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ABSTRACT 
For multi-gigahertz synchronous designs in nanometer 
technologies, multiple clock cycles are needed to cross the global 
interconnects, thus making it necessary to have pipelined global 
interconnects. In this paper we present an architecture-level 
synthesis solution to support automatic pipelining of on-chip 
interconnects. Specifically, we extend the recently proposed 
Regular Distributed Register (RDR) micro-architecture to support 
interconnect pipelining. We formulate a novel global interconnect 
sharing problem for global wiring minimization and show that it 
is polynomial time solvable by transformation to a special case of 
the real-time scheduling problem. Experimental results show that 
our approach matches or exceeds the RDR-based approach in 
performance, with a significant wiring reduction of 15% to 21%. 

Categories and Subject Descriptors 
B.5.2 [Hardware]: Design Aids – automatic synthesis  

General Terms 
Algorithms, Design, Experimentation 

Keywords 
High-level synthesis, multi-cycle communication, interconnect 
pipelining, scheduling, register binding  

1. INTRODUCTION 
Nanometer process technologies enable gigascale integration with 
multiple-gigahertz operating frequencies. The shrinking cycle 
time, combined with the growing resistance-capacitance delay, 
die size, and average interconnect length, contribute to the 
increasing role of the interconnect delay (especially the global 
interconnect delay), which does not scale well with the feature 
size. According to the predictions by SIA ITRS roadmaps [14], 
the gap between the wire and the gate performance will continue 
to grow, even with the use of new interconnect materials and 
aggressive interconnect optimization. As a result, the delays on 
wires that span the chip will exceed the clock period, and the 
single-cycle full-chip communication will no longer be possible. 
Since the clock period often represents a fixed constraint in high-

performance designs, it is not acceptable to simply degrade the 
entire design to the speed of the slowest global interconnect. 
Although integration of retiming with placement or floorplanning 
[2][12][4] can help to alleviate the problem, it cannot derive a 
circuit whose clock period works less than the lower bound 
defined by the maximum delay-to-register ratio of the loop in the 
circuit [10].  
To further improve the clock speed, one can pipeline the long 
wires by inserting clocked and enabled elements such as latches 
and flip-flops. The gains from this technique can be dramatic, as 
the clock frequencies are no longer restricted by the interconnect 
speed. In one reported case, Intel inserted thousands of flip-flops 
on the global wires of the Itanium™ processor and achieved up to 
1.7 GHz operating frequency even under 0.18um technology [9]. 
ITRS [14] has also acknowledged this strategy by removing 
global clock cycle times from its 2001 and later roadmaps. Some 
recent works [8][3] combined buffer and flip-flop insertion with 
the simple assumption that flip-flops can be inserted at will. 
However, they did not address the intrinsic difficulties of wire 
pipelining under the RT level. Flip-flop insertion may change the 
cycle-level behavior of the circuit [11]; this requires a 
considerable amount of manual rework to the RTL design. Even 
worse, such rework is usually performed in ad hoc ways with no, 
or very limited, automated tool support, which seriously 
compromises the design productivity. 
Because of all these aforementioned difficulties, new design 
methodologies are required for coping with the increasingly 
important on-chip communication design at a higher-level 
abstraction. The recently proposed Regular Distributed Register 
(RDR) micro-architecture [5] provides a promising way to 
address this problem. It offers high regularity and direct support 
of the multi-cycle on-chip communication. However, the RDR 
micro-architecture may introduce extra global wiring overhead in 
the presence of many simultaneous data transfers, as each one 
requires a dedicated global connection. 
In this paper we present an architecture-level synthesis solution to 
support automatic interconnect pipelining. The main contributions 
of this work are as follows: (i) We propose an extension to the 
RDR micro-architecture, called RDR-Pipe, to efficiently support 
the multi-cycle on-chip communication with interconnect 
pipelining. (ii) We formulate a novel global interconnect sharing 
problem for global wiring minimization, and show that it is 
polynomial time solvable by transformation to a special case of 
the real-time scheduling problem. 
The remainder of the paper is organized as follows. Section 2 
reviews the RDR micro-architecture and discusses its limitation. 
Section 3 presents the RDR-Pipe micro-architecture, an extension 
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to the RDR micro-architecture for automatic interconnect 
pipelining. Section 4 describes our proposed architectural 
synthesis methodology. In particular, we will focus on the global 
interconnect sharing algorithm. The experimental results are 
shown in Section 5, followed by conclusions in Section 6. 

