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ABSTRACT 
This paper presents a new approach to timing optimization for 
FPGA designs, namely incremental physical resynthesis, to 
answer the challenge of effectively integrating logic and physical 
optimizations without incurring unmanageable runtime 
complexity. Unlike previous approaches to this problem which 
limit the types of operations and/or architectural features, we take 
advantage of many architectural characteristics of modern FPGA 
devices, and utilize many types of optimizations including cell 
repacking, signal rerouting, resource retargeting, and logic 
restructuring, accompanied by efficient incremental placement, to 
gradually transform a design via a series of localized logic and 
physical optimizations that verifiably improve overall compliance 
with timing constraints. This procedure works well on small and 
large designs, and can be administered through either an 
automatic optimizer, or an interactive user interface. Our 
preliminary experiments showed that this approach is very 
effective in fixing or reducing timing violations that cannot be 
reduced by other optimization techniques: For a set of test cases to 
which this is applicable, the worst timing violation is reduced by 
an average of 42.8%. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Automatic synthesis, 
Optimization; B.7.1 [Integrated Circuits]: Types and Design 
Styles – Gate arrays; B.7.2 [Integrated Circuits]: Design Aids – 
Layout, Placement and routing; B.8.2 [Performance and 
Reliability]: Performance Analysis and Design Aids. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
FPGA, Logic synthesis, Placement, Timing Optimization 

1. INTRODUCTION 
Timing optimization for FPGA based designs has always been an 
important aspect, especially because compared with ASIC 
technology, FPGA technology has a performance disadvantage 
due to the flexibility it offers. Evolution of FPGA hardware has 
been addressing this issue, both through improved process 
technology (the use of deep sub-micron technologies) and through 
architecture enhancements (multi-level, flexible logic resources 

with fast internal interconnects and multiple configurations; 
dedicated resources for special needs, from memory and 
multiplier to custom logic cores; and active routing resources, to 
name a few). Such improvements have enabled designs running at 
clock frequencies of hundreds of megahertz to be successfully 
implemented on FPGA devices, and encouraged more high 
performance designs to target FPGA technology. 

Logic optimization (logic synthesis and technology mapping) 
plays an important role in producing high performance FPGA 
based designs, as it shapes the logic structure of the designs. 
However, properly modeling timing constraints for logic 
optimization has always been a challenge, since such constraints 
are expressed with respect to the finished implementation, where 
the logically optimized netlist has been embedded onto the pre-
fabricated FPGA device - packed and placed into cells at fixed 
locations and connected with existing, though programmable, 
interconnects. Such an embedding process (physical optimization, 
generally including placement and routing) introduces delay 
variations that are not always well correlated to the netlist 
structure, and are difficult to estimate a priori. 

In the early days of FPGA technology (when architectures were 
simpler and devices were slower), delays of logic cells were 
dominant, and netlist structure based delay modeling worked well. 
Many studies were done using such simplified device and delay 
models (see [5] for a review of many algorithms), resulting in a 
family of elegant algorithms, some achieving provable optimality 
under certain conditions [2]. Some of these are still widely used in 
today's FPGA logic optimization procedures.  

As the architecture becomes more complicated and interconnect 
delays become dominant due to the use of deep sub-micron 
technologies, such models become less reliable. To facilitate 
effective logic optimization, interests have risen on physical 
synthesis, where logic optimization is performed simultaneously 
or iteratively with physical optimization, so that each part can 
gain more accurate information from, and pass more direct 
instructions to, the other part, yielding a better-coordinated effort. 

This paper presents a new approach to physical synthesis, which 
we call incremental physical resynthesis (IPR). It works on a 
completed FPGA design that has unmet timing constraints. 
Incrementally, it identifies small critical sections of the design, 
and based on the logic and physical structure of the section, 
timing requirement, and available logic resources, it tries a set of 
logic and physical optimizations in order to improve timing. Each 
optimization is a fully integrated logic and physical operation, 
bringing logically resynthesized and physically valid changes to 
the design, with verified performance improvement. Being 
incremental, the time complexity of this approach is manageable 
even for the larger designs; moreover, it can be controlled by 
either an automatic optimization driver, or a user interface where 
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the designer can select the spot to optimize and get immediate 
feedback. Our preliminary experimental results showed that this is 
an effective tool to fix timing (constraint) violations that have not 
been fixed by the general optimization procedures including 
global physical synthesis: on a set of test cases the average 
amount of reduction on timing violations is 42.8%. 

The rest of this paper is organized as follows. Section 2 reviews 
previous works and presents our motivation. Section 3 describes 
the overall IPR approach, followed by detailed discussion of 
optimization operations in Section 4. Section 5 discusses some 
experimental results; Section 6 concludes the paper. 

