
Enabling Energy Efficiency in
Via-Patterned Gate Array Devices

R. Reed Taylor
Carnegie Mellon University

Department of ECE
Pittsburgh, PA 15217

rt2i@ece.cmu.edu

Herman Schmit
Tabula, Inc.

444 Castro St., Suite 1120
Mountain View, CA 94303

herman@tabula.com

ABSTRACT
In an attempt to enable the cost-effective production of low-
and mid-volume application-specific chips, researchers have
proposed a number of so-called structured ASIC architec-
tures. These architectures represent a departure from tra-
ditional standard-cell-based ASIC designs in favor of tech-
niques which present more physical and structural regular-
ity. If structured ASICs are to become a viable alternative
to standard cells, they must deliver performance and energy
efficiency which is competitive with standard-cell-based de-
sign techniques. This paper focuses on one family of struc-
tured ASICs known as via-patterned gate arrays, or VPGAs.
In this paper, we present circuit structures and power op-
timization algorithms which can be applied to VPGA chips
in an effort to reduce their operational power dissipation.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Optimization; B.7.1 [Types and De-
sign Styles]: Gate Arrays

General Terms
Design, Performance, Algorithms

Keywords
Structured ASIC, VPGA, Low-Power, Voltage Scaling, Power
Optimization

1. INTRODUCTION
Integrated circuit manufacturing processes with feature

sizes below 100nm pose a number of technological challenges
to the ASIC designer. In particular, these new processes
present increased manufacturing costs, substantial process
variation, and exceedingly complex design rules compared
to their technological predecessors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004,June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

In an attempt to mitigate these factors and to enable
the cost-effective production of low- and mid-volume app-
lication-specific chips, researchers have proposed a number
of so-called structured ASIC architectures. These architec-
tures represent a departure from traditional standard-cell-
based ASIC designs in favor of techniques which present
more physical and structural regularity. This regularity can
be leveraged in an effort to compensate for process varia-
tions, complex design rules, and rising manufacturing costs.
This same regularity, however, strips structured ASICs of
the power-performance flexibility which can be exploited (as
in standard-cell ASIC design flows) in an effort to conserve
power.

If structured ASICs are to become viable low-cost replace-
ments for standard cell ASICs, they must deliver perfor-
mance and energy efficiency which can compete with con-
temporary standard-cell-based designs. In [3], we introduce
a number of circuits which can restore this flexibility to via-
patterned gate arrays (VPGAs) using gate sizing and voltage
scaling techniques. Section 2 presents one of these flexible
circuit structures and briefly describes the VPGA architec-
ture.

Section 3 of this paper presents POGA, our algorithm
for exploiting this newfound power-performance flexibility
in an effort to reduce the operational power consumption of
structured ASIC circuits. Finally, section 4 presents results
of the application of this technique to hardware benchmarks.

2. CIRCUIT STRUCTURES
While the range of structured ASIC architectures is still

under active exploration, this paper will use the via-pat-
terned gate array, or VPGA, as a prototypical structured
ASIC architecture. The VPGA model considered here is
heterogeneous, consisting of 3-input lookup tables (3-LUTs)
as well as some high-performance logic gates (e.g. NAND).
An array of these logic cells makes up the computational
fabric of our VPGA. The findings relevant to this class of
VPGAs should be extensible to many other structured ASIC
architectures, regardless of the arrangement and internal
structure of their logic cells.

2.1 A Structured ASIC Family: the VPGA
The VPGA architecture, which is formally introduced in

[1] and [4], resembles that of a traditional FPGA in a num-
ber of ways: they are both generally conceived as two-
dimensional arrays of programmable logic units which can

51.2

874

= Potential Via

Out

VDD

OD

inA inB inC

Tr
ut

h
Ta

bl
e

Input Buffer /
Comp. Generator

Output
Driver

BUF BUF BUF

Figure 1: VPGA 3-LUT Logic Block

be selectively connected through the use of a fixed rout-
ing architecture with programmable switchboxes at possible
junction points.

Unlike FPGAs, VPGAs are not field-programmable de-
vices. VPGAs are “programmed,” or patterned, during
latter stages of the manufacturing process by the selective
placement of inter-layer vias. These vias form the required
logical connections to complete and configure the device.

An example of via-patterning can be seen in Figure 1,
where the truth-table for the logical behavior of a LUT is de-
termined entirely though the placement of vias on the poten-
tial locations, marked with “X”. The complement-generating
input buffers are marked “BUF”, and the output driver is
marked “OD”.

Programming through selective via placement makes VP-
GAs much more dense, efficient, and high-performance than
FPGAs, which are programmed using SRAM cells and pass-
gates. In fact, VPGAs exhibit performance which is com-
parable to that of contemporary standard-cell ASICs (SC-
ASICs).

