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ABSTRACT

Modern analytical device models become more and more compli-
cated and expensive to evaluate in circuit simulation. Interpolation
based table look-up device models become increasingly important
for fast circuit simulation. Traditional table model trades accuracy
for speed and is only used in fast-Spice simulators but not good
enough for prime-time Spice simulators such as SPECTRE. We
propose a novel table model technology that uses high-order es-
sentially non-oscillatory (ENO) polynomial interpolation in multi-
dimensions to guarantee smoothness in multi-dimensions and high
accuracy in approximating i — v/q — v curves. An efficient transfi-
nite blending technique for the reconstruction of multi-dimensional
tables is used. Interpolation stencil is adaptively determined by au-
tomatic accuracy control. The method has been proved to be su-
perior to traditional ones and successfully applied in Spectre and
Ultrasim for simulating digital, analog, RF, and mixed-signal cir-
cuits.

1. INTRODUCTION

The modern device models such as bsim3 and bsim4 become
more and more complicated and expensive to evaluate in circuit
simulation. An interpolation based table modeling method needs
to be continuous at least and C' smooth if possible at interpola-
tion boundaries. In table model evaluation, capacitance and con-
ductance are evaluated by taking derivative of the interpolating i —
v/q — v polynomials, which makes the g — v/c — v evaluation in-
herently consistent with the i — v/q — v curves and beneficial for
simulation convergence. Traditional table-model methods are ei-
ther not accurate enough for simulations requiring high accuracy
or not robust enough for a wide range of applications.

Because of the accuracy, robustness, and memory consumption
concerns, table model technology has not been used in any prime-
time Spice simulator such as SPECTRE. We evaluated several table
model technology from various sources. One table model method
from Bell-Lab uses spline interpolation. Spline interpolation can
achieve variation diminishing property by averaging neighboring
grid points [1]. This results in a shift of interpolating point away
from the original function evaluation point, which has the drawback
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of smearing the sharp transitions in the i — v/q — v curves such as
the sub-threshold region in Mosfets. It has drawbacks of wider
stencils, inefficiency in model evaluation, and difficulty in doing
local table refinement. ENO interpolation removes the fixed-stencil
limitation by using a dynamic stencil to avoid oscillation and keeps
the curves’ sharpness.

In [2], multi-dimensional interpolation techniques were proposed.
Different basis functions along with averaging heuristics were used
to achieve smoothness and accuracy of device curves. However,
non-polynomial basis function is expensive to evaluate. Averaging
technique loses accuracy and is difficult to extend to higher order
compared with our systematic approach.

Our locally refined ENO table model solely uses efficient poly-
nomial interpolation. Its dynamic stencil achieves smoothness with-
out making the interpolating stencil wilder, i.e. using more points
in interpolation. It is a very flexible and robust method that allows
the order to vary according to accuracy requirement, which is due
to the fact that unlike existing technologies, the ENO dynamic sten-
cil selection algorithm is systematic and does not depend on order.
Indeed, we successfully applied 3rd-order and 4th-order ENO inter-
polation for diode or mos-diode evaluation. Without high-order in-
terpolation and local refinement technique, it is impossible to have
a good approximation of the exponential curve.

Traditional methods only consider the smoothness in one dimen-
sion. We found that even if the interpolation is monotone along 1-d
table grid lines, the tensor product of these polynomials in multi-
dimensions can still give oscillation. We have considered multi-
dimensional smoothness by taking advantage of ENO table model’s
flexibility.

2. ENO INTERPOLATION

Traditional interpolation methods including spline methods are
based on fixed stencil interpolations or their averages. For exam-
ple, to obtain an interpolation for cell i to third order accuracy, the
information of the three cells i-1, i and i+1 can be used to build a
second order interpolation polynomial. This works well for glob-
ally smooth problems. However, fixed stencil interpolation of sec-
ond or higher order accuracy is necessarily oscillatory near a C°
corner point. Such oscillations may cause Newton iteration to fail
in solving nonlinear circuit equations besides being inaccurate.