2. REVIEW OF THE RDR  
MICRO-ARCHITECTURE 
The RDR micro-architecture [5] divides the entire chip into an 
array of islands. The registers are distributed to each island, and 
the size of each island is chosen such that all intra-island 
computation and communication can be performed in a single 
clock cycle. The inter-island communications can take multiple 
cycles. 
Each island consists of the following components: (1) A local 
computational cluster (LCC) that contains functional elements of 
the circuit, such as multiplexors (MUX), multipliers, ALUs, etc. 
(2) A local register file that represents dedicated local storages. It 
can be partitioned into K banks (assuming that up to K cycles are 
needed to cross the chip), such that registers in bank i will hold 
the results for i cycles for communicating with another island that 
is i cycles away. (3) A finite state machine (FSM) that controls 
the behaviors of the computational elements and registers.  
The RDR micro-architecture provides a regular synthesis platform 
for supporting multi-cycle on-chip communication. Its regularity 
greatly facilitates the predictability of interconnect delays at early 
design stages. Additionally, it offers a way to systematically 
explore the cycle time vs. latency tradeoff. According to the 
studies in [5][6][7], RDR exhibits a 31% better clock period and a 
24% better total latency compared to the conventional approach. 
However, the RDR micro-architecture may introduce a 
considerable amount of wiring overhead due to the possible 
existence of many simultaneous data transfers among the islands, 
as each one requires a dedicated global connection. Since each 
signal transmission over a global wire occupies multiple cycles, 
sharing the wire is not possible unless the transmissions can be 
serialized.  
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Figure 1. Illustration of the wiring overhead in RDR 

(a) Scheduled and bound CDFG, (b) RDR layout. 
Figure 1 illustrates the problem using a very simple control data 
flow graph (CDFG) with three operation nodes. We assume a 
uniform node delay that is equal to the cycle time. Given the 
layout shown in Figure 1 (b), the CDFG will be scheduled into 
five cycles. Using the RDR micro-architecture, four registers will 
be allocated, and the sender registers r1 and r2 will hold their 
values for two cycles to allow the signals to reach the receiver 
registers r3 and r4. Therefore, two parallel inter-island wires are 

needed between ALU1 and MUL1 as their data transfer times 
overlap.  
Clearly, more wiring overhead may be incurred as the designs 
grow. Since the global wires are an expensive resource, this 
deficiency has to be addressed. 

3. RDR-PIPE MICRO-ARCHITECTURE 
FOR INTERCONNECT PIPELINING 
For a K-cycle global interconnect, we observe that it is not 
necessary to hold the sender register constantly for K cycles. 
Instead, flip-flops can be inserted to the wire to relay the signal in 
K cycles. In this way, although the data transfer still takes K 
clocks to go through the interconnect, new data can be launched 
every cycle. Therefore, the throughput of a pipelined interconnect 
can be up to K times greater than that of the non-pipelined one in 
RDR. In addition, more data transfers can share the same global 
wire, as the minimal launch interval is reduced from K to 1. 
Based on the above consideration, we propose the RDR-Pipe 
micro-architecture which extends the RDR to enable an 
interconnect-pipelining scheme for the on-chip communication 
design.  
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Figure 2. A 2×3 island-based RDR-Pipe micro-architecture. 

Figure 2 illustrates a 2×3 island-based RDR-Pipe micro-
architecture. RDR-Pipe also consists of an array of islands 
surrounded by the horizontal (H) and vertical (V) routing 
channels. The key difference between RDR-Pipe versus RDR is 
that pipeline registers are inserted on the global interconnects so 
that every K-cycle inter-island communication will go through K-
1 intermediate pipeline registers. The pipeline registers reside in 
the Pipeline Register Stations (PRS) that are distributed along the 
routing channels. The incoming signals to a PRS are either 
relayed through a pipeline register or directly switched to 
different directions. Note that the pipeline registers only perform 
the store-and-forward function so that they are autonomous and 
do not need control signals.  
Figure 3 illustrates the advantages of the RDR-Pipe micro-
architecture using the same CDFG example shown in Section 2. 
With the presence of a pipeline register r2, ALU1 can emit a value 
to r1 (denoted as v1) at the first cycle and still emit the other value 
to r1 at the second cycle, as v1 has already been transferred to r2. 
Therefore, the two data transfers can share the same interconnect, 
and only one global wire is needed this time between ALU1 and 
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MUL1. In fact, this result can be further generalized as follows: 
Under the RDR-Pipe micro-architecture, at most one inter-island 
global wire is needed between any pair of functional units,   
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Figure 3. Illustration of the interconnect  

pipelining and sharing in RDR-Pipe  
(a) Scheduled and bound CDFG, (b) RDR-Pipe layout.  

