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ABSTRACT

In this paper we describe a method to combine dictionary
coding and partial LFSR reseeding to improve the compres-
sion efficiency for test data compression. We also present a
fast matrix calculation method which significantly reduces
the computation time to find a solution for partial LFSR re-
seeding. Experimental results on ISCAS89 benchmark cir-
cuits show that our approach is better than either dictionary
coding or LFSR reseeding, and outperforms several test data
compression methods proposed recently.

Categories and Subject Descriptors: B.8.1 [Performance
and Reliability]: Reliability, Testing and Fault Tolerance.

General Terms: Algorithm, Design.
Keywords: VLSI test, Built-In Self Test.

1. INTRODUCTION

As technology advances, the amount of test data increases
dramatically, which requires increased test time, test storage
on the tester, and test data bandwidth between the tester
and the chip. Consequently, there is a need for test data
compression. One attractive approach for test data com-
pression is to use Linear Feedback Shift Register (LFSR)
reseeding [11]. Several methods based on LFSR reseeding
have been proposed [6] [12] [13] [18] [20] [26]. Commercial
tools based on LFSR reseeding have also been developed re-
cently which include Mentor Graphics’ TestKompress [21]
and Synopsys’ DBIST [24].

Also, a lot of research effort has been done on using loss-
less source coding to compress test data. Many coding tech-
niques have been proposed for test data compression, which
include run-length coding [9], Golomb coding [3], FDR cod-
ing [2], EFDR coding [16], statistical coding [10], variable-
length index Huffman coding (VIHC) [5] and dictionary cod-
ing [14] [25]. Other test data compression techniques such as
Illinois scan chain [8], folding counter [7], scan chain conceal-
ment(XOR network) [1], mutation encoding [22], Packet-
based coding [17] and RESPIN++ [23] were also proposed.

LFSR reseeding based techniques are not efficient when
the number of specified bits in each vector is very large.
Source coding techniques can handle test data with a large
number of specified bits. This suggests combining source
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coding and LFSR reseeding to improve the efficiency of test
data compression. In this paper, we describe a method that
combines dictionary coding and partial LFSR reseeding for
test data compression. In the rest of the paper, the proposed
method is called CDCR (Combining Dictionary Coding and
Reseeding) for convenience. The rest of the paper is orga-
nized as follows: Section 2 introduces the methodology of
dictionary coding and LFSR reseeding. Section 3 presents
our approach which combines dictionary coding and LFSR
reseeding for test data compression. Experimental results
on ISCAS89 benchmark circuits are shown in Section 4.

2. PREVIOUSWORK

We describe a dictionary-based test data compression ap-
proach proposed by Li and Chakrabarty [14]. Let’s assume
the precomputed test data consists of d test vectors, and
there are m scan chains in CUT with each k bits long. A
word is defined as data loaded into the m scan chains per
clock cycle. So the length of the word is m bits and there
are k words in each test vector. The total number of words
is t where t = dk. If the total number of entries in the dic-
tionary is w, then the length of the dictionary index is ¢ bits
where ¢ = logow. In Li and Chakrabarty’s method, a code-
word consists of a prefix and a content. The prefix has only
1 bit and serves as an identifier that indicates whether the
content is an index in the dictionary or a word not encoded
into the dictionary. If the prefix is “1”, the content is viewed
as a dictionary index, which is ¢ bits long. If the prefix is
“0”, the content is an uncompressed word of m bits. For
the dictionary coding problem, vertices are test words and
connecting edges indicate no conflicting specified bits. The
dictionary encoding problem can be converted to a clique
partitioning problem. The clique partitioning problem is
described as follows: An undirected graph G consists of a
set of vertices V and a set of edges E, where each edge con-
nects two vertices. Given G = (V, E), a clique of the graph
is defined as a subset, each pair of which is connected by
an edge in E. A heuristic algorithm for clique partitioning
problem is described in [14]. The computational complexity
of this algorithm is O(¢*), where ¢ is the number of vertices
in G and t = dk.

The technique of LFSR reseeding to compress the test
data was first proposed in [11]. At the beginning of each test
vector, a r-bit seed is load into LFSR. If there is only one
channel from ATE, then it will take r clock cycles for loading
the seed. After the seed is loaded, the m scan chains are
loaded by the LFSR for k clock cycles, where k is the length
of each scan chain. For each specified bit in the test vector,
there is a corresponding linear equation which is constructed
based on the position of the specified bit, the structure of
XOR network, and the number of clock cycles. The variables
in the linear equation are the r bits in the seed loaded into
LFSR. Solving all the linear equations for the corresponding



specified bits in a test vector will determine the r-bit seed
to be loaded into LFSR. If the number of specified bits for
each test vector is s, then r should be larger than s,,q, + 20
to ensure that there is a solution for the linear equations,
where $maqz 18 the maximum number of specified bits in one
test vector [4] [11].

