
Architecture-Level Synthesis for Automatic
Interconnect Pipelining
Jason Cong, Yiping Fan, Zhiru Zhang

Computer Science Department

University of California, Los Angeles, CA 90095

{cong, fanyp, zhiruz}@cs.ucla.edu

ABSTRACT
For multi-gigahertz synchronous designs in nanometer
technologies, multiple clock cycles are needed to cross the global
interconnects, thus making it necessary to have pipelined global
interconnects. In this paper we present an architecture-level
synthesis solution to support automatic pipelining of on-chip
interconnects. Specifically, we extend the recently proposed
Regular Distributed Register (RDR) micro-architecture to support
interconnect pipelining. We formulate a novel global interconnect
sharing problem for global wiring minimization and show that it
is polynomial time solvable by transformation to a special case of
the real-time scheduling problem. Experimental results show that
our approach matches or exceeds the RDR-based approach in
performance, with a significant wiring reduction of 15% to 21%.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids – automatic synthesis

General Terms
Algorithms, Design, Experimentation

Keywords
High-level synthesis, multi-cycle communication, interconnect
pipelining, scheduling, register binding

1. INTRODUCTION
Nanometer process technologies enable gigascale integration with
multiple-gigahertz operating frequencies. The shrinking cycle
time, combined with the growing resistance-capacitance delay,
die size, and average interconnect length, contribute to the
increasing role of the interconnect delay (especially the global
interconnect delay), which does not scale well with the feature
size. According to the predictions by SIA ITRS roadmaps [14],
the gap between the wire and the gate performance will continue
to grow, even with the use of new interconnect materials and
aggressive interconnect optimization. As a result, the delays on
wires that span the chip will exceed the clock period, and the
single-cycle full-chip communication will no longer be possible.
Since the clock period often represents a fixed constraint in high-

performance designs, it is not acceptable to simply degrade the
entire design to the speed of the slowest global interconnect.
Although integration of retiming with placement or floorplanning
[2][12][4] can help to alleviate the problem, it cannot derive a
circuit whose clock period works less than the lower bound
defined by the maximum delay-to-register ratio of the loop in the
circuit [10].
To further improve the clock speed, one can pipeline the long
wires by inserting clocked and enabled elements such as latches
and flip-flops. The gains from this technique can be dramatic, as
the clock frequencies are no longer restricted by the interconnect
speed. In one reported case, Intel inserted thousands of flip-flops
on the global wires of the Itanium™ processor and achieved up to
1.7 GHz operating frequency even under 0.18um technology [9].
ITRS [14] has also acknowledged this strategy by removing
global clock cycle times from its 2001 and later roadmaps. Some
recent works [8][3] combined buffer and flip-flop insertion with
the simple assumption that flip-flops can be inserted at will.
However, they did not address the intrinsic difficulties of wire
pipelining under the RT level. Flip-flop insertion may change the
cycle-level behavior of the circuit [11]; this requires a
considerable amount of manual rework to the RTL design. Even
worse, such rework is usually performed in ad hoc ways with no,
or very limited, automated tool support, which seriously
compromises the design productivity.
Because of all these aforementioned difficulties, new design
methodologies are required for coping with the increasingly
important on-chip communication design at a higher-level
abstraction. The recently proposed Regular Distributed Register
(RDR) micro-architecture [5] provides a promising way to
address this problem. It offers high regularity and direct support
of the multi-cycle on-chip communication. However, the RDR
micro-architecture may introduce extra global wiring overhead in
the presence of many simultaneous data transfers, as each one
requires a dedicated global connection.
In this paper we present an architecture-level synthesis solution to
support automatic interconnect pipelining. The main contributions
of this work are as follows: (i) We propose an extension to the
RDR micro-architecture, called RDR-Pipe, to efficiently support
the multi-cycle on-chip communication with interconnect
pipelining. (ii) We formulate a novel global interconnect sharing
problem for global wiring minimization, and show that it is
polynomial time solvable by transformation to a special case of
the real-time scheduling problem.
The remainder of the paper is organized as follows. Section 2
reviews the RDR micro-architecture and discusses its limitation.
Section 3 presents the RDR-Pipe micro-architecture, an extension

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

35.2

602

to the RDR micro-architecture for automatic interconnect
pipelining. Section 4 describes our proposed architectural
synthesis methodology. In particular, we will focus on the global
interconnect sharing algorithm. The experimental results are
shown in Section 5, followed by conclusions in Section 6.