As shown above, the RDR-Pipe micro-architecture preserves the 
strength of the RDR micro-architecture to achieve high 
performance; meanwhile, it directly supports automatic 
interconnect pipelining and potentially allows better wiring 
utilization compared to the RDR. 

4. PROPOSED ARCHITECTURAL 
SYNTHESIS METHODOLOGY 
In this section we describe our proposed architectural synthesis 
methodology. In particular, we will focus on the global 
interconnect sharing algorithm. 

4.1 Overall Design Flow 
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Figure 4. MCAS-Pipe design flow. 

To efficiently synthesize the behavioral descriptions onto the 
RDR-Pipe micro-architecture, we extend the MCAS architectural 
synthesis system [6] to support the interconnect pipelining. Figure 
4 shows the overall synthesis flow of the extended MCAS system 
called MCAS-Pipe.  
MCAS-Pipe takes a behavioral-level description as input. In our 
case, this can be either synthesizable C or VHDL. The original 
MCAS modules, as shown in Figure 4, are used to derive a 
scheduled and bound CDFG and also the physical locations for 
the functional units. The common steps include CDFG resource 

allocation, initial functional unit binding, scheduling-driven 
placement, and post-layout rebinding and rescheduling.  
A key module called global interconnect sharing is then 
performed to minimize the number of global wires, followed by 
the register allocation and port binding. This step will be 
discussed in detail in Section 4.2. 
At the backend, MCAS-Pipe generates a datapath and distributed 
controller generation. In the same way as MCAS, the final outputs 
of MCAS-Pipe include RT-level VHDL files for logic synthesis 
tools and floorplan constraints for physical design tools. 
However, no multi-cycle path constraints will be generated by 
MCAS-Pipe due to the regular pipelining of all interconnects. 
Note that multi-cycle path constraints are used extensively in 
MCAS for multi-cycle on-chip communication. 

4.2 Global Interconnect Sharing  
This section describes the procedures used for global interconnect 
sharing, which aims to minimize the number of global wires.  
In RDR-Pipe, the value of a variable may be transmitted from its 
producer island to several consumer islands, taking different 
numbers of clock cycles. The starting point of a data transfer may 
be flexible due to the possible slack between the actual transfer 
latency and the arrival-to-deadline interval. We can make use of 
this flexibility to schedule the data transfers to further reduce the 
global wires and pipeline registers needed for data 
communications among the islands.  

4.2.1 Motivation 
The input to the global interconnect sharing problem is a 
scheduled and bound CDFG where every operation is bound to a 
certain functional unit and is scheduled to a certain control step. 
Hereafter, we use T(op) to denote the control step where operation 
op is scheduled and FU(op) to denote the functional unit to which 
it is bound. 
In a CDFG, a variable is produced by an operation node and 
consumed by one or more operation nodes. Every data edge 
between two operations represents a data transfer (or transfer, for 
short) from the producer operation to the consumer operation. We 
will not distinguish an edge and its corresponding data transfer 
hereafter. Let e be an edge (or a transfer) in a CDFG, and let pe be 
the producer and ce be the consumer of the transfer, T(pe) and 
T(ce) are the control steps in which the producer and consumer are 
scheduled respectively. The active-interval of data transfer e is 
the time period from T(pe)+1 to T(ce)-1, denoted as [T(pe)+1, 
T(ce)-1]. A transfer schedule is said to be feasible if it starts and 
finishes within its active-interval.  
Under the RDR-Pipe micro-architecture, operation op is 
performed in island A (denoted as op ∈ A) if and only if FU(op) is 
located in A. Data communications from one island to another are 
through a channel, which is a set of data links implemented in 
pipelined global interconnects between the islands. The channel 
from islands A to B is denoted as a pair (A, B), which is associated 
with a channel latency of D(A, B) cycles; i.e., the data links 
between A and B have D(A, B)-1 pipeline stages. Therefore, 
transfer e should be issued in channel (A, B) with the latency of 
D(A, B) cycles, if and only if pe ∈ A and ce ∈ B. A channel should 
accommodate all the data transfers {e | pe ∈ A and ce ∈ B}. 
Every cycle a data link can issue at most one transfer. Since every 
link is fully pipelined, as long as a transfer is issued to the first 
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pipeline stage on the link, it will be automatically forwarded 
through the subsequent pipeline stages. In other words, one 
transfer can be issued on a link in each clock cycle (i.e., the 
throughput of a link is one transfer per cycle). Therefore, the 
effective occupancy time of a transfer on a data link is exactly one 
cycle. 
The width of a channel is defined as the number of links used to 
accomplish the data transfers on the channel. It is determined by 
the maximum number of simultaneous issues of the transfers. 
Figure 5 shows a scheduled and bound CDFG and the 
corresponding RDR-Pipe layout. There are two edges e and g 
representing the transfers from pe to ce and from pg to cg, 
respectively. According to the operation schedule, the active-
interval of transfer e is [4, 6], and that of g is [2, 6]. Both 
producers belong to island A, and both consumers belong to island 
B. Suppose the channel latency D(A, B) is two clock cycles, the 
transfers of e and g will then take two clock cycles. In this design, 
both data transfers occur on cycle 4; two data links are required to 
accomplish these transfers on channel (A, B).  
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Figure 5. Simultaneous transfers using two data links. 

