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Abstract

Increasing levels of process variability in sub-100nm CMOS
design has become a critical concern for performance and power
constraint designs. In this paper, we propose a new statistically
aware Dual-Vt and sizing optimization that considers both the
variability in performance and leakage of a design. While
extensive work has been performed in the past on statistical
analysis methods, circuit optimization is still largely performed
using deterministic methods. We show in this paper that
deterministic optimization quickly looses effectiveness for
stringent performance and leakage constraints in designs with
significant variability. We then propose a statistically aware
dual-Vt and sizing algorithm where both delay constraints and
sensitivity computations are performed in a statistical manner.
We demonstrate that using this statistically aware optimization,
leakage power can be reduced by 15-35% compared to
traditional deterministic analysis. The improvements increase
for strict delay constraints making statistical optimization
especially important for high performance designs.

Categories and Subject Descriptors: B.6.3 Performance
Analysis and Design Aids

General Terms: Algorithms, performance, reliability

Keywords: Leakage, variability, optimization

1. Introduction

Traditionally designers have used case files, or corner case
models, to optimize and ascertain the performance of their
designs. Best, worst, and nominal case models for the devices
are developed and the design is required to meet specifications at
all process corners. However, this approach can both
significantly over- and underestimate the impact of the
underlying variations on the design. Overestimation makes the
specification, typically timing, harder to meet, leading to
increased design time/effort and results in lost performance. On
the other hand underestimation can lead to yield loss [1].
Furthermore, case files provide very limited information to the
designers when they attempt to perform yield-based
optimization and robustness analysis.

The increase in process variation with technology scaling has
made worst-case analysis unacceptable [2]. Thus, statistical
modeling of circuit performance is now imperative. Recently,
various studies have been conducted to estimate the impact of
variability on performance and yield. For example, [3,4] address
the impact of process variation on the distribution of circuit and
path delays. In [5,6,7], the authors develop statistical
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timing analysis tools to replace standard deterministic static timing
analyzers whereas [8,27] develop approaches for the statistical
estimation of leakage power considering within-die and across-die
variations.

However, very little work has been done on using statistical
approaches to perform circuit optimization. Previous work [9,10] uses
joint probability density functions (PDFs) of the circuit performance
metrics and poses the yield optimization problem as a maximization of
a higher dimensional integral which are estimated using Monte Carlo
simulations. However, these methods are difficult to apply in modern
applications due to their high runtime and memory requirements with
increases in statistical parameters.

Recent approaches to counter the impact of process variation have
generally been limited to post-fabrication techniques. Forward and
reverse body-biasing have been shown to improve yield and result in
tighter distributions of circuit performance [11]. Reference [12]
compares the approaches of adaptive body-bias and adaptive power
supply to counter process variability. In [13], a simple circuit structure
is used to automatically generate the ideal body-bias which is a
function of process parameters and is ideal for a localized portion of
the die. Alternatively, [14] proposes an optimization method to
counter the effects of process variations. However this approach does
not actually use statistical analysis but instead employs a heuristic to
prevent a buildup of critical timing paths during the optimization.

Thus, we see that although a large amount of work is aimed towards
countering the effects of process variations, there is only limited effort
thus far in developing optimization approaches that consider these
effects making intelligent decisions based on statistical information.

The tremendous impact of variability was demonstrated recently in
[11], showing 20X variation in leakage power for a 1.3X variation in
delay between fast and slow dies. Due to the inverse relationship
between leakage power and gate delay, most of the fastest chips in a
lot are found to have unacceptable leakage and vice-versa. In addition,
low-Vy, devices, which are used in now-common dual-Vy, processes,
exhibit increased sensitivity to variations [15] in their leakage power.
Figure 1 compares the PDFs and cumulative distribution function
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Figure 1. Impact of low-power optimization approaches on delay
PDFs and CDFs.
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(CDFs) of a pre- and post-optimized design. The pre-optimized
design refers to a design optimally sized to meet a delay target
with just one threshold voltage. The design is then optimized for
leakage power using an additional threshold voltage [16] while
nominal delay is constrained to remain identical. Note that the
post-optimized PDF exhibits many more paths at the slow-end
of the distribution which indicates a parametric yield loss. Based
on this figure, we see that there is a pressing need to devise
optimization approaches that make use of available statistical
information to simultaneously improve yield and performance.

