No. 1, pp. 1-12, January 1994.

J. Cong and Y. Ding, "Beyond The Combinatorial Limit in Depth
Minimization For LUT-Based FPGA Designs," Proc. IEEE
International Conf. on Computer-Aided Design, pp. 634-639, Nov.
1993.

J. Cong and Y. Ding, "On Area/Depth Trade-off in LUT-Based
FPGA Technology Mapping," IEEE Trans. on VLSI Systems, Vol. 2,
No. 2, pp. 137-148, June 1994.

J. Cong and Y. Ding, "Combinational Logic Synthesis for LUT
Based Field Programmable Gate Arrays," ACM Trans. on Design
Automation of Electronic Systems, Vol. 1, No. 2, pp. 145-204, Apr.
1996.

J. Cong and Y. Hwang, 'Boolean Matching for LUT-Based Logic
Blocks With Applications to Architecture Evaluation and
Technology Mapping," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 9, pp.1077-1090, Sept.
2001.

J. Cong, Y. Lin and W. Long, "SPFD-Based Global Rewiring,"
Proc. ACM/SIGDA International Symp. on Field Programmable
Gate Arrays, pp.77-84, Feb. 2002.

J. Cong and S. Xu, "Technology Mapping for FPGAs with
Embedded Memory Blocks," Proc. ACM International Symp. on
Field Programmable Gate Arrays, pp. 179-188, Feb. 1998.

Y. Ding and M. Weiss, "The relaxed min-max heap," ACTA
Informatica, Vol.30, pp.215-231, 1993.

[10] R. Francis, J. Rose, and Z. Vranesic, "Chortle-crf: Fast technology
mapping for lookup table-based FPGAs," Proc. 28th ACM/IEEE
Design Automation Conf., pp.613-619, June 1991.

[11] C. Legl, B. Wurth, and K. Eckl, "An implicit algorithm for support
minimization during functional decomposition," Proc. European.
Design and Test Conf., pp.412-417, Mar. 1996.

[12] J. Lin, A. Jagannathan and J. Cong, "Placement-Driven Technology
Mapping For LUT-Based FPGAs," ACM/SIGDA International
Symp. on Field Programmable Gate Arrays, pp121-126, Feb. 2003.

[13] R.Murgai, N. Shenoy, R. Brayton, and A. Sangivanni-Vincentelli,
"Improved logic synthesis algorithms for table lookup architectures,"
Proc. IEEE International Conf. on Computer-Aided Design, pp.564-
567, Nov. 1991

[14] Precision Physical Synthesis Users Manual, Mentor Graphics
Corporation, 2003

[15] Precision RTL Synthesis Users Manual, Mentor Graphics
Corporation, 2003

[16] K. Schabas and S. Brown, "Using Logic Duplication to Improve
Performance in FPGASs," ACM/SIGDA International Symp. on Field
Programmable Gate Arrays, pp.136-142, Feb. 2003.

[17] D. Singh, S. Brown, "Integrated Retiming and Placement for Field
Programmable Gate Arrays," ACM/SIGDA International Symp. on
Field Programmable Gate Arrays, pp.67-76, Feb. 2002.

[18] P. Suaris, D. Wang, N. Chou, "Smart Move: A Placement-aware
Retiming and Replication Method for Field-Programmable Gate
Arrays," Proc. 5th International. Conf. on ASIC, Oct. 2003.

[19] Virtex-1I Platform FPGA Handbook, Xilinx Corporation, 2002
[20] Xilinx ISE 5 Software Users Manual, Xilinx Corporation, 2002.

Table 1. IPR Experimental Results

Circuit #LE #Cell | Util % | Target | Pre-IPR | #Win | #Opt | Post-IPR | Violation
(L10) | (MHz) | (MHz) (MHz) down %

Designl 1941 570 7/82 125 95.63 11 4 109.11 459
Design?2 1284 465 30/47 70 59.19 7 1 61.77 239
Design3 16436 5073 66/37 60 56.34 16 4 59.94 98.4
Design4 3847 1225 79/42 150 133.69 14 1 141.40 47.3
Design5 4691 2131 69/36 70 66.01 11 10 64.90 -27.8
Design6 4555 1472 47/34 133 114.55 9 6 111.74 -15.2
Design7 4588 1760 34/81 90 73.68 16 3 84.06 63.6
Design8 3655 1236 80/67 125 90.21 15 2 106.54 46.9
Design9 2392 982 63/83 133 116.90 6 3 132.87 99.2
Designl0 2897 1012 65/60 70 60.42 5 2 77.17 100.0
Designll 4722 1999 65/97 150 113.46 16 11 133.71 54.2
Designl?2 19270 8334 77/48 50 41.47 16 12 43.12 19.3
Average 5406 2020 94.31 78.58 11 4.5 86.64 42.8

108

	Main Page
	FPGA04
	Front Matter
	Table of Contents
	Author Index