However, if transfer g is issued on cycle 3 as shown in Figure 6, a 
shared data link is enough to perform transfers g and e in a 
pipelined manner, as illustrated by the RDR-Pipe layout on the 
right-hand side of Figure 5. Note that a multiplexor is introduced 
to share the data link, assuming the sender registers remain the 
same.  
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Figure 6. Scheduled transfers using only one data link. 

4.2.2 Channel Width Minimization 
Given the definitions of transfer and channel, we have the 
following observation: For every two channels (A1, B1) and (A2, 
B2), if A1 ≠ A2 or B1 ≠ B2, the channels accommodate disjoint sets 
of transfers. This is because that every operation can only belong 
to one island, thus every transfer can only belong to one channel. 
Furthermore, since there are no steering logics and controls for 
pipeline registers outside of islands in the proposed RDR-Pipe 
micro-architecture, sharing data links between two channels is not 
allowed. Therefore, all channels are independent of each other. 

THEOREM 1. Global pipelined interconnects are minimized if and 
only if the width of every channel is minimized.  

Since data links are implemented by global pipelined interconnect, 
the total width of channels directly reflects the cost of global 
wiring and pipeline registers. The problem of minimizing the total 
global interconnects and pipeline registers can be transformed 
into a sequence of problems for minimizing the width of each 
individual channel. 

4.2.3 Data Transfer Scheduling  
The example shown Section 4.2.1 indicates that data link sharing 
can be realized by data transfer scheduling.  
The transfer e with producer pe and consumer ce can be issued 
within [T(pe)+1, T(ce)-D(A, B)], where pe ∈ A and ce ∈ B, and the 
effective occupancy time of a transfer on a data link is only one 
cycle. Therefore, channel width minimization can be formulated 
as a transfer scheduling problem: 

PROBLEM. Transfer Scheduling 
Given: (1) A channel (A, B) of width m. (2) A data transfer set {e 
| pe ∈ A and ce ∈ B}, where each transfer e is associated with an 
arrival time T(pe)+1, a deadline T(ce)-D(A, B), and the unit 
effective occupancy time. 

Assumption: For every time slot, at most one transfer can be 
issued on a data link.  

Objective: To find a feasible transfer schedule on these data links.  
If we view a data link as a processor and a transfer as a task with 
unit execution time, this problem is a special case of the deadline 
scheduling of tasks with ready times on processors, which is 
solvable in polynomial time by an earliest deadline first (EDF) 
algorithm [1].  

 Algorithm: Transfer Scheduling (X, m) 
Objective:  

Check whether transfer set X can be scheduled to m data links. 
Assumption:  

1) Every xi of X has an arrival time ai and a deadline di 
2) The minimal arrival time is T0, and maximal deadline is Tm 