2. Previous Work and Motivation 
Integrating logic and physical optimizations (physical synthesis) is 
a challenging task, in that both sub-tasks are by themselves 
complicated and time-consuming, and putting them together 
would significantly increase the complexity. To deal with this 
difficulty, at least two approaches can be used. One is to limit the 
types of interaction between the two and/or to limit the types of 
optimizations involved (which we refer to as the "reduced 
approach"); the other is to limit the scope of the optimizations 
(which we refer to as the "incremental approach"), by 
incrementally working on small sections. In either case, the 
solution space that is being explored is limited. Therefore, 
physical synthesis will likely be a restricted version from the 
perspective of logic optimization, and serves as an improvement, 
rather than replacement, of standard logic optimization. 
A number of studies on FPGA timing optimization via physical 
synthesis have been published recently [12,16,17,18], concerning 
both sequential and combinational logic optimizations.  
Sequential logic optimization relies on accurate delay information 
in order to balance the delay of the paths; physical synthesis has a 
clear advantage here. In [17], retiming optimization is integrated 
with placement in two ways. Firstly, cost function of the 
placement algorithm is modified to identify paths that are hard to 
improve through retiming, so extra effort can be made to optimize 
them during placement. Secondly, the standard retiming algorithm 
is modified to apply on a placed netlist, while limiting disturbance 
to the placement, by avoiding certain situations that will require 
more placement changes, and by using an incremental re-
placement algorithm based on overlap removal, to minimize 
placement changes when change is necessary. In [18], an 
alternative physical retiming algorithm is proposed, where the 
register movement is constrained by a "budget" calculated using 
layout based delay information. It allows fast, concurrent retiming 
of many paths and is effective in practice. This work also includes 
local logic transformations to enable otherwise un-retimable logic 
to be retimed.  
Combinational logic synthesis for timing optimization involves 
reduction of path delays, thus also benefits from physical delay 
information. In [16], logic duplication is performed after 
placement. With the help of a modified packing routine that 
strategically leaves logic resources for future logic duplication, 
creation of new logic via duplication would not disrupt the 
placement. In [12], simultaneous technology mapping and 
placement is proposed. Given an initial k-LUT mapping and 
placement, the netlist is decomposed in-site using gate 
decomposition, then re-mapped for delay minimization, using 
layout based delay calculation as guide. Each newly mapped k-
LUT is placed into the site where the "root" gate of the LUT used 

to reside. This is followed by a separate placement phase for 
overlap removal and improvement. 
These are global optimization algorithms, and generally follow 
the "reduced approach" above, by limiting the integrated 
optimizations to certain operations (for combinational logic 
optimization, only node duplication, gate decomposition, and 
clustering were used in the above works). They also have one 
notable common objective, which is to keep the physical changes 
minimal, by trying to avoid major disruption to existing 
placement, and by tailoring the logic changes towards this 
objective. Maintaining stability of overall physical structure is a 
very useful strategy in physical synthesis when physical timing 
information is not immediately updated during logic 
optimizations, since substantial changes in physical layout may 
invalidate the currently used timing information, obtained based 
on previous physical layout. In this aspect, these works are 
fundamentally better compared to a direct iteration of logic and 
physical optimizations, which may run into convergence 
problems. 
While these algorithms are elegant and shown effective for 
purposed applications, their power can be limited by the 
restriction on the types of optimizations involved. Moreover, they 
also used simplified architecture models. Adopting a more 
sophisticated set of optimizations and applying on real world 
architectures for large designs will substantially increase the 
complexity of the algorithms. On the other hand, the "incremental 
approach", if proven useful, can be more intensive and versatile 
because it is more focused. These two approaches can compliment 
and improve each other to produce better result together. This is 
our motivation of proposing the incremental physical resynthesis 
(IPR) approach. 
In arguing the usefulness of IPR, we consider that in a typical 
design flow, a design that is subject to IPR has been processed by 
standard logic and physical optimizations, and possibly also 
through global physical synthesis (most noticeably retiming and 
replication [18]). On such designs, there can be several types of 
opportunities unique to IPR. 

• Designs that have reached this stage usually only have 
relatively few places with timing violations - if a design has 
massive violations, it is usually necessary to revisit the 
design at a higher level, restructure the constraints, and/or 
reconsider the choice of device. So our objective is to "fix" 
the problems; being thorough and nimble, IPR can suite the 
job well. 

• Large designs are usually hierarchical, and due to run-time 
and other concerns, are usually optimized hierarchically 
during logic synthesis. While the modules may have been 
intensively optimized, the inherent redundancy of a module 
design can still be revealed when the design enters the 
physical domain, where it is flattened onto the device, and 
cross-hierarchy logic optimizations are possible. Such 
opportunities are generally around the hierarchical 
boundaries. Trying to resynthesize the entire flattened netlist 
is too costly and a wasted effort to most parts of the design, 
while the more focused IPR would fare better. 

• The logic cells of a modern FPGA are very versatile, and 
different configurations have different logic capacity as well 
as different timing characteristics. It is difficult for logic 
synthesis and technology mapping to consider all 
possibilities, and their consequences, when dealing with a 
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large design and without knowledge about physical layout. 
Therefore, a simplified approach is common place; for 
example, LUT-centric logic synthesis is typical for SRAM 
based FPGAs. When a small section of the design is 
concerned and with accurate information on resource 
availability/distribution and timing characteristics, IPR can 
do a more thorough search in solution space, and better 
utilize the device features. 

• The dedicated resources for specific logic (such as 
memories) are very efficient instruments with higher logic 
density and performance, but their limited present on a 
device may occasionally cause layout difficulty that can 
nullify or even reverse their advantage. In general, it is best 
for logic synthesis to use them as much as possible when 
their whereabouts are not clear, and for physical synthesis to 
correct the improperly used ones. These are local 
transformations and fit IPR well. Similarly, unconventional 
use of such resources (e.g. using dedicated memory cells for 
logic [8]) is better determined during IPR when resource 
availability and distribution are known. 

Our IPR approach tries to exploit these opportunities. In addition, 
we integrate logic and physical transformations at operational 
level, thus is able to alter placement as needed, without worrying 
about inaccurate timing information or convergence. To allow 
efficient update of timing information, which is needed for the 
transformations, we use only combinational logic optimization 
operations, without altering the state diagram of the design. This 
makes incremental timing analysis possible. Note that this is not a 
real limitation, since sequential optimizations such as retiming 
[17,18] are inherently global, and can be performed prior to IPR. 