Essentially Non-Oscillatory schemes started with the classical
paper of Harten et al. in 1987 [4] and have been applied very suc-
cessfully in computational fluid mechanics. The ENO idea pro-
posed in [4] obtains a self similar (i.e. no mesh size dependent pa-

rameter), uniformly high order accurate, yet essentially non-oscillatory

interpolation (i.e. the magnitude of the oscillations decays as O(AV¥)
where k is the order of accuracy) for piecewise smooth functions.
In [4] Harten et al. investigated different ways of measuring local



smoothness to determine the local stencil, and developed a hierar-
chy that begins with one or two cells, then adds one cell at a time to
the stencil from the two candidates on the left and right, based on
the size of the two relevant Newton divided differences. Although
there are other reasonable strategies to choose the stencil based on
local smoothness, experience in numerical simulation of nonlinear
hyperbolic partial differential equations seems to show that the hi-
erarchy is the most robust for a wide range of grid sizes. We adopt
this approach.

ENO interpolation can achieve the property of total variation
diminishing up to numerical interpolation error. When we refine
the interpolation stencil, ENO method is going to achieve better
smoothness. The property of being able to achieve accuracy and
smoothness at the same time is very important for its successful
application in practical circuit simulation. ENO interpolation cal-
culates local divided difference which reflects oscillation in wave-
forms and chooses one of the divided difference. For example,
second-order interpolation needs a stencil of three points. To find
the interpolating polynomial in interval [vg,vi+1], we may choose
either one of stencil [vi_1,vk,vks1] and [vg,vks1,vks2] based on
the smaller second-order divided difference. For third-order and
higher-order interpolation, we have even more flexibility. Dynamic
stencil makes interpolation much more smooth and accurate. There
are also ways to guarantee the monotonicity of i —v/g — v curves
using modified ENO interpolation. However, in our practice, the
ENO interpolation turns out to be robust enough. Whenever we
observe oscillation in ENO interpolation, it always turns out to be
due to the fact that the underlying analytical model has oscillations
there.

Given a grid

a:v%<v%<-~-<vN_%<vN+%:b, (@))]
we define cells, cell centers, and cell sizes by
p— _1 p—
I = [vi_%,vi+%], Vi = E(vi_% -I-VH_%), Avi:vi_i_% —vi_%,
i=12,---,N. (2

We denote the maximum cell size by Av = max|<;<yAv;. The first
approximation problem we will face is given the cell average of
¢(v) find a polynomial p;(v), of degree at most k — 1, for each cell
I;, such that it is a k-th order accurate approximation to the func-
tion ¢(v) inside Z;. In particular, this gives approximations to the
function g(v) at the cell boundaries

In device modeling, the i —v and g — v curves are piecewise
smooth and continuous. For such smooth functions, the order of
accuracy is defined as whatever accuracy determined by the local
truncation error in the smooth regions of the function.

If the function ¢(v) is only C?, a fixed stencil approximation may
not be adequate near CY corner points. Piecewise quadratic inter-
polation with a fixed one-sided stencil for the step function shows
obvious undershoots for the cells near the bottom corner point.

The basic idea in ENO approximation is "adaptive stencil”,
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namely, the left shift » changes with the location v;. To achieve this
effect, we need to look at the Newton formulation of the interpola-
tion polynomial.

We first review the definition of the Newton divided differences.
The 0-th degree divided differences of the function Q(v) are de-
fined by Q[v;_ 1 ] = Q(v,_1); and in general the j-th degree divided

_1
2
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differences, for j > 1, are defined inductively by

Q[VH.%H" 7V,‘+j_%]*Q[Vi_%a"' 7Vi+j_%}

Q[v"*%}’m’viﬂfé]z Vigj—l=Vi_1
2 2

Similarly, the divided differences of the cell average v are defined
by

qlvil =9 ®)
and in general
qvi, - vigj] = e i+~ i et }. (6)
Vigj-1 =Vi-l
We note that by some derivation,
O(viy1)—0(v; 1)
Oy 1V = ———— =7, @)

Vigl =Vl
i.e. the O-th degree divided difference of g is the first degree divided
difference of Q(v). We can thus write the divided differences of
QO(v) of first degree by those of g of 0-th degree and higher.