In this paper, we propose an approach to minimize leakage
power using a dual-Vy, approach coupled with sizing while
considering the impact of process variation. All previous
approaches for dual-Vy, assignment [16-21] have neglected the
impact of such variations, hence using these approaches in
current technologies can adversely impact both yield and
performance.

The remainder of the paper is organized as follows. Section 2
discusses the models and analysis methods for statistical timing
and leakage power analysis. Section 3 presents the statistical
enhancements made to a traditional dual-Vth and sizing
algorithm. In Section 4, we present results and compare our
algorithm to a traditional deterministic optimization. We
summarize and conclude in Section 5.

2. Preliminaries

The traditional approach of case file-based optimization has
been able to capture die-to-die variations, but results in very
pessimistic results when used to model within-die variations [5].
In this work we only consider variations in the within-die
component of gate length, usually considered to be the dominant
variation source in most circuits [2]. Since gate length also
strongly impacts Vg, we also implicitly model Vy, uncertainty.
Though our present work only considers variations in gate
length, the approach in general can very easily be extended to
multiple parameters varying simultaneously. To capture the
impact of this variation, a standard cell library is characterized
for delay and leakage power variation with varying gate length.
All transistors within a gate are assumed to be perfectly
correlated and variation is assumed to be independent across
gates. Assuming a total gate length variation of 15%, the
within-die component is estimated by dividing this total
variation budget equally into within-die and across-die variation
components [3].

2.1 Statistical Delay Estimation

A quadratic model is used to express the dependency of delay on
gate length (L) as shown in Equation (1).

Delay = f(Ly,,) =y + &Ly, +a,L;,, @

Gates are characterized at seven different capacitive gate loads
and seven input transition times to generate a table-lookup for
each of the fitting parameters used in the quadratic model. The
mean and variance of gate delays can then be expressed in terms
of the higher order moments of the gate length as
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Since the gate lengths are assumed to be Gaussian, the higher
order moments of the gate length can be obtained using the
following relations,
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length and k is any positive integer. The mean and variance of
the gate lengths are then used by a statistical STA (SSTA) [5]
engine to predict PDFs of delay at each node in the circuit. The

SSTA tool assumes the gate delays are normally distributed. This
assumption is reasonable since the quadratic dependence of delay on
the gate length is generally very weak; we primarily use a quadratic fit
to enable accurate estimations of the mean and variance of the gate
delay. The SSTA engine employs a discrete version of these PDFs to
enable efficient computation of delay PDFs within the circuit. These
delay PDFs can then be used to determine any confidence point of the
delay.

We observe that the gates using low-Vy, transistors show smaller
variation in delay. Assuming that the variation in threshold voltage of
the low-Vy, gates is not larger than the high-Vy, gates. The smaller
impact on delay can be understood by using the alpha-power law
model [22]. This model can be used to express the sensitivity of gate
delay with respect to Vy, as

Ve o _ V., ©Delay o V, %)

th — th
Delay oV, (Vdd -V,)

Delay
which shows that the impact of Vy, variation on delay reduces with an
increase in the difference between the supply and threshold voltage.
Therefore, a larger variation in delay for the high Vy, gates is expected
[4]. It is interesting to note that though the low Vy, gates are less
susceptible to delay variations they are highly susceptible to leakage
power variations [15].

The above statistical delay modeling approach can easily be extended
to multiple sources of variation assuming the sources are independent.
This is achieved by first expressing the delay as a function of the
required parameters (as in Equation (1)). Based on parameter
independence, we can then develop simple expressions for the mean
and variance of the gate delays in terms of the moments of the varying
parameters.

2.2 Statistical Leakage Power Estimation

We capture the dependence of leakage power on gate length using an
exponential decay model:

—L —L
Power,,, = g(L,,.) =a, ex;{ gazej = exf{g’"e +ln(a0)J ®)
a
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This allows us to express the leakage power PDF of each gate as a
lognormal where the corresponding Gaussian is a linear
transformation of Lg,.. The PDF of total circuit leakage can then be
expressed as a sum of independent lognormals, which can be well
approximated by another lognormal using Wilkinson’s method [23].
This approximation is valid even in the presence of a correlated
component of process variation.