3. Incremental Physical Resynthesis 
In this section, we outline the procedure of our incremental 
physical resynthesis (IPR) algorithm. Throughout this and the 
next sections we will be using the Xilinx Virtex II architecture 
[19] as the platform for presentation. The overall approach applies 
to other modern FPGA architectures as well; however, since IPR 
is tuned to utilize architectural features, the specific optimization 
operations will have to be adapted to and/or modified for each 
family of FPGA devices. 

Briefly, IPR consists of a number of iterations of localized 
optimizations. Each round is usually preceded with physical 
timing analysis to reveal where the optimization effort should be 
centered. After that, an expandable sub-circuit, which will be the 
focus of the optimization, is identified. Depending on the 
characteristics of the sub-circuit, a number of logic 
transformations may be attempted on it. Each successful and 
potentially beneficial transformation (in terms of timing 
improvement) is then incrementally placed, and its impact on 
physical timing is analyzed. If the benefit is realized through 
placement, the transformation is accepted, and this round of 
optimization is completed; otherwise it is reversed, the design is 
restored to previous state, and this round is also completed.  

As stated earlier, we assume that in a design flow IPR is 
positioned after regular logic and physical optimizations 
(synthesis, mapping, placement and routing) and optionally global 
physical synthesis (physical retiming and replication [18], etc.). 
Although IPR can incorporate a complete physical optimization 
component that performs both placement and routing for each 

logic transformation, we have only built an incremental placer; the 
justification and consequence will be discussed shortly. 

3.1 Physical Timing Analysis  
As is for any timing optimization algorithm, timing analysis 
performs a crucial role for IPR. The basic purpose of IPR is to 
eliminate or reduce violations of timing constraints, a.k.a. timing 
violations, which are exemplified by logic paths that have larger 
delays than that allowed by the design specification. The slack of 
a path is defined as the difference between its maximum allowed 
delay and the minimum actual delay; a path with a negative slack 
is a critical path, and the logic elements and nets along the paths 
are critical elements and nets. The smallest, or worst, slack (most 
negative if negative slacks exist) usually indicates the most 
critical section of the design, where optimization may result in 
overall performance improvement. In terms of slacks, the 
objective of IPR is to eliminate or improve the negative slacks. A 
beneficial optimization improves (increases) the slacks of targeted 
paths without worsening the worst slacks of the design. 

In the physical domain, the delay of a logic path is the sum of the 
delays of the logic elements and the delays of the nets 
interconnecting the elements (including the nets that connect logic 
elements within a hierarchical logic cell, and the nets connecting 
the hierarchical logic cells using general routing). While logic 
structure (e.g. fanout size) has impact on the net delay values, it is 
not used directly in physical delay calculation. Instead, pin-to-pin 
delays are determined based on actual physical layout. 

Delay values of the logic elements and the nets that are inside 
hierarchical logic cells can be pre-calculated and stored. 
Acquiring accurate routing delay requires knowing both the 
placement of the connected cells and the routing paths, since 
different routing paths may have different delays. In an IPR 
procedure, such information is available at the beginning, since 
IPR begins with a completed design with both placement and 
routing information. On the other hand, our IPR implementation 
does not include a router, and consequently, the physical 
optimization part of IPR consists of only placement. Therefore, 
subsequent physical timing analysis uses a placement based 
physical delay calculation routine to estimate the pin-to-pin 
routing delay, which approximates the best delay of a route 
between the given pair of pins.  

We have two reasons to use such an approximation. First, in IPR 
each logic transformation requires a physical verification. 
Including a good quality router will substantially increase 
runtime. Secondly, we are mostly concerned about the accuracy of 
the timing information on critical nets, which in most cases will 
be afforded one of the best (or near best) routes, given that 
modern FPGA devices in general have ample active routing 
resources (within a logic utilization limit). Therefore, such an 
approximation usually does not result in significant loss of 
accuracy for the nets the concerns us.  

In our implementation of IPR we also take several measures to 
carefully minimize the error in approximation. Firstly, prior to a 
transformation, we save the timing information that is relevant to 
the sub-circuit under transformation; if the transformation is 
rejected, we restore the saved information instead of recalculation, 
Secondly, we maintain two components of the timing information, 
the original (back annotated from the routed initial design) and 
the modification (calculated based on new or modified 
placement), separately. The original part remains unchanged; 
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when a logic element is moved, we only recalculate the delta of 
the delay caused by the movement, so that original timing 
information can be fully restored if placement change is reversed 
at any stage of IPR. Finally, the local and incremental nature of 
IPR also limits the disturbance caused by each round of iteration.  

Nevertheless, this is an approximation, and occasionally the 
inaccuracy can accumulate to a non-neglectable level and affect 
the quality of the solution. This more likely happens after a large 
number of IPR iterations, and when the selected sub-circuit has a 
large number of different critical paths.  Overall, however, this is 
an acceptable compromise. 

At the beginning of the IPR procedure, a full chip physical timing 
analysis is performed. Subsequently, physical timing analysis is 
performed after each incremental placement; such analysis is 
carried out incrementally via the update of delay information on 
modified portion of the circuit (using physical delay calculation, 
as stated earlier), followed by the update of slacks at the 
surrounding pins of the sub-circuit, and the propagation of slack 
changes through related paths. 

3.2 Seed Selection 
Each iteration of IPR first selects one or more seeds which are in 
general logic elements that have timing violations (i.e. negative 
slacks). The selection is based on the result of physical timing 
analysis. If IPR is driven by an interactive user interface, the 
designer can do the selection according to timing report, or other 
design information; if an automatic driver is used for IPR, the 
selection criteria are as follows. 