2. REVIEW OF THE RDR
MICRO-ARCHITECTURE
The RDR micro-architecture [5] divides the entire chip into an
array of islands. The registers are distributed to each island, and
the size of each island is chosen such that all intra-island
computation and communication can be performed in a single
clock cycle. The inter-island communications can take multiple
cycles.
Each island consists of the following components: (1) A local
computational cluster (LCC) that contains functional elements of
the circuit, such as multiplexors (MUX), multipliers, ALUs, etc.
(2) A local register file that represents dedicated local storages. It
can be partitioned into K banks (assuming that up to K cycles are
needed to cross the chip), such that registers in bank i will hold
the results for i cycles for communicating with another island that
is i cycles away. (3) A finite state machine (FSM) that controls
the behaviors of the computational elements and registers.
The RDR micro-architecture provides a regular synthesis platform
for supporting multi-cycle on-chip communication. Its regularity
greatly facilitates the predictability of interconnect delays at early
design stages. Additionally, it offers a way to systematically
explore the cycle time vs. latency tradeoff. According to the
studies in [5][6][7], RDR exhibits a 31% better clock period and a
24% better total latency compared to the conventional approach.
However, the RDR micro-architecture may introduce a
considerable amount of wiring overhead due to the possible
existence of many simultaneous data transfers among the islands,
as each one requires a dedicated global connection. Since each
signal transmission over a global wire occupies multiple cycles,
sharing the wire is not possible unless the transmissions can be
serialized.

 ALU1

MUL1

+

+

*

(a) (b)

Interconnects with
delay of 2 cycles

+ ALU1

MUL1 *

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

r1

r2
r3

r4

r1 r2

r3 r4 Sender
register

Receiver
register

Figure 1. Illustration of the wiring overhead in RDR

(a) Scheduled and bound CDFG, (b) RDR layout.
Figure 1 illustrates the problem using a very simple control data
flow graph (CDFG) with three operation nodes. We assume a
uniform node delay that is equal to the cycle time. Given the
layout shown in Figure 1 (b), the CDFG will be scheduled into
five cycles. Using the RDR micro-architecture, four registers will
be allocated, and the sender registers r1 and r2 will hold their
values for two cycles to allow the signals to reach the receiver
registers r3 and r4. Therefore, two parallel inter-island wires are

needed between ALU1 and MUL1 as their data transfer times
overlap.
Clearly, more wiring overhead may be incurred as the designs
grow. Since the global wires are an expensive resource, this
deficiency has to be addressed.

3. RDR-PIPE MICRO-ARCHITECTURE
FOR INTERCONNECT PIPELINING
For a K-cycle global interconnect, we observe that it is not
necessary to hold the sender register constantly for K cycles.
Instead, flip-flops can be inserted to the wire to relay the signal in
K cycles. In this way, although the data transfer still takes K
clocks to go through the interconnect, new data can be launched
every cycle. Therefore, the throughput of a pipelined interconnect
can be up to K times greater than that of the non-pipelined one in
RDR. In addition, more data transfers can share the same global
wire, as the minimal launch interval is reduced from K to 1.
Based on the above consideration, we propose the RDR-Pipe
micro-architecture which extends the RDR to enable an
interconnect-pipelining scheme for the on-chip communication
design.

LCC

FSM

LCC

FSM

LCC

FSM

LCC

FSM

LCC

FSM

LCC

FSM

 PRS

H channel
V channel

Local computational
cluster

DIV ADD MUL

Pipeline register station (PRS)

1 2

4

3

5 6

3

1
2

4

PRS

PRS PRS

Reg. File

Figure 2. A 2×3 island-based RDR-Pipe micro-architecture.