Begin 
Sort X by the non-descending order of their deadline 
t := T0 

while t ≤ Tm do 
 A := ∅; k := 0 
 for each unassigned xi of X 
  if di < t then return fail 
  if ai ≥ t then A = A ∪ {xi} 

while A is not empty and k < m do 
 Remove the first xi from A  

Assign xi to the next free data link 
 k := k + 1 
t := t + 1 

return success 
 

Figure 7. Transfer scheduling algorithm. 
The pseudo-code of the algorithm is shown in Figure 7. First, the 
transfers are sorted by the non-descending order of their deadlines. 
Then repeatedly in every time slot, active unassigned tasks are 
scheduled to the data links according to this order. Notice A 
denotes the active unassigned task set. The algorithm will return a 
feasible schedule if one exists.  
THEOREM 2. The algorithm is optimal for the transfer scheduling 
problem, with a run time complexity of O(nlogn), where n is the 
number of the given transfers.  
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It is easy to show the equivalence of the transfer scheduling and 
the deadline scheduling of tasks with ready times. The original 
optimality proof of the latter problem can be found in [1]. The 
complexity is dominated by the sorting, which is O(nlogn).  
The solution to the whole global interconnect sharing problem is 
straightforward. First, we will construct the transfer tasks for each 
channel. For each channel, since the upper bound of its width is 
the number of transfers on it, we perform a binary search for the 
minimum number of data links required for the transfer set, using 
the transfer scheduling algorithm.  

COROLLARY 1. The pipelined interconnect sharing problem can 
be solved optimally with run time complexity O(Cnlog2n), where 
C is the total number of channels, and n is the maximum number 
of transfers of all the channels.  

4.3 Register Allocation Based on Minimized 
Channels  
After channel minimization, pipeline registers are allocated for 
every data link according to its latency. At last, sender and 
receiver register sharing are performed, according to the 
variables’ new lifetimes determined by operation scheduling, as 
well as transfer scheduling.  
Since a variable’s sender and receiver registers are located in the 
producer and consumer islands respectively, their lifetimes are 
split into several segments, one for sending in its producer island 
and the others for receiving in different consumer islands. For the 
example in Figure 6, the sending lifetime of a variable produced 
by pg is [2, 3] and its receiving lifetime is [5, 7]. Similarly, the 
sending and receiving lifetimes for pe are [4, 4] and [6, 7] 
respectively. In this example, variables produced by pe and pe can 
actually share one sender register since their sending lifetimes, [4, 
4] and [2, 3], are compatible. The multiplexor is also reduced due 
to the register sharing.  

5. EXPERIMENTAL RESULTS 
We implemented the MCAS-Pipe synthesis system in C++/UNIX 
environments. For comparison, we set up three alternative flows, 
which are conventional, MCAS, and MCAS-Pipe flows. The 
conventional high-level synthesis flow is based on the 
conventional architecture with a centralized register file and a 
global control. It performs the binding and list-scheduling 
algorithm sequentially without considering the layout. The MCAS 
flow, which is presented in [6], is built on top of the RDR micro-
architecture, and the physical information is provided by the 
scheduling-driven placement. The MCAS-Pipe flow is based on 
the RDR-Pipe micro-architecture and is an extension to MCAS 
flow. It performs the global interconnect sharing algorithm to 
minimize the global wiring and number of pipeline registers. All 

three flows share the same backend to generate datapath and 
controllers. For MCAS flow, multi-cycle path constraints are also 
generated by the backend.  
To obtain the final performance, wirelength, and area results, 
Altera’s Quartus II version 3.0 [15] is used to implement the 
datapath and controllers into a real FPGA device, 1  Stratix™ 
EP1S40F1508C5. All the pipelined multipliers are implemented 
into the dedicated DSP blocks of the Stratix™ device. We set the 
target clock frequency at 200 MHz and use the default 
compilation options. In consistent with [7], we applied a 7×4 
RDR-Pipe micro-architecture, and used LogicLock™ to constrain 
every instance into its corresponding island.  
We use a set of data-intensive benchmarks to test our architectural 
synthesis system. All of them are from [13], including several 
DCT algorithms, such as PR, WANG, LEE, and DIR, and two 
DSP programs, MCM and HONDA.  
The performance comparison results are shown in Table 1, where 
the results from MCAS flow, including clock period (CP), clock 
cycles (CS), and latency (LAT, the product of CP and CS), are 
listed in absolute values. The clock periods are reported by 
Quartus II, and clock cycles are determined by the CDFG 
scheduling algorithm. For comparison, the relative numbers of the 
conventional flow and MCAS-Pipe flow over MCAS results are 
listed. We can see that MCAS-Pipe matches or exceeds the 
MCAS flow in performance. Compared to the conventional flow, 
MCAS-Pipe achieves a 38% improvement in terms of clock 
period and a 30% reduction in total latency on average.  
We collect the wirelength results for these designs after place-
and-route. Eight types of general wires in Stratix devices are 
considered: LL and LO are local wires in LABs with unit length. 
Wire types named Hn (n ∈ {4, 8, 24}) and Vm (m ∈ {4, 8, 16}) 
are horizontal wire length n and vertical wire length m 
respectively. Table 2 shows the wirelength comparison of the 
MCAS-Pipe versus MCAS. In this table, absolute numbers of the 
total wirelengths for four wire type groups are listed for MCAS 
flow, followed by ratios of MCAS-Pipe flow over MCAS flow. 
Since the RDR-Pipe micro-architecture allows the automatic on-
chip interconnect pipelining and the global interconnect sharing to 
further minimize the global wiring, we are able to share more data 
transfers on the same interconnect. Consequently, MCAS-Pipe 