There are 3 issues limiting the performance of basic LFSR
Reseeding [11]:

1. Compression limit: The best compression that reseed-
ing based methods can achieve is the total number of
specified bits in all the test vectors.

. Solvability: To ensure there is a solution, the number
of bits in the seeds and the size of LFSR should be
large enough. In order to reduce the probability of not
finding a solution to be less than 107°, r should be
larger than smae + 20[4] [11] .

. Variation of the specified bits: The number of spec-
ified bits in each test vector can vary significantly,
while the size of LFSR and the number of seeds loaded
into LFSR for each test vector is a fixed number (i.e.,
7 ~ Smaz + 20). So the size of compressed data dr ~
d(Smaz +20) may be much larger than the total num-
ber of specified bits dsavg, Where sq.q is the average
number of specified bits in one test vector.

To address the 3rd issue mentioned above, Krishna, Jas
and Touba proposed a method to use partial reseeding to
improve the efficiency of LFSR reseeding [12]. The basic
idea of partial reseeding is: a n-bit seed is loaded into the
LFSR at the beginning of each test vector, where n ~ s444.
Instead of solving the linear equations for each test vector,
all the linear equations for all the test vectors are solved to-
gether. To improve the solvability, the test vectors need to
be reordered. The advantage of partial reseeding is that, the
compression efficiency has been greatly improved. The dis-
advantage of partial reseeding is that, the linear equations
for all the test vectors need to be solved together, which sig-
nificantly increases the computational complexity. A solu-
tion could be to partition the test vectors into several groups
and handle one group each time [12].

3. COMBINING CODING AND RESEEDING

LFSR reseeding based techniques are not efficient when
the number of specified bits in each vector is very large.
Source coding techniques such as dictionary coding can han-
dle test data with large number of specified bits. This sug-
gests combining dictionary coding and reseeding to improve
the efficiency of test data compression. In this section, we
describe a method combining dictionary coding and partial
reseeding for test data compression.

3.1 Methodology

The basic idea for CDCR is that, for those words not en-
coded into dictionary, partial reseeding is used to compress
them. Different from the original partial reseeding proposed
in [12], a seed is loaded into LFSR for each word instead of
for each test vector. Since reordering the words is impos-
sible, it may be necessary to insert a “dummyword” (DW)
between words to ensure the linear equations can be solved.
A DW is equivalent to adding a n-bit seed into LFSR with-
out loading the scan chain. Since more variables are added
into the linear equations, the solvability of the linear equa-
tions is improved. An algorithm to determine where to add
a DW is described below:

1. Initialize LFSR.
2. Choose the first m-bit word to be the current word.
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3. Generate linear equations for the current word and see
if the equations can be solved.

If yes (if pivoting is successful), choose the next m-bit
word to be the current word, go back to step 3.

Else, if the number of DWs added for the current word
is larger than 10 (10 is a randomly chosen number),
reconfigure the XOR network and go back to step 1.
Else, add a DW and go back to step 3.

Similar to dictionary coding, each codeword consists of a
prefix and a content. For those words can be encoded into
the dictionary, a 1-bit prefix is used and the content has ¢
bits. For those words cannot be encoded into the dictionary,
a 2-bit prefix is used and the content has n bits. The first
bit of the codeword is checked by the decoder to determine
if it is a codeword for the dictionary. If the result is true,
the remaining ¢ bits are used as a dictionary index. If the
result is false, the second bit of the codeword is checked by
the decoder to determine whether a DW is used. If a DW
is not needed, the remaining n bits are considered as seeds
and are loaded into LFSR in n clock cycles. the scan chains
are loaded for one clock cycle. If a DW is needed, the scan
chains are not loaded. For dictionary coding, m + 1 bits are
needed to encode those words not encoded into dictionary,
while only n + 2 bits are needed for CDCR. For most cases,
n < m, so compared to dictionary coding, CDCR greatly
improves the compression efficiency.

Fig. 1 shows the hardware for CDCR. Compared to dic-
tionary coding [14], the m-bit shifter is replaced by a r-bit
LFSR. A XOR network, which serves as the phase shifter, is
added between LFSR and the multiplexer to eliminate the
linear dependency. For many cases, r < m, so the size of
LFSR is smaller than the m-bit shifter. It is shown in [14]
that the size of the combinational logic for the dictionary is
about 1000 logic gates for the ISCAS89 benchmark circuits,
and is between 1000 to 2000 gates for two large size indus-
trial circuits. The size of the XOR network is proportional
to the number of scan chains.