Figure 2 illustrates a 2×3 island-based RDR-Pipe micro-
architecture. RDR-Pipe also consists of an array of islands
surrounded by the horizontal (H) and vertical (V) routing
channels. The key difference between RDR-Pipe versus RDR is
that pipeline registers are inserted on the global interconnects so
that every K-cycle inter-island communication will go through K-
1 intermediate pipeline registers. The pipeline registers reside in
the Pipeline Register Stations (PRS) that are distributed along the
routing channels. The incoming signals to a PRS are either
relayed through a pipeline register or directly switched to
different directions. Note that the pipeline registers only perform
the store-and-forward function so that they are autonomous and
do not need control signals.
Figure 3 illustrates the advantages of the RDR-Pipe micro-
architecture using the same CDFG example shown in Section 2.
With the presence of a pipeline register r2, ALU1 can emit a value
to r1 (denoted as v1) at the first cycle and still emit the other value
to r1 at the second cycle, as v1 has already been transferred to r2.
Therefore, the two data transfers can share the same interconnect,
and only one global wire is needed this time between ALU1 and

603

MUL1. In fact, this result can be further generalized as follows:
Under the RDR-Pipe micro-architecture, at most one inter-island
global wire is needed between any pair of functional units,

 ALU1

+

MUL1

+

*

(a) (b)

+ ALU1

MUL1 *

2-cycle
communication

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

r1

r3 r4

r1

r1 r2

r2 r3

r4

Sender
register

Receiver
register

Pipeline
register

r2

Figure 3. Illustration of the interconnect

pipelining and sharing in RDR-Pipe
(a) Scheduled and bound CDFG, (b) RDR-Pipe layout.

As shown above, the RDR-Pipe micro-architecture preserves the
strength of the RDR micro-architecture to achieve high
performance; meanwhile, it directly supports automatic
interconnect pipelining and potentially allows better wiring
utilization compared to the RDR.

4. PROPOSED ARCHITECTURAL
SYNTHESIS METHODOLOGY
In this section we describe our proposed architectural synthesis
methodology. In particular, we will focus on the global
interconnect sharing algorithm.

4.1 Overall Design Flow

C D F G

Interconnected com ponent graph

C / V H D L

L ocation inform ation

F unctional unit binding

P ost-layout
rebinding and rescheduling

S cheduling-driven placem ent

C D F G generation

G lob al in tercon n ect sh arin g

F loorplan constraints

R esource allocation

R esource constraints

R
D
R
-P

ip
e
ar
ch

. s
p
ec

.
R
es

o
u
rc
e
li
b
ra
ry

T
ar
g
et
 c
lo
ck

 p
er
io
d

R T L V H D L files

D atapath & F S M generation

R egister and port binding

Figure 4. MCAS-Pipe design flow.

To efficiently synthesize the behavioral descriptions onto the
RDR-Pipe micro-architecture, we extend the MCAS architectural
synthesis system [6] to support the interconnect pipelining. Figure
4 shows the overall synthesis flow of the extended MCAS system
called MCAS-Pipe.
MCAS-Pipe takes a behavioral-level description as input. In our
case, this can be either synthesizable C or VHDL. The original
MCAS modules, as shown in Figure 4, are used to derive a
scheduled and bound CDFG and also the physical locations for
the functional units. The common steps include CDFG resource

allocation, initial functional unit binding, scheduling-driven
placement, and post-layout rebinding and rescheduling.
A key module called global interconnect sharing is then
performed to minimize the number of global wires, followed by
the register allocation and port binding. This step will be
discussed in detail in Section 4.2.
At the backend, MCAS-Pipe generates a datapath and distributed
controller generation. In the same way as MCAS, the final outputs
of MCAS-Pipe include RT-level VHDL files for logic synthesis
tools and floorplan constraints for physical design tools.
However, no multi-cycle path constraints will be generated by
MCAS-Pipe due to the regular pipelining of all interconnects.
Note that multi-cycle path constraints are used extensively in
MCAS for multi-cycle on-chip communication.

4.2 Global Interconnect Sharing
This section describes the procedures used for global interconnect
sharing, which aims to minimize the number of global wires.
In RDR-Pipe, the value of a variable may be transmitted from its
producer island to several consumer islands, taking different
numbers of clock cycles. The starting point of a data transfer may
be flexible due to the possible slack between the actual transfer
latency and the arrival-to-deadline interval. We can make use of
this flexibility to schedule the data transfers to further reduce the
global wires and pipeline registers needed for data
communications among the islands.