2.2 Circuit Structures for Enabling
Power Optimization

Modern standard-cell libraries frequently contain several
instances of each logic function with differing gate sizes,
allowing the drive strength of each individual gate to be
matched to its particular capacitive load. This power-perf-
ormance flexibility is leveraged by power optimization tools
to reduce operational power consumption without sacrificing
design performance.

By contrast, the fixed underlying structure of an unmodi-
fied VPGA does not present any such flexibility. In order to
enable power optimization in VPGA design flows, circuits
which convey power-performance flexibility must be explic-
itly added to the VPGA logic block. In [3], several such
structures are proposed.

In this paper, we will perform power optimization using
selective voltage scaling, with dual independent voltage sup-
plies. In selective voltage scaling, gates which drive net-
works that are not critical to the overall performance of a de-
sign are modified to operate with a reduced voltage supply.
These modified gates will exhibit reduced performance while
consuming substantially less dynamic and static power.

In order to enable power optimization through selective
voltage scaling in a VPGA, the needed ingredients are: a
circuit which can buffer and possibly perform level conver-
sion on the inputs (this circuit is labeled “BUF” in Figure 1);

M2*

M3

M1*

M5

VDD low

IN
OUT

L

L

M4

H

L

OUT

VDDhigh

V

L

L

(A) Input Buffer / Level Converter

VDDhigh

IN OUT

L

H

VDD low

(B) Output Driver

Figure 2: Dual-Supply Level Converter and Output
Driver

and an output driver which can produce either high- or low-
swing signals (labeled “OD” in Figure 1).

2.2.1 Input Buffer
The application of selective voltage scaling will typically

create many points in a circuit where signals with differ-
ing voltage swings will interact. At these points, there is a
risk of static current flow, which would rapidly undermine
any achieved power savings. This static current must be
prevented with the use of voltage level converters.

In the past, level converters were typically constructed
from DCVS logic; however, in [2], some newer and more
sophisticated circuit structures for voltage level conversion
were introduced. These circuits were shown to be faster and
more efficient than their DCVSL counterparts. One such
circuit, modified and optimized for use in a VPGA environ-
ment, can be seen in Figure 2(A). This circuit implements
the “BUF” function, as seen in Figure 1.

In this circuit, when vias are placed so as to make connec-
tions at the locations marked “L”, the transistors M1, M4,
and M5 all work to perform level conversion on the input.
(Transistors M1 and M2, marked with “*”, should be low-
threshold devices.) The performance of the input buffer in
this mode is acceptable; however, in a mixed-swing environ-
ment, it will often be the case that an input to a logic block
will, in fact, be a full-swing signal. In this case, we would like
to use via patterning to eliminate the performance penalty
associated with level conversion.

This can be accomplished by instead placing a via at the
location marked “H”. In this case, the transistors M1, M4,
and M5 will all be disconnected from our circuit and from
the voltage supply rails; therefore, they will have no impact
on performance. Configured in this manner, the input buffer
looks like a simple series of two inverters, both powered by
VDDhigh .

2.2.2 Output Driver
The dual-swing output driver corresponding to the “OD”

block in Figure 1 is shown in Figure 2(B). Configuring this
circuit is very simple: by placing a via at the locations
marked either “H” or “L”, it can be configured to use either
VDDhigh or VDDlow as its supply, producing a corresponding
high- or low-swing output.

At the circuit level, both of these structures are quite com-
pact; however, it should be noted that there will be addi-
tional overhead in terms of area due to the need to distribute
VDDlow , the reduced power supply. Nonetheless, these cir-
cuits will permit the VPGA logic blocks to be independently

875

and individually configured for various power-performance
modes of operation solely through the selective placement
of vias.

3. POGA: POWER OPTIMIZATION FOR
GATE ARRAYS

The remaining element needed to reduce the power con-
sumption of a VPGA is an algorithm which can perform
power optimization by selecting gates for modification.

In [5], an algorithm for standard-cell ASIC power opti-
mization through selective voltage scaling, known as clus-
tered voltage scaling, or CVS, was introduced. CVS was
reported to save an average of 47% of the power dissipated
by various applications.[6] However, CVS made a priority of
clustering scaled components together so as to better match
the row-based organization of SC-ASICs, and to reduce the
number of voltage level conversions.

Unlike SC-ASICs, structured ASICs like VPGAs greatly
loosen these constraints on placement thanks to their fixed,
regular structure. By using the logic cell proposed in Sec-
tion 2, all the circuitry necessary to perform level conver-
sion will be present in every block; thus, there will be no
incremental impact on area as a result of performing level
conversion in any particular location. Our approach should
therefore be permitted to select nets for scaling based solely
on their relative contributions to overall power dissipation
and path delay.