B —?

(©)

In Wilkinson’s method the mean and the variance of S are obtained by
matching the first two moments of S and (X;+X,+...). The mean and
variance of S are then used to calculate the parameters of the
lognormal, defined to be the mean and variance of the corresponding
gaussian [23]. The PDF of the block leakage current is then given by

(i ) 1 - (ln(ileak ) - a)z N
f(lleuk)_(xmﬂ]exp[ 25 ]

where a and £ are the parameters of the lognormal distribution. For a
lognormal distribution the percent point function is defined as:

Pr[Xx < f(0)]=0 ®)
This can be expressed in terms of the percent point function of the
normal distribution @ " as [24]:

f(0)=exp (a + ,6'(1)’](9))~ )
which can then be used to estimate the confidence points of a
lognormal distribution.

This approach is again readily extended to additional sources of
variation. In particular, the variation in Vy, can be expressed as an
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exponential multiplicative term in Equation (5). The leakage
power then becomes an exponential of a sum of two normal
distributions which has the same form as Equation (7).

3. Statistical Dual-V, Assignment with Sizing

The statistical dual-Vy, and sizing problem is expressed as an
assignment problem that seeks to find an optimal assignment of
threshold voltages (from a set of two thresholds) and drive
strengths (from a set of drive strengths available in a standard
cell library) for each of the gates in a given circuit network. The
objective is to minimize the leakage power measured at a high
percentile point of its PDF while maintaining a timing constraint
imposed on the circuit. The timing constraint is also expressed
as a delay target for a high percentile point of the circuit delay.
These timing and power constraints can be determined based on
desired yield estimates, such as 95% or 99%. This is opposed to
an ideal approach where the yield of the circuit is expressed in
terms of a joint PDF of the delay and leakage power and the
yield is then optimized at a high percentile point. Our
formulation in this work serves to simplify the problem and
allows traditional iterative optimization approaches to be easily
adapted to statistical optimization.

First we outline a traditional deterministic dual-Vy, and sizing
approach [16] that uses corner case files and then introduce two
approaches to include the effects of process variation in
low-power optimization.

3.1 Deterministic approach

The initial design, using the lower Vy, exclusively, is first sized
to meet the timing constraint using a TILOS-like optimizer [25].
A sensitivity measure is defined as
AP

or = ——Slack

se |AD|

(10)

gate

and evaluated for all low Vy, gates in the circuit. AP and AD in
Equation (10) are the changes in power dissipation and delay of
the gate when the low-Vy, gate is swapped with a high-Vy, gate
(of same size and functionality). The gate with the maximum
sensitivity (e.g., G1) is then swapped with a high-Vy, version of
the gate. If the circuit now fails to meet timing a new sensitivity
measure is defined as

1 AD

AP = Slack,, —S,, +K

wp-sise _ (1n)

gate

where S..;, is the worst slack seen in the circuit and K is a small
positive quantity to maintain stability. Equation (11) is then
evaluated for all gates in the circuit. This form of the sensitivity
metric places a higher weighting to gates lying on the critical
paths of the circuit. The arcs over which the summation is taken
represent the falling and rising arcs associated with each of the
inputs of the gate. Thus, for a 3-input NAND gate the sensitivity
measure will be obtained by summing over all six possible arcs.

deterministic dual-Vy,

: Powery=calculate power

: Calculate sensitivity (S**") of low Vy, gates

: Set gate with maximum S***" to high Vy,

: check timing

: if circuit meets timing goto STEPO

: Calculate sensitivity (S"*°) for all gates

: up-size gate with maximum S"P**¢

: if (power > Power,) undo moves and goto STEPO
: goto STEP4

NN A BRAWLWND—O

when the gate is up-sized to the next available size in the library. The
gate with the maximum sensitivity is then up-sized and the process is
repeated until either the circuit meets timing or the power dissipation
increases relative to its level prior to gate G1 being set to high-Vy,. In
the latter event gate G1 is set back to high-Vy, and is flagged to prevent
the gate from again being considered for high Vy, assignment again
later in the process.