We assign to each critical element a potential value representing 
how likely we can reduce timing violation via improving this and 
surrounding logic elements. The potential value is a weighted sum 
of four components for a given critical element. It includes the 
size of its input sub-netlist of critical combinational logic 
elements; the placement sparseness of the region where this sub-
netlist is placed; its slack value; and the number of registers (and 
equivalent elements) from which it can be reached and can reach 
along a critical path. A larger combinational input netlist provides 
a better chance that changes can be made about the seed via 
combinational logic optimization, while a sparsely placed 
neighborhood allows more freedom in exploring alternative logic 
configurations; these two are resynthesis potentials. The worse the 
slack is, and the more paths the seed is on, the more helpful its 
improvement will be to overall timing constraint compliance; 
these are the timing potentials. To determine the values of the 
components in the formula, an analysis of all critical elements is 
first performed to determine the range of each component, which 
is used to normalize the value into a range of (0,1].  The weights 
are configurable per design; for quick improvement, higher 
weights are given to resynthesis potentials; for better result, higher 
weights are given to timing potentials. 

There are certain structures (shift registers, carry chains, 
multiplexers) in a design that have been optimized and cannot be 
further improved. Elements that are part of such structures are 
excluded. 
The potential values are incrementally maintained in a min-max 
heap [9]. Only a top set is kept; lower potential values are leaked 
from the bottom of the heap. Automatic selection picks from the 
top. When optimization happens, the heap is incrementally 

updated. If improvement is not possible, the next qualified seed 
will be selected (see below). 

3.3 Resynthesis Window 
A seed (or a set of seeds) derives a resynthesis window, which the 
optimization will be focused to. This has two parts, the logic 
window, which is a sub-netlist connected to the seed(s); and a 
physical window where the transformed logic will be placed. The 
logic window may grow if the initial window does not contain 
enough logic to facilitate improvement; this is either triggered by 
failed optimization on the existing window, or via demand of a 
particular optimization operation. The physical window may be 
relaxed to allow extra flexibility and additional resource. 

If the seed is a dedicated logic element (e.g. a block RAM), or a 
register, the logic window will include the seed itself, and the 
physical window will be the minimum region that encloses the 
cell in which the seed is placed, as well as the logic cells 
containing the inputs and outputs of the seed. A logic window so 
seeded will not grow; the physical window can automatically 
grow to a prescribed relaxation factor. 

If the seed is a distributed RAM, the logic window will include all 
compatible elements, and their output registers if they exist; the 
physical window will be the enclosing region of the logic window 
(with a relaxation factor for growth). A logic window so seeded 
will not grow. 

For a combinational logic seed, the window construction is based 
on the concept of fanout-free cone [4]. 

Given a network and a node v, a fanout-free-cone (FFC) of v is a 
node set containing v and some of its predecessors, such that any 
path from a member of the set can only reach the outside of the set 
by exiting from v. We say it is the FFC of v (denoted FFC(v)), 
and v is the root of FFC(v). The maximum FFC (MFFC) of v, 
MFFC(v), is the largest of all FFC(v), which according to [4] is 
unique and also contains the MFFC of each member. 

We can extend these concepts to the case of multiple roots. The 
FFC of a set S of nodes is a node set FFC(S) that contains 
members of S, as well as some predecessors, such that any path 
from a member to the outside has to exit from a member of S. The 
subset of S that can exit the FFC without going through others is 
the root set of FFC(S) and denoted R(S); we can show that R(S) 
exists and is unique for given S. The MFFC of S, MFFC(S), is the 
maximum FFC(S), and can be shown to be unique for a given S 
and MFFC(S) = MFFC(R(S)). Note that MFFC(S) contains 
MFFC(v) for each v in S but may contain other nodes as well. 
Finally, we define the minimum containing MFFC of a set S, 
MCMFFC(S), which if exists is the smallest MFFC that properly 
contains S, and has a root set that is disjoint with S. It can be 
shown that for a given set S, MCMFFC(S) is either non-exist, or is 
uniquely defined and properly contains MFFC(S) (the proofs are 
omitted due to space limit). Figure 1 illustrates some of the 
concepts.  

Based on these constructs, for a combinational logic seed the 
initial logic window includes the logic in the cell (SLICE) 
containing the seed, as well as the members of its MFFC and the 
other logic in their cells. The (pre-relaxation) physical window is 
the region enclosing the hierarchical cells (CLBs) containing these 
logic elements. Construction based on multiple seeds follows the 
same rule. 
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If the window needs to grow, the MCMFFC of the current logic 
window will be calculated first. If it exists, its root set is used as 
the new seeds; otherwise, the current logic window is regarded as 
an FFC, and its root set is used as new seeds. If the new seed set is 
the same as the old, or if the window size exceeds a pre-set limit, 
the growth stops, and all seeds that have been involved in the 
series of growth will be disqualified for further consideration. 

 

 

The benefit of using the MFFC structure to determine the 
resynthesis window is that by definition, MFFCs are re-converged 
sub-netlists which behave like super logic elements, whose 
internal logic transformations only affect the signals from its root 
set. This allows maximum flexibility in restructuring the logic and 
simplifies incremental timing analysis. 

3.4 Windowed Optimization 
Once a window is determined, it is analyzed for improvement. 
This involves both logic transformation (netlist change) and 
physical transformation (placement change). During the process, 
changes within the window are freely applied as needed; changes 
outside the window are also allowed but only carried out 
conservatively. In particular, logic changes to elements outside of 
the window must not result in new element or the change of the 
type of an element (that will require a different packing slot); 
placement changes outside of the window also takes a 
conservative approach by limiting itself to iterative overlap 
removal (see the next subsection for details). To ensure 
consistency of timing data, physical timing information is updated 
after each placement change, as stated earlier (and detailed in the 
next subsection). 