The approach we propose is known as power optimization
for gate arrays, or POGA. Unlike CVS, POGA does not
attempt to cluster scaled components together. This enables
the consideration of many more complex arrangements of
low- and high-swing cells than was possible with CVS.

This lifted constraint also simplifies the algorithmic task
which POGA must perform and enables POGA to consider
power optimization schemes which are not based around
voltage scaling at all. (For example, structures which em-
ulate gate scaling rather than voltage scaling are equally
applicable to POGA, and are described in [3].) However,
for clarity, in this paper we consider only the type of power
optimization enabled by the circuits described in Section 2.

3.1 Underlying Formulations
Let us refer to each distinct type of hardware structure

which exists on a VPGA as a component. The VPGA logic
block described in Section 2 is an example of a component, as
would be an interconnect buffer, a switchbox, an I/O block,
etc. A VPGA can thus be thought of as a 2-dimensional ar-
ray of such components, arranged according to some regular
pattern. In addition, let us refer to the logical net which is
driven by some particular on-chip component as a node. We
will refer to the component driving a node x as D[x].

Then, let S be the set of all “scalable” components in
a VPGA architecture; that is, the set of all components
which are capable of outputting both high- and low-swing
signals, according to their via-patterned configuration (to be
selected by POGA). The basic logic blocks and interconnect
buffers might be in S, whereas I/O blocks and other non-
scalable components would not be in S.

From this, let us define a “scalability” function S[x] such
that:

S[x] =


1 if D[x] ∈ S
0 otherwise

(1)

In the preceding sections, this paper has effectively fo-
cused on developing the set of scalable components S by
proposing circuit structures which can both accept and pro-
duce low- and high-swing signals. In general, the more on-
chip components that are scalable, the more nets in a design
will be eligible for scaling by POGA.

Finally, let us define:

T [x] = the negative timing slack on node x (2)

C = the set of all critical nodes (3)

where critical nodes are defined as the nodes comprising the
transitive fan-in of the latest-arriving signal in the design.

Let N be the set of all nodes in a particular design. NU ⊂
N will be the set of all unscaled (high-swing) nodes, and
NS ⊂ N will be the set of all scaled (low-swing) nodes.

3.2 POGA Specification
The fundamental task of POGA, then, is to find an as-

signment of nodes to NS and NU which reduces the power
consumption of the design. First, a traditional tool flow is
used to place and route the circuit. During the techmapping,
placement, and routing passes, only full-swing components
are used. This produces a baseline design implementation
which is assumed to offer the highest available performance,
with the maximum power consumption.

The POGA algorithm is a greedy approach to power sav-
ings. POGA operates by migrating an entire design to low-
swing operation, and then restoring nodes to full-swing suc-
cessively until acceptable performance is restored. This ap-
proach is guaranteed to terminate successfully, as, in the
worst case, it will finish with a design which is identical
to the baseline implementation (and which saves no power).
The challenge for POGA, then, is to restore this performance
while migrating the smallest possible set of components to
full-swing operation.

POGA initially considers all nodes as being scaled, so
(NS = N) and NU is empty. D[x] is set to low-swing oper-
ation for all nodes.

At each iteration, the set of critical nodes C is identified.
The best candidate node for restoration, n, is selected, such
that:

n ∈ C

n ∈ NS and S[n] = 1

T [n] is maximal for all nodes in C

In other words, n is the scaled node in C with the largest
negative slack. This node n is migrated from NS to NU , and
D[n] is restored to high-swing operation. The timing for the
design is recalculated, and this process is iterated until the
entire design meets the established baseline performance, at
which point POGA is finished.

3.3 Optimizations
Several optimizations not central to the operation of POGA

have been implemented. We will discuss those modifications
to the basic algorithm in this section.

First, the recalculation of timing and selection of the best
node n can be a computationally intensive operation. As
a result, the runtime of POGA can suffer in designs with
large numbers of nets due to the frequent recalculations. To
address this, POGA can be modified to perform the recal-
culation of timing only once in every Q iterations. In effect,

876

this will cause Q nodes to be migrated from the set of criti-
cal nodes C during each iteration, before the contents of C
and the slack values T [x] are updated.

In large designs, as Q is increased, the runtime of POGA
can be drastically improved. However, when (Q > 1), there
will be a tradeoff in the quality of the result obtained by
POGA: nodes which are no longer truly in C, or which no
longer have the maximal value of T [x], may be needlessly
restored. This can cause POGA to achieve decreasingly op-
timal assignments of nodes to NS and NU .

In the worst case, POGA will needlessly restore as many
as (Q − 1) nodes to full-swing operation during each itera-
tion. Fortunately, because the power impact of restoring any
single net in a design is generally very small, the overall effect
of this will likely be acceptable as long as (Q � count[N])
(i.e. several orders of magnitude less than the number of
nodes).