3.2 Statistical approach

We propose two major enhancements to the above deterministic
approach that use available statistical information to improve the
overall optimization. In the first improvement the timing check in
STEP3 of the deterministic dual-Vy, approach is performed using
statistical timing analysis. The required percentile point on the delay
PDF, used to specify the constraint, is now obtained from the PDFs
generated by the SSTA engine rather than a corner model case file.

A deterministic timing analyzer is used to determine the input slope at
each of the gates, which is then used along with the output capacitance
as indices in the look-up table for the fitting parameters (in Equations
(1) and (5)). The mean and variance are estimated using Equations
(2)-(3) and are then passed onto the SSTA engine to evaluate the PDF
of the arrival and required times at each circuit node. Note that while
performing the statistical timing analysis, additional dummy source
and sink nodes are added to the circuit, hence the delay constraint
needs to be checked at just one point within the network [5]. Using
statistical delay analysis reduces the pessimism in timing since all
gates cannot be expected to be simultaneously operating at their
worst-case corners, an assumption that is made when performing a
corner-based worst-case analysis. We show in Section 4 that
optimizing a circuit to meet a delay constraint using worst-case
analysis results in a substantial loss in circuit performance optimality.
The situation is worsened for leakage power optimization because of
the exponential dependence of leakage power on threshold voltage.

The second enhancement uses the statistical information in the fitting
functions of delay and power to guide the optimization by replacing
the sensitivities evaluated in STEP1 and STEP4 with statistical
sensitivities. These statistical sensitivities are then evaluated at a
confidence point on the PDF of the sensitivity. Since generating PDFs
of the sensitivity metrics themselves is fairly complicated and
computationally intensive, we estimate the statistical sensitivities by
evaluating the mean and standard deviation of these PDFs (i.e., we
only concern ourselves with the first and second central moments of
the sensitivity PDFs and not their entire shape). Also, the dependence
of slack on gate length of the devices is not straightforward and we
make the assumption that the slack is independent of gate length while
calculating the moments of the sensitivities. The sensitivities in
Equations (10)-(11) can now be expressed as a product of two
independent random variables X and Y where X is dependent on L.
and Y is not. Thus X corresponds to the ratio of the change in power
and change in delay, and Y corresponds to the slack dependent terms
in Equations (10)-(11). Given two independent random variables X and
Y, the expectation of their product is the same as the product of their
expectation. Using this fact, we can estimate the mean and standard
deviation of the sensitivities using the independence assumption made
above and using the following relations:

E(XY) = E(X)E(Y)
Var(XY)= E(XY - E(XY))’) = E(X*)E(Y") — (E(XY))’

(12)

where E(X) is the expected value of X alone and E(Y) is the expected
value of Y alone.

The mean and variance of the terms involving L, (X in Equation 12)
are expressed as a function f” of Ly, alone, using the delay and power
models (Equations (1) and (5)). The expected value is then written as
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E(f (L) = [ f (L) (L)L, (13)

where p(Lg,.) is the PDF of the gate length. Applying Taylor
series theorem to the above expression we can re-write it as
follows

AfL )| ot W, M+-~-~~-+f"(th L, L, (1Y

where p is the mean of L. This gives

B L= f )+ B g ) T (09

where #;is the i’th central moment of L, and the odd central
moments of L, are set to zero. This approximation can be used
to obtain the mean and variance of the sensitivities. For our
analysis, we found that a fourth-order approximation of f{Lgu.)
was sufficient for good accuracy.

The moments of the slack dependent terms (Y in Equation 12)
are estimated by using the slack PDFs obtained from SSTA. The
statistical sensitivities are now redefined by evaluating at a
certain number ‘n’ standard deviations away from the mean.
Since the shape of the sensitivity PDFs is not known, 7’ is not
known even if a known confidence point is desired. Later in
Section 4 we look at the impact of n’ on the optimization
results.

We note that the approach can be easily extended to multiple
delay constraints, where a set of percentile points on the delay
PDF can be constrained to be less than some desired value. As
an example, this flexibility is well suited to microprocessor
designs where we can simultaneously constrain the 95 and 99"
percentile delay to concurrently target different yields for
different performance bins.