During the optimization of a window, IPR exploits several types 
of opportunities and associated optimizations, in the order of the 
cost to perform the transformations. 

The simplest case is that the logic was sub-optimally associated 
with a (hierarchical) cell and cannot be simply relocated during 
physical optimization. Via cell repacking, we may be able to fix 
such problems. Another similar case is that the logic in a cell is 

configured sub-optimally; an alternative configuration, revealed 
by cell repacking, would reduce its delay.  

Similarly, if by modifying certain logic we could reconnect 
certain critical signals via a faster interconnect, or from a faster 
equivalent source, via signal rerouting, we can achieve immediate 
delay reduction.  

A related, but more complicated case is when a specific type of 
resource was used, and due to resource distribution on the device, 
large external interconnect delay was introduced. Via resource 
retargeting we can map the logic onto alternative resources, and 
use the extra freedom in physical optimization to improve timing.  

Finally, the extra delay may be due to a sub-optimally synthesized 
sub-netlist; logic restructuring would explore possible 
improvements. 

Note that these are not mutually exclusive. For example, signal 
rerouting is helped by limited logic restructuring that generates 
required signals. Such cross-references are made as needed. 

These transformations, in the above order, are considered in the 
current window, and attempted if applicable,. If one type of 
optimization is successful but timing violations associated with 
the current window still exists, the subsequent types of 
optimizations may also be considered, provided that the preceding 
types have not made the subsequent ones inapplicable. Each type 
of optimization is evaluated (via placement and physical timing 
analysis) and accepted or rejected separately. 

It should be noted that these transformations, when computed, are 
of a tentative nature, since their benefit has to be verified before 
they are accepted. To make the necessary reverse transformation 
easy, a temporary hierarchy can be created surrounding the logic 
window. In so doing, the application and reversal of the 
transformation becomes toggling between two implementations 
(the original and the new views) of this artificial hierarchy, which 
is a simple operation. It is important, though, to also properly 
associate relevant physical and timing information with the two 
views, and apply and de-apply them accordingly. 

3.5 Incremental Placement and Evaluation 
Some logic optimization operations in IPR, basically those that 
transforms one general combinational logic sub-circuit into 
another one (as opposed to e.g. memory conversion or register 
movement), may first be evaluated using a simple internal timing 
model to determine if there is enough potential benefit in the 
transformation. This model is based on netlist structure as 
commonly used in technology mapping algorithms [5], but delays 
of various logic elements and interconnects are varied to reflect 
the difference caused by their different types. This model is used 
before and after the logic transformation, to compute a nominal 
worst delay throughout the target sub-circuit; if this becomes 
worse after transformation, the transformation is rejected without 
invoking placement.  

If a transformation passes this test (or if the test does not apply), 
physical optimization/evaluation is invoked. As stated earlier, we 
only perform an incremental placement for this purpose. 
Therefore, IPR maintains a legal placement throughout the 
optimization iterations, but routing may not be complete at the 
intermediate states (after IPR, all signals will be routed). Modern 
FPGA devices usually have sufficient routing resources for 
designs with reasonable logic utilization ratios; therefore this is 

Figure 1. MFFC and MCMFFC 
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usually not a problem. To minimize the possibility of generating 
un-routable placement, congestion and utilization control is 
enforced throughout the placement routines. In all of our 
experiments, routing can always complete. 

The incremental placer consists of three components.  

The first component is a quick area placer. It uses a quadratic 
programming formula to initially place, with possible overlaps, 
the newly generated/modified logic elements to the best locations 
based on their peripheral connections. This step is carried out 
once the logic transformation is applied and old logic elements 
unplaced from the chip (after this information has been saved). If 
the new elements form a special packing group, such directive is 
followed. Since this step is relative to the peripherals, global 
timing information is not needed. At the end of this step, all new 
elements have valid placement (but not necessarily legal, due to 
overlaps), allowing physical delay calculation to be carried out, 
and incremental physical timing analysis to be completed by 
adjusting slacks at the peripherals of the transformed sub-circuit, 
and propagating the slack changes through associated paths. 

The second component performs overlap removal, with two 
possible modes. In a simple mode, it just moves the least preferred 
element out of an overlapped location to the best vacant location. 
This is mainly used as an intermediate step. Alternatively, a 
competitive displacement approach is used, where a displaced 
element may bump another placed element out of its location if 
the former is deemed more fitting to that location. This can be 
used as a final placement step in situations where minimum 
disturbance to existing placement is preferred; for example, when 
placement disruption outside the physical window is necessary (in 
which case displaced elements outside of the window may bump 
placed elements inside the window), or when only a small portion 
of logic is re-placed. At the end of this step, the design becomes 
legally placed (or the transformation rejected if legalization fails). 

The third component is a timing driven iterative improvement 
placer which operates mainly in the physical window, but can be 
relaxed to push some elements outside of the window (in the case 
of new overlap, they will be re-placed using competitive 
displacement). This is the most effective, yet timing consuming, 
portion of placement. While an annealing algorithm may be used, 
a structural placement is preferred because the trade-off between 
quality and runtime can be better controlled.  