Dictionary m
(Comb. logic) ——F———P(y | M To
m scan chain
A
g-bit index r
> XOR
Network
Tester
——T1—»| r-bitLFSR
Shift
enabl ‘ I
Load scan chain
P FSM Counter

Figure 1: CDCR hardware

The limitation of CDCR is that, same as the dictionary
coding, the decoding structure should be determined after
the generation of the test patterns. The hardware overhead
is also an issue for CDCR.

3.2 Fast Matrix Calculation

One disadvantage of partial reseeding is that the compu-
tation time is high. If the total number of words is ¢t where
t = dk, then a tn by tsq.g matrix must be solved, which is
impractical for large size IC. However, the matrix structure
in this case permits using the method of pivoting to do the
computation, which reduces the computational complexity.

Fig. 2 shows an example matrix when there are only two
words (¢t = 2) and the size of the seed is 4 (n = 4). There
are 3 specified bits in the 1st word and 5 in the 2nd word.



Bench. test | scan Test m=64 m=128 m=200

circuits | vec. cells data n T tp DW CDCR n T tp DW T CDCR n T [ DW T CDCR
s5378 111 214 23754 9 48 68 23 4009 13 48 65 10 2381 13 48 65 10 2381
59234 159 247 39273 14 | 64 215 64 7832 16 64 70 64 4396 16 64 70 64 4396
s13207 236 700 165200 | 12 | 48 63 19 21412 20 48 ! 1 11402 - - 0 - 7552
s15850 126 611 76986 14 | 64 223 93 13352 18 64 95 53 7240 20 64 65 35 5712
35932 16 1763 28208 20 | 64 92 73 6478 21 64 14 15 2347 - - 0 - 1152
s38417 99 1664 | 164736 | 15 | 64 | 1294 | 1109 56671 27 | 128 | 1051 | 668 51739 29 | 128 | 728 | 798 48610
s38584 136 | 1464 | 199104 | 14 | 64 | 1104 569 42960 18 | 128 768 424 30752 21 | 128 | 529 | 321 24022

Table 1: The compression result by CDCR for different number of scan chains

So there are 3 linear equations for the 1st word and 5 for the
2nd. For partial reseeding, if Gaussian elimination is used,
the computation complexity is 8%.
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Figure 2: The matrix for all the linear equations

Note that the upper-right part of the matrix in Fig. 2
only contains '0’s. This is because the second seed has not
been loaded into LFSR at the end of the first word and
there are only 4 variables X1, X2, X3 and X4 for the first
three equations. Therefore, the method of pivoting can be
used to do the computation. The basic idea is described
as follows: Instead of computing the matrix at the end of
all the words, a pivoting step can be applied at the end of
each word. The purpose of the pivoting step is to get rid
of some variables and reduce the complexity of the matrix.
The number of variables that can be eliminated is equal to
the number of linear equations involved. For the sample in
Fig. 2, a pivoting step is shown in Fig. 3 which expresses
three variables X1, X2, and X3 by X4. The computation
complexity for pivoting is 3°.
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Figure 3: Pivoting to eliminate some variables

Fig. 4 shows the final matrix need to be solved. Since
variables X1, X2, and X3 have been eliminated, only five
variables remain in the matrix. The computation complex-
ity for solving the matrix is 5. The overall computation
complexity for fast matrix calculation is 3% + 53 + overhead,
which is much less than the original approach. If there are
t words, then ¢t — 1 pivots and 1 matrix solution is required.
The computational complexity for each pivoting is O(n3), SO
the computational complexity for fast matrix calculation is
O(tn?), while the computational complexity for the original
approach is O(t3n?).
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10100 X4 1
01010 X5 0
11000| X6 — 1
01001 X7 0
0011 X8 1

X4 0

X5 1

X6 — 1

X7 1

X8 1

Figure 4: Final matrix equation after pivoting

4. EXPERIMENTAL RESULTS

The CDCR method was applied to test data for several
large ISCAS89 benchmark circuits. The test vectors are
generated by Mintest program[19]. Same as [14], The size
of the dictionary was set to 128 (w = 128 and ¢ = 7).
Table 1 shows the compression results for 64, 128, and 200
scan chains. The size of the original test data (in bits) is
shown in column 4. The remaining 15 columns show the size
of the seed (n), the size of LFSR (r), the number of words
not encoded into dictionary (¢,), the number of DWs, and
the compressed test data by CDCR for 64, 128, and 200
scan chains. For benchmark s13207 and s35932 when 200
scan chains are used, all words were successfully encoded
into dictionary.