The Newton form of the k-th degree interpolation polynomial
P(v), which interpolates Q(v) at the k+ 1 points (3), can be ex-
pressed using the divided differences (7) by

k i1
P(V) = z Q[vi_r_%v" o ’vi—r+j—%] H (V*Vi_r_'_m_%). (8)
Jj=0 m=0

We can take the derivative of (8) to get p(v). We can also express
p(v) completely by the divided differences of g, without any need
to reference Q(v).

An important property of divided differences is:

v
O, 1 vy 1] = ﬂ(i)

forv,_1 <&< Vipjo1sas long as the function Q(v) is smooth in

; ®

this stencil. Thus the divided difference is a measurement of the
smoothness.

We now describe the ENO idea by using (8). Suppose we want
to find a stencil of k+1 consecutive points, which must include v;_ 1

and v; 1, such that Q(v) is “the smoothest” in this stencil compar-
ing with other possible stencils. We perform this job by breaking

it into steps, in each step we only add one point to the stencil. We
thus start with the two point stencil

EZ(i):vi—%va.%a (10)
where we have used S to denote a stencil for the primitive function
Q. Notice that the stencil S for Q has a corresponding stencil S
for g through (7), for example (10) corresponds to a single cell
stencil S(i) = I; for g. The linear interpolation on the stencil S5 (i)

in (10) can be written in the Newton form as P!(v) = Q[vi_%] +
Olv,_1 WVigl ](v—v;_1). Atthe next step, we have only two choices
2 2

to expand the stencil: we can either add the left neighbor v,

j—2°

3
2
resulting in the following quadratic interpolation

R(v) =P () + Qv _3](v—vi_ 1) (v = vy, 1). (11)
or add the right neighbor v; 3 which leads to a different interpola-

tion. We note that the derivation from P! (v) in the interpolation are
the same function (v—v;_ 1 Jv=v, 1 ) multiplied by two different
constants

Q[VF%,VF%,VH%], and Q[VF%,VH%,VH%]. (12)
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These two constants are the two second degree divided differences
of Q(v) in two different stencils. We have already noticed be-
fore, in (9), that a smaller divided difference implies the function is
”smoother” in that stencil. We thus decide upon which point to add
to the stencil, by comparing the two relevant divided differences
(12), and picking the one with a smaller absolute value, i.e. check
if

‘Q[ 1——’ l——’ 1+ ” < |Q[ l——’ l+ ’ l+ ] (13)

This step can be continued, with one point added to the stencil at
each step, according to the smaller of the absolute values of the two
relevant divided differences, until the desired number in points in
the stencil is reached. In general, to get a m —th order interpolating
polynomial, we need a stencil with m + 1 points.

For the same piecewise quadratic interpolation to the piecewise
linear function, but this time using the ENO procedure, we ob-
tain a non-oscillatory interpolation. ENO reconstruction is uni-
formly high order accurate right up to the sharp-transition region.
It achieves the effect by adaptively choosing the stencil based on
the absolute values of divided differences. In practice, the stencil
might change even by a round-off error perturbation near zeroes of
the derivatives of the solution. A “biasing” strategy can be used to
remedy this problem.

One also needs to consider the smoothness in multi-dimensions.
Even though the curves are monotone along grid lines in all direc-
tions, the interpolated values in the interpolating cube can still be
oscillating. This can happen because of the non-smooth change
in the curvature of the interpolating polynomials. Hence we ex-
tend the ENO idea into multi-dimensions. When we determine the
interpolating polynomial along grid lines, we not only use the dy-
namic stencil along that grid line to achieve 1-d smoothness, but
also check the neighboring function values in other directions to
ensure a smooth change of the curvature of the interpolating poly-
nomials in all directions.

3. TRANSFINITE BLENDING FUNCTIONS

Device models usually are described with charge and current
functions with three voltages as independent variables. To best re-
flect the original model, multidimensional tables needs to be used.
The interpolation along one-dimensional grid lines is reconstructed
to the three-dimensional space. Our reconstruction is cell-based.
Interpolation values on the edges are blended with the values on
the grid points to reconstruct function values in multidimensional
voltage space.