Note that thw two latter placement components only involve 
movement of already placed logic elements. Consequently, we 
can keep the timing information up to date throughout the 
movements, by updating the delays associated with moved 
elements and their nets, and updating and propagating slack 
changes, immediately after each movement; this can be done very 
efficiently. Moreover, by recording the sequence of movement, 
the movements can be completely reversed and the placement 
undone (with timing information fully restored as well); therefore, 
if at a time during placement the transformation is deemed non-
beneficial, the original logic/timing/placement can be restored, 
and the transformation rejected, without side effect. 

4. Physical Resynthesis Operations 
In this section we will detail and exemplify each type of 
optimizations used by IPR. As noted earlier, these optimizations 
are tuned towards FPGA specific architectures. The descriptions 
in this section apply to the Xilinx Virtex II series FPGA devices. 

While these types of optimizations should be applicable to other 
modern FPGA devices, certain operations will not be applicable if 
the specific architectural features they depend on are not 
available; while other operations can be similarly developed for 
architectural features not available or used in the following 
discussion.  

4.1 Cell Repacking 
This applies to logic ranging from one regular cell (SLICE) up to 
one higher physical hierarchy (CLB), depending on the type of 
seeds and the content of the window. We assume that, as the result 
of the (regular) logic and physical optimizations the precedes IPR, 
simple swapping of swappable elements among regular cells will 
not improve timing. We consider the following cases. 
For a register seed packed in an IOB, movement to a regular cell 
within current physical window, between (and including) the cells 
of its logic inputs and its current location, is explored for timing 
improvement. Similarly, for a register that exclusively drives an 
IOB, movement towards the IOB is considered. (A register not 
directly connected to IOB has been optimized during retiming 
[18] so is not considered here.)1  
For a combinational logic seed, its MFFC is analyzed. If the logic 
fits a pattern that can be implemented using the cascade chain [19] 
but was not implemented as such, and the required cells can be 
repacked to vacate the needed resources for the chain without 
creating worse timing violations, the MFFC is transformed into 
the form and packed into the cells. An example is shown in Figure 
2. This transformation applies only to architectures with a fast 
cascade chain feature. 
This technique only applies to FPGA architectures with fast 
cascade chains built into logic cells.  

 

4.2 Signal Rerouting 
This applies to a LUT seed S with a critical connection that uses 
external interconnect. We assume that due to the preceding 
optimizations, it is impossible to convert this into internal signal 
simply by repacking logic. We consider two cases: if the signal 

                                                                 
1 This is not resynthesis in the strict sense, but is something 

current physical optimization may not do, since IOB register 
packing is often done during logic synthesis. 

Figure 2. Repacking into cascade chain 
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can be internally regenerated, or if a faster external source can be 
found.  
In the first case, we consider the optimization of a critical input if 
its driver is also a LUT (while other inputs can be driven by 
anything), by trying to convert S into a MUX. In doing so, logic of 
its input elements may change but their types (LUT, MUX, etc.) 
can not be changed. If this is possible, we will attempt to convert 
S into a MUX and pack the critical driver into the same cell 
(again, using iterative overlap removal) to improve timing. (See 
Figure 3 for example.) If a single critical output of S drives a 
LUT, the same approach also applies.  

 

Moreover, a single critical output may drive a register through its 
set/reset port, where the register effectively has an OR gate of S 
and its data input D attached onto it (with parity, determined by 
register attributes). If D is a LUT, and S and D share an input c 
that is unate to both, but in different phases, we can reprogram S 
and D to exclude c, move the OR function from the register to a 
MUX controlled by c, and use the MUX to drive the data input of 
the register, thereby converting the critical signal to internal. An 
example is in Figure 4. 
The second case (exploring alternative signal source) applies 
when the driver D of the critical signal is a combinational logic 
element. We use a precompiled table that maps each logic element 
to a signature of its primary input set (the non-combinational 
elements that can reach it via a path of combinational logic 
elements). First we select each element L in the MFFC of the seed 
S that has a better slack than D, and has the same primary input 
set as D. Then, we examine if L produces an equivalent, or 
inverted, signal as D does; if so, L will be a candidate to replace 
D. If that fails, then we examine if a new LUT can be formed 
using the inputs of L to produce such a signal, and can be placed 
to maintain a better slack than D without adding timing violations 
to others. Once a replacement is found, the signal is rerouted to it. 
Functional comparisons are done using BDDs and are aborted if 
intermediate BDD size exceeds a preset limit. This heuristic 
search of equivalent signal can be improved by an SPFD based 
approach [7], which is currently under development. 
In all cases, the change to logic as well as physical structure is 
local and minimal. 
 

 

4.3 Resource Retargeting 
This type of optimization involves the use of dedicated logic 
resources such as block RAMs and multipliers. Several cases are 
considered.  

First, if a memory element implemented in block RAM has timing 
violations (that cannot be reduced by placement improvement 
alone), it is considered for retargeting, according to the following 
criteria: 

If the critical signals are data signals, we will try to split the 
memory into sections according to the placement of the source 
and/or destination of the signals, so that each section can be 
placed closer to those signals. Each section is first targeted for 
block RAMs. If block RAM resource is not available at 
designated region and the actual memory size of the section is 
small, then it will be converted further into distributed RAMs 
(with necessary auxiliary logic and registers), provided that there 
are enough resources, and the functionality can be readily 
implemented using distributed RAMs. An example is shown in 
Figure 5 (which is part of a real design), where a critical output 
signal was separated and the block RAM was converted into a 
mixture of block and distributed RAMs, thereby fixing the timing 
violation on the output signal (worst output slack is improved 
from -2.05ns to +2.23ns). 

If the critical signal is a read address, we will try to split the 
memory into two block RAMs using other address lines, and 
decode this critical read address outside the memory while trying 
to place the decoding logic near the source of the address, and/or 
the output destinations. 