                                                                 
1 Considering the availability of design tools, cell libraries and 

timing models, we chose the FPGA platform. We would expect 
similar or better experimental results in the ASIC platform, in 
which the interconnect delay versus gate delay ratio and 
communication overhead are higher. 

Table 1. Performance comparison of three alternative flows. 
CONV / MCAS MCAS MCAS-Pipe / MCAS Designs 

CP CS LAT CP (ns) CS LAT (ns) CP CS LAT 
PR 1.67 0.90 1.51 5.86 21 123.06 1.00 1.00 1.00 

WANG 1.63 0.89 1.46 5.40 19 102.56 0.89 1.00 0.89 
LEE 1.57 0.91 1.43 5.91 34 200.77 1.04 1.00 1.04 

MCM 1.52 0.94 1.43 7.13 32 228.19 0.88 1.00 0.88 
HONDA 1.43 0.88 1.26 7.35 50 367.65 1.00 1.00 1.00 

DIR 1.52 0.91 1.38 7.12 55 391.38 0.97 1.00 0.97 
Average 1.56 0.91 1.41 6.46 35.17 235.60 0.96 1.00 0.96 
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reduces 28.8% global wirelength (total length of wire type V16 
and H24) and 19.3% total wirelength on average. 
Table 3 also lists the ratios of the resource used by different 
design flows in terms of logic elements (LEs) and registers. The 
MCAS-Pipe uses 9% more registers than MCAS flow, while 
slightly less LEs on average. The transfer scheduling changed the 
allocation of sender and receiver registers so that the multiplexor 
network structures are changed, which could affect the final area. 

 

6. CONCLUSIONS 
In this paper we present a high-level solution to automatic on-chip 
interconnect pipelining during the architectural synthesis stage. 
We propose the RDR-Pipe micro-architecture to extend the RDR 
micro-architecture for automatic interconnect pipelining. Also, we 
develop a novel global interconnect sharing algorithm to 
effectively reduce the global wiring. Experimental results show 
that our approach matches or exceeds the RDR-based approach in 
performance, with a greatly reduced wiring demand. 
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Table 3. Logic utilizations of three alternative flows. 
CONV / MCAS MCAS MCAS-Pipe / Designs 
Reg# LE Reg# LE Reg# LE 

PR 0.71  0.95  31 1181 1.19  0.95  
WANG 0.63  0.81  40 1435 1.20  0.85  

LEE 0.76  0.96  29 988 1.00  0.84  
MCM 0.75  1.00  57 2467 1.05  1.19  

HONDA 0.83  0.90  41 2542 1.05  1.01  
DIR 0.75  0.95  44 2260 1.05  1.01  

Average 0.74  0.93  - - 1.09  0.98  

Table 2. Wirelength comparison of MCAS-Pipe vs. MCAS. 
MCAS MCAS-Pipe / MCAS Designs 

LL+LO H4+V4 H8+V8 V16+H24 Total LL+LO H4+V4 H8+V8 V16+H24 Total 
PR 3304 14900 8472 26808 53484 0.95 0.84 0.97 0.69 0.79 

WANG 3882 14880 11088 14368 44218 0.84 0.82 0.91 0.69 0.80 
LEE 2649 11772 6904 17896 39221 0.89 0.80 0.62 0.89 0.82 

MCM 7173 34076 20672 32240 94161 1.15 0.90 1.07 0.60 0.85 
HONDA 7076 28560 18232 17312 71180 0.99 0.80 0.77 0.76 0.80 

DIR 6138 26044 17904 20264 70350 1.06 0.94 0.85 0.64 0.84 
Average - - - - - 0.98 0.85 0.86 0.71 0.82 
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