In obtaining approximate device evaluation for device model ¢,
i, g, and c in the general m-dimensional voltage space, Q C V™,
enclosed by the boundary 8Q, we employ polynomial approxi-
mations. The most natural and computationally efficient exten-
sion to several dimensions appears through the use of tensor prod-
ucts. We construct € using K non-overlapping general hexahedrals,
D¥ € V™, such that

K
Q=|Jbk,
k=1

where 8Dy = D¥N8Q and 8Dy; = DFN D for i # k, and there
exists a diffeomorphism, ¥ : D¥ — I, where | € V™ is the unit cube,
ie. | € [—1,1]™. For efficiency of the table model evaluation, the
non-overlapping D¥ we use is usually rectangular in shape.

For simplicity, we shall denote DX by D with boundary 8D, refer
to any rectangular table cell, and we term the coordinates, x € D, as

(vi,v2,v3) or (§,m, ), interchangeably. We define Z; = HI&'; X JL‘ X

K K
3Q=|J 8Dy , 3DF = [ JdDy; ,
k=1 i=1
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EE, through the subsets

=N _ . :C:

E={ilicl0,....Le} , Ep=-- |

Associated with these sets are the nodal sets

AFED) = (&, » ANED =7}y, AZED = (G, »

with the global nodal set, A7(EL) = A = A% X AE X AE. The nodal
sets are assumed to be ordered such that &y =mnog = {o = —1 and
?’;Lé =ML, = CLC = 1. Likewise, for the construction of the polyno-
mial approximation inside the domain, |, we introduce the global

set Ey = E§ X Hg X u,c\,, where

HN*{"IE[ o Nel} ~N*{J|]€[ s Nl}

‘—‘N_{k|k€[ Nd} )

with the corresponding nodal sets

AH(ER) = {&hS o AVER = (H AR (ER) = {Ghs
For simplicity, we shall use the notation H/gvn = Ejgv 2 and like-
wise for various combinations of the sets. For ease of exposure, let

=& an =l

us also introduce the global interior set, Zy = £ N X En X Ex CEp,
where

=y *~N\{0 Ne} s E} =23\ {0, Ny} 7EN *~N\{0 Nt

with the associated interior nodal set, Ay.

We will construct the global map, ¥ : D — |, using transfinite
blending functions [5].The correspondence between the two do-
mains, expressed through the map x = ¥~!(£), is derived from the
Boolean sum

Pe(q) +Py(q) +P(q) (14)
—FePn(q) — PePr(q) — PaP(q) +FPePaPla) -

= 3¢ NAE)x(Em, ),
and likewise for Pq(g) and P¢(g). The shape functions, N?,N}1

q =
where we have introduced the face projectors Py (q)

and N%, are nothing more than the interpolating ENO polynomials

based on A%, A? and AE, respectively. Using the properties of the
projectors, the edge projectors become

)= ZNEN

-—QTI

PePy(g) n)a(&n58)

and likewise for P P¢(q) and Py P¢(q), whereas the vertex projector
becomes

zNé N (g (&7 p) -
To simplify things further we may also apply the transfinite blend-
ing function to construct the face projectors as

CI(F:?,TLC) = (Pn®P§)(Q(§7aﬂ,C))
Py(q(&;,m, Q) + Pc(a(&;n,8)) — PaP(a(;m,C))

and similarly for the remaining faces. With this reconstruction pro-
cedure, we guarantee that Q and / are continuous over all the inter-
faces. This is because they are constructed uniquely from the node
sets on that plane, i.e. the nodes on that face and some neighboring
points on that plane.