In other cases, the block RAM will be fully converted into 
distributed RAMs (plus necessary auxiliary logic and registers) if 
possible. This transformation is considered only when the actual 
memory size is small and the physical window is sparsely used. 

Similarly, synchronized distributed RAMs can be retargeted to 
block RAM implementation. For a given seed, the set of 
compatible RAMs and output registers are in its logic window. 
These are first grouped into sections based on their proximity to 
the input and output elements, and combined size; then each 
section is converted into a block RAM, one block RMA a time, in 
order of criticality. The converted block RAM(s) are placed and 
evaluated; if timing is worsened, it is rejected. An accepted block 
RAM will be subject to further improvement if its most critical 
signal is a data of read address signal, using the technique 
described earlier, if possible. 

 

Figure 3. Rerouting via MUX 

Figure 4. Rerouting for register 
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Finally, for a (grown) window of combinational logic elements, 
where all seeds are driving compatible registers, and the total 
input size is within the maximum address width of the block 
RAM resource, the logic in the window (as well as the output 
registers for synchronized block RAM) will be tentatively 
converted to a block ROM [8] to verify timing improvement. 
When seeds are automatically selected and windows are 
automatically grown, this is invoked only when a window of 
combinational logic has grown to its maximum size. 

We are currently investigating transformations between block and 
distributed multipliers. 

For different architectures, the rules of conversion may differ.  

4.4 Logic Restructuring 
This type of optimization applies to a window of combinational 
logic elements and attempts to reduce the delays from the most 
critical inputs of the window to a seed, without increasing overall 
timing violations.  

First, a seed with the worst slack is selected, and the sub-netlist 
containing elements in the window that have the same slacks are 
constructed and decomposed into MFFCs. Then, the MFFCs are 
converted into blocks, by selecting in large MFFCs extra elements 
as block roots, and by duplicating and merging smaller MFFCs 
into their output blocks, to make the block size at least 4 and at 
most 8. The decision on promoting an element into a root or 
demoting one from a root is according to a ranking based on the 
location, type, and output size of an element; an element placed 
further away from its outputs, a MUX element, and one that has 
more outputs are favored, as they are more likely to be 
implemented as roots of logic elements in a efficient optimization 
solution. Highest/lowest ranked element will be 
promoted/demoted unless doing so violates the size constraint. 
After the block partitioning, the elements in each block should 
have relatively close placement (not counting the duplicated 
portions). Then, each block is processed, in the order of the 
distance from the seed. First, the block (which has a single output 
at its root) is collapsed into a single logic function. Then, we 
attempt several logic optimizations, in the following order. 

• If the block fits a pattern recognized for cascade chain and 
fits the area constraint (see cell repacking), the cascade 
configuration will be attempted, with an initial placement to 
the nearest eligible cell to the block root. The result is 
accepted if the placement can be made feasible, the delay of 
this block is reduced and the overall timing violation in the 
window is not increased.2 

• Delay based functional decomposition [1,3,11] is used to 
produce a tree of 4-LUTs. Initial placement will keep the 
root LUT in its current position. If placement is possible, 
block delay is reduced and the overall timing violation of the 
window is not worsened, the result is accepted. 

• Multi-level Shannon expansion is attempted on all inputs and 
results are filtered for eligibility according to cell budget: for 
a budget of one/two/four, one/two/three levels of expansions, 
with final cofactors of no more than 4 inputs, are acceptable 
since they can fit into as many cells. The acceptable 
configurations are ranked in order of delay (not counting 
external routing delay) and tried for placement; the first one 
that reduces block delay without worsening others is 
accepted. 

If none of the above succeeds, the next block will be processed; if 
any of the above succeeds, the transformation is committed, and 
the next block will be processed based on updated physical and 
timing information. This procedure ends when the slack at the 
seed becomes non-negative, or when all blocks have been 
processed. If there are other seeds that still have timing violations, 
the same procedure is repeated on the next worst seed. To prevent 
unsuccessful blocks from being attempted multiple times, we 
                                                                 
2 This differs from cell repacking in that this may cover only a 

part of the MFFC of a seed, or may cover elements outside of 
the MFFC. 

Figure 5. Resource retargeting for memory implementation 
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cache the root and the inputs of such blocks, and skip the 
processing in subsequent optimizations if the same block is being 
considered again.  

For placement of each block, the competitive displacement placer 
is used since the tasks are rather small and localized. After all 
seeds are processed, the timing driven improvement placer is used 
for further optimization. 

If no transformation has taken place during the operation, the 
current window may grow, either by expanding to the MCMFFC 
of current window, which introduces new seeds, or by expanding 
current window to its MFFC, which may add new predecessors; in 
each case new block structures may be introduced. The cached 
unsuccessful blocks will be used to avoid the reprocessing of un-
improvable parts. 

5. Experimental Results 
We have implemented a prototyping IPR system based on the 
approach described in the preceding sections. As stated earlier, the 
system can be driven via an automatic optimizer that identifies 
critical sections and applies the appropriate optimizations; or via a 
user interface, where critical sections are defined by manually 
selected seeds. We report some preliminary experimental results 
in this section. 

Since our optimization techniques are geared towards real world 
FPGA architectures and complicated designs, It is difficult to 
evaluate their effectiveness using simplified device models and 
MCNC benchmarks. Therefore, we tested our system on a set of 
real designs from our customers3, in the setting of real design flow 
targeting Xilinx Virtex II series FPGAs. Prior to entering IPR, 
these designs were first compiled and synthesized using the 
Precision RTL Synthesis system [15], placed and routed using the 
Xilinx ISE placement and routing tools [20], then synthesized 
using the Precision Physical Synthesis system [14] which 
performs retiming, replication, and placement improvement. After 
IPR, Xilinx ISE placement, routing and timing report tools were 
run again to complete routing and get accurate timing information.  