The size of compressed test data is determined by the
number of scan chains, the number of words encoded into
dictionary, the size of the seed, and the number of “dummy-
word” used. For example, for the benchmark circuit s38584,
when the number of scan chains is 200 (m = 200), the to-
tal number of words is 1088 (¢ = 1088). Among the 1088
words, 559 words were encoded into dictionary while 529
words were encoded using partial LESR reseeding. The
number of dummy words used is 321, and the size of the
seed is 21 (n = 21). So the size of compressed test data is
559 x 8 4 (529 4 321) x (21 + 2) = 24022 bits.

Table 2 shows the comparison of compressed test data
between dictionary coding and CDCR. The right 6 columns
of Table 2 compares compression results between dictionary
coding and CDCR for 64, 128, and 200 scan chains. For most
cases, the performance of CDCR is better than dictionary
coding. For benchmark s13207 and 35932 when 200 scan
chains are used, CDCR and dictionary coding have the same
results. This is because all words were successfully encoded
into the dictionary. The 5th column lists the total number
of specified bits for each circuit. Note that the total number
of specified bits is the compression limit for LFSR reseeding.
For most cases, the compression result by CDCR is better
than the compression limit for LFSR reseeding.

Table 3 compares CDCR with several recently-proposed
test data compression techniques such as EFDR [16], variable-
length input Huffman coding (VIHC) [5], RESPIN++ [23],
XOR network [1], mutation encoding + XOR network [22],
and LFSR reseeding with seed compression [13]. Table 3
show that CDCR outperforms all the other techniques (ex-



Benchmark # test 7 scan Test No. of m=64 m=128 m=200

circuits vectors cells data spec. bits dict. CDCR dict. CDCR dict. CDCR

s5378 111 214 23754 6505 6345 4009 8794 2381 12970 2381

59234 159 247 39273 10601 12783 7832 11498 4396 16826 4396

513207 236 700 165200 11313 24074 | 21412 13990 11402 7552 7552

515850 126 611 76986 12657 18573 13352 13873 7240 14840 5712

535932 16 1763 28208 18251 7403 6478 3123 2347 1152 1152

538417 99 1664 164736 52582 94350 | 56671 104192 | 51739 114243 | 48610

538584 136 1464 199104 35287 58207 | 42960 58189 30752 53287 24022

Table 2: Compare dictionary coding and CDCR
Benchmark Test No. of EFDR [ VIHC | RESPIN XOR Mutation [13J* CDCR

circuits data spec. bits ++ network | + XOR net. m=64 | m=128 | m=200
55378 23754 6505 11419 [ 11516 17332 - - 6180 4009 2381 2381
59234 39273 10601 21250 | 17736 17198 - - 12112 7832 4396 4396
513207 165200 11313 29992 | 27737 26004 25344 15783 11285 | 21412 11402 7552
515850 76986 12657 24643 | 30271 32226 22784 10798 12438 | 13352 7240 5712
535932 28208 18251 5554 9458 - 7128 3972 - 6478 2347 1152
s38417 164736 52582 64962 | 74938 89132 89856 42264 34767 | 56671 51739 48610
538584 199104 35287 73853 | 85674 63232 38976 22636 29397 | 42960 30752 24022

* Use ATPG other than Mintest

Table 3: Compare CDCR and several compression techniques

cept mutation encoding + XOR network [22] and LFSR re-
seeding with seed compression [13]) for all benchmark cir-
cuits when m = 200. CDCR outperforms mutation encoding
-+ XOR network [22] for 3 of 5 benchmark circuits and LFSR
reseeding with seed compression [13] for 5 of 6 benchmark
circuits.

The hardware overhead for the combinational logic of the
dictionary and comparison of hardware between dictionary
coding and selective huffman coding [10] were described in
detail in [15].

5. CONCLUSION

In this paper, we described a method that combines dic-
tionary coding and partial LFSR reseeding to improve the
efficiency of test data compression. We also presented a fast
matrix calculation method which significantly reduces the
computation complexity for solving the linear equations for
partial LFSR reseeding. Experimental results for 7 large
ISCAS89 benchmark circuits showed that our approach is
better than either dictionary coding or LEFSR reseeding,
and outperforms several test data compression methods pro-
posed recently.
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