The worst-case time complexity of the algorithm can be
expected to be O(n’) since the SSTA engine has a linear time
complexity [5] and in the worst-case we could up-size the entire
circuit each time we set a gate to high V. This would happen
when we maximally size-up the circuit each time we set a gate to
high Vy, yet still fail to meet timing (this also requires the total
power not to surpass the original circuit through all up-sizing
moves). Note that in the worst-case the O(n’) complexity results
because the total number of up-sizing moves (and reversed
up-sizing moves) is O(n’) since every gate is up-sized to the
maximum size available in the library whenever a gate is set to
high Vy,, and all the moves are then reversed. If the total number
of up-sizing moves that are reversed is assumed to be linearly
proportional to the number of gates in the circuit, the overall
complexity of the algorithm reduces to O(n2), since the total
number of up-sizing or cell-swapping moves now become
linearly proportional to the number of gates in the circuit.

4. Results

The benchmark circuits are synthesized using an industrial
0.13pum standard cell library with a V44 of 1.2V and a high and a
low Vg of 0.23V and 0.12V respectively. For the delay
constraints, we consider two different cases where the delay is
constrained at the 95" or 99" percentile. Leakage power is
optimized at the same percentile point used to express the delay
constraint.

To make a fair comparison of the statistical and deterministic
approaches, the best and worst-case corner models for the gates
are developed for the same percentile point at which the delay
cor:]straint was specified for a particular experiment (95" or
99™).
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Figure 2. Impact of ‘n’ on statistical optimization

Figure 2 shows the impact of evaluating the sensitivities at different
points along their distribution (relative to the mean) on the final
optimization results for two ISCAS’85 [26] benchmark circuits. The
sensitivities are evaluated at a fixed number of standard deviations
away from the mean which is represented as 7’ (Section 3.2). The
curves are obtained through multiple runs of the algorithm. Each time
the algorithm is run, the delay constraint is progressively tightened to
obtain a complete power-delay curve. For both 95™ and 99™ percentile
delay constraints, we observe that considering n = -1.63
(corresponding to the 5™ percentile point on a Gaussian) leads to the
best power-delay curve characteristics. For the 99 percentile case we
observe that both n=-1.63 and n=-2.33, which corresponds to the 1st
percentile point in a Gaussian perform very similarly. The significant
improvement over the cases where a high percentile point of the
sensitivities is used to select the gate to be swapped/up-sized can be
understood by noting that a low percentile point on the sensitivity
point gives a high confidence that the sensitivity value is at least as
large as the value at the decision-making point.

Figure 3 compares three different optimization approaches outlined in
Section 3. In particular we sub-divide the statistical optimization
approach of Section 3.2 into two stages — 1) “with statistical
constraints” which relies on SSTA but does not include statistical
sensitivities, and 2) “with statistical sensitivities” which includes both
improvements described above. The 95% delay and 95% power are
estimated using the statistical estimation techniques discussed in
Section 2 for all curves except “delay using corner models”. It is
interesting to note that the incorporation of statistical sensitivities
provides an additional reduction of ~40% in leakage power at the
tightest delay constraint compared to the case where we only use the
SSTA engine to enforce the delay constraint. This indicates that
although the use of a statistical timing analysis framework is clearly
important, statistically modeling the power and delay impact of
change in Vy, is equally critical. Additionally, the optimization based
on corner models (using the traditional approach of Section 3.1) is not
able to meet very tight constraints on the 95" percentile of the delay
that are met by optimizations that employ an SSTA engine due to the
pessimism of the corner model approach. The last curve (“delay using
corner models™) plots the results for the optimization using corner
models where the delay is calculated using worst-case models.
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Figure 3. Power-delay curves for the three optimization
techniques

Table 1. Power savings for the statistical approaches compared
to a corner-model based approach.