3.4 Implementation
In order to test the effectiveness of this algorithm as well

as the dual-swing VPGA logic blocks, we implemented POGA
within the Dolphin Physical Design System from Monterey
Design, Inc.

In addition, exhaustive characterization of the VPGA cells
(implemented in a commercial 0.13µ technology) was per-
formed using a tool from Magma Design Automation known
as SiliconSmart CR. Cells were individually characterized
over a range of input slopes and load capacitances. Timing
characterizations were performed for both low- and high-
swing inputs, and detailed switching, short-circuit, and leak-
age power information was gathered. The VPGA logic block
was characterized in an XOR configuration, along with high-
speed NAND gates, inverters, and a buffer. Each cell ulti-
mately had four separate models: one for each combination
of low- and high-swing inputs and outputs.

Within Dolphin, the benchmark designs were first placed
and routed using only high-swing nodes. Once this was com-
pleted, the baseline performance measurements were taken,
following which all nodes were migrated to low-swing oper-
ation. POGA was then allowed to proceed, terminating as
soon as the baseline performance had been restored.

Within the Dolphin POGA flow, when a particular node
is switched to low-swing operation, its library model is sim-
ply replaced with the model of its low-swing counterpart.
In addition, the models of all nodes driven by the node in
question are replaced to reflect the changing needs for level
conversion, and to incorporate the resulting power and per-
formance impact. When a node is restored to high-swing
mode, the models of all driven nodes are similarly updated.

In general, POGA proceeds through the netlist with no
specific regard to the circuit topology. Nodes are selected for
restoration based solely on their slack values, and their pres-
ence in the set C of critical nodes. The adaptable nature
of the dual-swing circuits presented in Section 2 permits
POGA to take this simple approach (without specifically
clustering scaled nodes together), and still achieve good re-
sults.

4. RESULTS
POGA was run for a set of hardware benchmarks, and

power consumption estimates were made using Dolphin’s in-
ternal power estimation system (which uses circuit topology,
input switching frequencies, and power characteristics gath-

Benchmark Gates Q Power Savings
leak short overall

alu 715 5 89.4% 1.3% 33.2%
firewire 2574 25 56.8% 46.9% 21.2%
mfpa 20981 500 61.7% 65.3% 35.4%
bnode 64521 250 45.2% 53.1% 25.4%

Table 1: POGA Benchmark Results

ered from SiliconSmart CR to accurately estimate switching,
leakage, and short-circuit power consumption).

The results of running POGA on a set of hardware bench-
marks are presented in Table 6. An average of 28.8% of
the overall power dissipation was saved for each benchmark.
Savings results for leakage and short-circuit power are pre-
sented individually; there was little overall impact on the
switching power consumed (less than ±2% in each case).

5. CONCLUSIONS
The circuit structures presented in this paper, used in

conjunction with the POGA algorithm, can save substan-
tial amounts of operational power without sacrificing per-
formance. VPGA and other structured ASIC architects
should strongly consider the inclusion of circuits which con-
vey power-performance flexibility so that power recovery
techniques like POGA can be applied.

6. ACKNOWLEDGMENTS
This work was funded by the Pittsburgh Digital Green-

house.

7. REFERENCES
[1] L. Pileggi, A. Strojwas, P. Gopalakrishnand,

V. Kheterpal, A. Koorapaty, C. Patel, V. Rovner, and
K. Tong. Exploring regular fabrics to optimize the
performance-cost trade-off. In Proceedings of the 40th
ACM/IEEE Design Automation Conference, pages
782–787. ACM Press, 2003.

[2] R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan,
D. Sylvester, A. Srivastava, and S. Kulkarni. Pushing
ASIC performance in a power envelope. In Proc.
IEEE/ACM Design Automation Conference, pages
788–793, June 2003.

[3] R. R. Taylor and H. Schmit. Creating a power-aware
structured ASIC. Technical Report CSSI 04-02, The
Center for Silicon Systems Implementation (CSSI),
Carnegie Mellon University, March 2004.

[4] K. Tong, V. Kheterpal, V. Rovner, and L. Pileggi.
Regular logic fabrics for a via patterned gate array
(vpga). In Custom Integrated Circuits Conference,
Proceedings of the IEEE, September 2003.

[5] K. Usami and M. Horowitz. Clustered voltage scaling
for low-power design. In Proceedings of the
International Symposium on Low Power Design
(ISLPD 95),, pages 3–8, April 1995.

[6] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, K. M,
M. Ichida, and K. Nogami. Automated low-power
technique exploiting multiple supply voltages applied to
a media processor. IEEE Journal of Solid-State
Circuits, 33(3):463–472, March 1998.

877

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