P:PyPc(q)



Within this formulation, the construction of the global map, or
rather its inverse, becomes feasible. In what remains we assume
that the shape functions are linear, i.e. Lg =Ly =Ly =1 and

AL =AD = A = {11}, as NG = (1—&)/2 and N> = (1 +E)/2
and is similar fashion for N? and N%. Thus, to construct the map

we need to specify a parametric form for the edges enclosing D,
eg q&—-1,-1)= ZE%/ q(&i,—1,—1)LY(E), where L¥ (&) signifies

the ENO approximating polynomial based on the nodal set, Aé,
employed in |. For a thorough discussion, we can refer to [5].

4. LOCAL GRID REFINEMENT

The table model is constructed dynamically during circuit simu-
lation. When we need to do model evaluation at an operating point,
we construct the building block of the table model that contains
the operating point. We construct only the building blocks that are
really needed in simulation. This leads to big savings in memory
and is a big advantage when one wants to apply the table model in
Monte Carlo simulation or any other simulation that varies model
parameter.

Because of the exponential decay or increase in device behavior,
it requires very small voltage step to resolve the i —v and ¢ — v
curves in these regions. If one uses equally-spaced table, the size
of the table can be too big and consume too much memory. One
approach to solve the problem is to use non-uniform voltage steps.
The ENO method works well with non-uniform grid.

The non-uniform table model is constructed efficiently during
circuit simulation. If there is some sharp-transition in model eval-
uation output, the table needs to be refined in that region only. Our
table model technology makes it possible to combine ENO approxi-
mation of different orders on different edges. For example, one may
apply cubic interpolation in the exponential region of BJT’s while
using quadratic or even linear interpolation in "nice” regions. With
the transfinite blending approach, the approximation is still smooth
across shared boundaries.

S. NUMERICAL EXAMPLES

We have tested the methods in the simulation of thousands of
digital, analog, RF, and mixed-signal circuits. The method turns
out to be very robust. The convergence property is much better than
two other table model methods we have tried, namely high-order
spline interpolation and 2nd-order end-point with derivative match-
ing interpolation. While other methods have convergence problems
in many tests, all our tests converge with ENO table model method.

In the first example, we show the speed-improvement and ac-
curacy using ENO table model in the simulation of a switched-
capacitor circuit. By using the table model, we achieve a speed-up
of 5 times over the same simulation using analytical model, see
Table 1. In Fig. (1), it is also shown that the output voltage wave-
form is almost on top of that of the analytical model simulation,
verifying the accuracy of our table model.

In the second example, we achieve similar accuracy of table
model for the simulation of a sigma-delta converter circuit. The
table model gives a speed-up of 3.5 times over analytical model,
see Table 1. Table model result of the digital output waveforms af-
ter several filters, modeled by Laplace transform in simulation, is
very accurate compared with analytical model result.

In the third example, a digital-analog converter is simulated. The
output results of both analytical and table models agree very well
with each other. In this test, we achieve a speed-up of 4.5 times
with table model, see Table 1.

867

Figure 1:

Comparison of simulation results.

Output voltage at node OUTN|
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— — ENO table model
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Table 1: Transient simulation time in seconds.

Model-Test Switch-Cap Filter | Sigmadelta | D-A Converter
tabel model 1580 8900 7150
analytical model 8072 33000 32100

The final example is a full-chip RF transceiver of real design
with more than 20 thousands elements. We successfully simulated
the circuit with our table model while other tools failed. Even ana-
lytical model has convergence difficulty sometimes and is too slow
to wait for finish. This shows ENO table model’s efficiency and
robustness.

6. CONCLUDING REMARKS

High-order accurate essentially non-oscillatory interpolation method

is used with transfinite blending technique to construct robust, effi-
cient, and accurate table models in circuit simulation. ENO’s flexi-
bility makes it possible to consider smoothness in multi-dimensions
and do local grid refinement adaptively only in the region that need
more accuracy. Need-based and on-the-fly table building during
simulation greatly reduces memory consumption of the table which
is important for applications such as Monte Carlo simulation. The
table model technology has been proved to be robust and accurate
in simulation of all types of circuits. It is becoming the first one
successfully applied in prime-time Spice simulator, due to its high
accuracy, besides Fast-Spice simulator. It typically improves tran-
sient analysis speed by 3 to 5 times over analytical model.
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