Poner (5% Poner (%) Gae | Rnmne
Oroit [ CP2 | OPI3 | oP2 | oP13 | Gt | (in)
AR | 163% | 303% | 180% | B7% | 166 1
AP | 4% | 07% | %% | 03% | 519 13
B0 | 95% | 132% | 80% | 500% | a0 8
I8 | 127% | 286% | 115% | B5% | 4% 10
B0 | 53% | 203% | 366% | 66%]| 96 | 20
B0 | 6% | B35% | 73% | 5% | o2 19
15 | 178% | 43% | 311% | 6% | 1750 | 68
B8 | 1B0% | B5% | 24% | 3% | B2 | 15
Aeage | B5% | B | 9% | B0%

The curve shows that if statistical information is not provided to
the designer a small overestimation in the delay can result in
large performance improvements being left on the table, since
designs are generally optimized within a strict delay constraint.
Also high-performance circuits generally operate in a steep
region of the power-delay curve and a small overestimation in
delay can be expected to result in a large loss in the achievable
improvements of the performance parameter being optimized. It
can be seen that the different optimization cases also tend to
converge as the delay constraint is relaxed. This can be
understood by noting that as the delay constraints is relaxed a
larger fraction of gates are assigned to high Vy, and hence the
final state becomes increasingly independent of the order in
which the gates were assigned to high V,.

Table 1 summarizes the improvement in leakage power for the
ISCAS’85 benchmark circuits for the statistical optimization
approaches described in Section 3.2 compared to a deterministic
approach. OPT2 and OPT3 refer to the optimization with
statistical timing constraints alone and with both statistical
timing constraints and sensitivities, respectively. The results are
shown for the best delay constraint met using the corner models,
thus the results in Table 1 for the 95™ and 99™ percentile cases
correspond to different delay constraints. Average reductions in
leakage power of approximately 14% and 29% can be achieved
by using OPT2 and OPT3, respectively, for the 95™ percentile
case compared to a traditional deterministic approach. A larger
average improvement of approximately 20% and 36% can be
obtained for the 99™ percentile case. These delay points
correspond to the high frequency bin and are most affected by
leakage power dissipation. The last columns of the table list the

— Opt. with statistical sensitivities

30_- = = Opt. with statistical constraints
| Opt. using corner models
25-
. |
g 207 \
Q i
3 \
S 151
£ t
10 \
5. \
1 \
0 T T T
4 5 6
Leakage Power (uW)
(a)
10 [
| —Opt. with statistical sensitivities
8- ll = =Opt. with statistical constraints
1 Opt. using corner models
z 1
c 64
] 1
z
] 1
£ 4 :
|
2 1
! \
0 1 T U 1 1
10 15 20 25 30
Leakage Power (uW)
(b)

Figure 4. PDFs of leakage power for (a) loose delay constraints (b)
tight delay constraints.

size of the circuits and the runtime for the algorithm on an Intel
2.8GHz Xeon processor with 3GB of RAM. We observe that runtime
follows the quadratic complexity predicted in Section 3.2. Figure 4
compares the PDF of leakage power for the three optimization
approaches for both loose and tight delay constraints. These power
curves are all taken with identical 95% delays, or identical
performance. For loose delay constraints (Figure 4a) all three
optimization approaches result in fairly similar PDFs for leakage
power. This again reflects the fact that the different optimization
approaches behave very similarly for loose delay constraints.

The tighter constraints clearly separate the leakage power PDFs of the
statistical and deterministic approaches. It is interesting to note that
although statistical sensitivities lead to a smaller 95™ percentile
leakage power as compared to the other approaches, the variance is
marginally larger when compared to the optimization using only
statistical constraints. We emphasize that Figure 4b corresponds to the
highest performance parts being manufactured and using statistical
optimization leads to not only a much smaller average leakage power
but also reduces the spread of the distribution considerably which
significantly impacts the yield.

5. Conclusions

We present an approach to use statistical information to make effective
decisions while performing low-power optimization. The simplicity of
our approach makes it amenable to inclusion within already existing
sensitivity-based optimization approaches. We have demonstrated this
by implementing the new techniques within an already existing
dual-Vy, and sizing algorithm and shown the advantages offered by
statistical optimization in comparison with traditional corner model
based optimizations. The results obtained show that a reduction of
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~15-35% in leakage power can be obtained on average for the
high frequency bins of the design. We also show that statistical
optimization leads to much tighter distributions of power, which
is ideal both from performance and yield perspectives.
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