For the automatic flow, we set a limit on the maximum number of 
resynthesis windows initiated by the driver to 16, and the number 
of windows for resource retargeting to four 4 . This ensures 
reasonable run-time, and avoids accumulation of timing 
inaccuracy due to the approximated routing delays in our physical 
timing model. In seed selection, we set the weight for timing 
potentials to be twice as high as resynthesis potentials as such 
setting is more effective than a few other tested combinations. 

Table 1 summarizes the design and device characteristics and pre-
IPR/post-IPR status for each of the test cases. Columns 2-5 give 
the number of logic elements (including LUTs, MUXes and other 
gates, IO buffers, special logic cells and others) in the design, 
number of used cells (used SLICEs on the Xilinx Virtex II series 
                                                                 
3  These are actually the “difficult” designs we use for quality 

testing. Some of them are also intentionally over-constrained to 
push optimization limits. 

4  This does not include iterations due to incremental window 
growth upon unsuccessful logic restructuring. Also IPR may 
stop early if it becomes clear that no further improvement is 
possible, e.g. if the worst path is no longer resynthesizable. 

 

FPGA devices), overall utilization (logic/IO), and (rounded) target 
clock frequency (if multiple clocks exist, the one we were 
optimizing for is listed). Column 6 shows achieved clock 
frequency prior to IPR. Columns 7 and 8 show the number of 
windows IPR attempted on, and number of successful 
optimizations; Column 9 shows the achieved clock frequency 
after IPR, and Column 10 the reduction of timing violation. As 
indicated by the results, these are difficult designs with few places 
improvable; still, IPR is effective on most of these designs, and on 
average cut the timing violations by 42.8%, while improving 
overall frequency by 10.3%. 

It should be noted that while theoretically IPR should result in no 
degradation, the physical timing model we used is not 100% 
accurate, and errors can accumulate. Therefore, it is possible that 
the post-IPR performance becomes worse, as shown in a couple of 
test cases (for which the number of applied transformations is 
relatively large). We are working on improving the modeling, and 
identify "good" transformations that only minimally disturb the 
timing correlation. 

With global physical synthesis [14] skipped, the overall IPR 
results were only slightly better, indicating that IPR and global 
physical synthesis compliment, rather than compete with, each 
other. 

We have also experimented with the interactive flow, in particular 
for signal rerouting (a case of truly simultaneous logic and 
physical transformation) and resource retargeting (a case involves 
complicated placement), and found it effective. One example is 
partly shown in Figure 5 of the previous section, where a block 
RAM is converted into a smaller block RAM and a set of 
distributed RAMs (the highlighted logic elements in the “after” 
snapshot, form a sub-netlist that is logically equivalent to the 
highlighted block RAM in the “before” snapshot) to eliminate the 
negative slack on a data output. For that design (of ~11,000 logic 
elements), by applying the optimizations on 3 block RAMs, we 
were able to completely remove the timing violations. 

The run-time for each integrated logic/physical operation is 
typically within a minute on an engineer PC.  

6. Discussions and Future Work 
We have presented a new approach to FPGA physical synthesis 
for timing optimization. Our IPR approach takes advantage of the 
characteristics of a logically and physical optimized design, and 
focuses on small, critical sections of the design for timing 
improvement. This focused nature allows IPR to explore a large 
spectrum of resynthesis optimizations, and tightly link them to the 
specific features of modern FPGA devices, to achieve design 
improvements not reachable by other means. 

As designs become larger, and FPGA devices become more 
versatile, traditional FPGA design flow will have difficulty in 
achieving timing closure. Physical synthesis will become 
increasingly important in meeting timing requirements; and tools 
such as IPR will be essential to allow the designer to claim the last 
a few megahertz. 

We are currently integrating some of the features of IPR into the 
Precision Physical Synthesis system [14] system, while also 
improving the algorithms. At the same time, we are incorporating 
some of the techniques proven useful in IPR to traditional RTL 
synthesis for FPGAs, including a logic synthesis and technology 
mapping algorithm utilizing cascade chain structure. 
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Table 1. IPR Experimental Results 

Circuit #LE #Cell Util % 
(L/IO) 

Target 
(MHz) 

Pre-IPR 
(MHz) 

#Win #Opt Post-IPR 
(MHz) 

Violation 
down % 

Design1 1941 570 7/82 125 95.63 11 4 109.11 45.9 

Design2 1284 465 30/47 70 59.19 7 1 61.77 23.9 

Design3 16436 5073 66/37 60 56.34 16 4 59.94 98.4 

Design4 3847 1225 79/42 150 133.69 14 1 141.40 47.3 

Design5 4691 2131 69/36 70 66.01 11 10 64.90 -27.8 

Design6 4555 1472 47/34 133 114.55 9 6 111.74 -15.2 

Design7 4588 1760 34/81 90 73.68 16 3 84.06 63.6 

Design8 3655 1236 80/67 125 90.21 15 2 106.54 46.9 

Design9 2392 982 63/83 133 116.90 6 3 132.87 99.2 

Design10 2897 1012 65/60 70 60.42 5 2 77.17 100.0 

Design11 4722 1999 65/97 150 113.46 16 11 133.71 54.2 

Design12 19270 8334 77/48 50 41.47 16 12 43.12 19.3 

Average 5406 2020  94.31 78.58 11 4.5 86.64 42.8 
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