4.2.1 Motivation
The input to the global interconnect sharing problem is a
scheduled and bound CDFG where every operation is bound to a
certain functional unit and is scheduled to a certain control step.
Hereafter, we use T(op) to denote the control step where operation
op is scheduled and FU(op) to denote the functional unit to which
it is bound.
In a CDFG, a variable is produced by an operation node and
consumed by one or more operation nodes. Every data edge
between two operations represents a data transfer (or transfer, for
short) from the producer operation to the consumer operation. We
will not distinguish an edge and its corresponding data transfer
hereafter. Let e be an edge (or a transfer) in a CDFG, and let pe be
the producer and ce be the consumer of the transfer, T(pe) and
T(ce) are the control steps in which the producer and consumer are
scheduled respectively. The active-interval of data transfer e is
the time period from T(pe)+1 to T(ce)-1, denoted as [T(pe)+1,
T(ce)-1]. A transfer schedule is said to be feasible if it starts and
finishes within its active-interval.
Under the RDR-Pipe micro-architecture, operation op is
performed in island A (denoted as op ∈ A) if and only if FU(op) is
located in A. Data communications from one island to another are
through a channel, which is a set of data links implemented in
pipelined global interconnects between the islands. The channel
from islands A to B is denoted as a pair (A, B), which is associated
with a channel latency of D(A, B) cycles; i.e., the data links
between A and B have D(A, B)-1 pipeline stages. Therefore,
transfer e should be issued in channel (A, B) with the latency of
D(A, B) cycles, if and only if pe ∈ A and ce ∈ B. A channel should
accommodate all the data transfers {e | pe ∈ A and ce ∈ B}.
Every cycle a data link can issue at most one transfer. Since every
link is fully pipelined, as long as a transfer is issued to the first

604

pipeline stage on the link, it will be automatically forwarded
through the subsequent pipeline stages. In other words, one
transfer can be issued on a link in each clock cycle (i.e., the
throughput of a link is one transfer per cycle). Therefore, the
effective occupancy time of a transfer on a data link is exactly one
cycle.
The width of a channel is defined as the number of links used to
accomplish the data transfers on the channel. It is determined by
the maximum number of simultaneous issues of the transfers.
Figure 5 shows a scheduled and bound CDFG and the
corresponding RDR-Pipe layout. There are two edges e and g
representing the transfers from pe to ce and from pg to cg,
respectively. According to the operation schedule, the active-
interval of transfer e is [4, 6], and that of g is [2, 6]. Both
producers belong to island A, and both consumers belong to island
B. Suppose the channel latency D(A, B) is two clock cycles, the
transfers of e and g will then take two clock cycles. In this design,
both data transfers occur on cycle 4; two data links are required to
accomplish these transfers on channel (A, B).

A B
pe ce

D = 2

cg
Cycle 4

Cycle 1

Cycle 2

Cycle 3

Cycle 5

Cycle 6

Cycle 7 ce cg

pe

pg

Pipeline register
Sender register
Receiver register

Data transfer

pg

Figure 5. Simultaneous transfers using two data links.

However, if transfer g is issued on cycle 3 as shown in Figure 6, a
shared data link is enough to perform transfers g and e in a
pipelined manner, as illustrated by the RDR-Pipe layout on the
right-hand side of Figure 5. Note that a multiplexor is introduced
to share the data link, assuming the sender registers remain the
same.

A B

ce cg

Cycle 4

Cycle 1

Cycle 2

Cycle 3

Cycle 5

Cycle 6

Cycle 7

pe

pg

Pipeline register
Sender register
Receiver register

pe ce
D = 2

pg cg
Data transfer

Figure 6. Scheduled transfers using only one data link.

4.2.2 Channel Width Minimization
Given the definitions of transfer and channel, we have the
following observation: For every two channels (A1, B1) and (A2,
B2), if A1 ≠ A2 or B1 ≠ B2, the channels accommodate disjoint sets
of transfers. This is because that every operation can only belong
to one island, thus every transfer can only belong to one channel.
Furthermore, since there are no steering logics and controls for
pipeline registers outside of islands in the proposed RDR-Pipe
micro-architecture, sharing data links between two channels is not
allowed. Therefore, all channels are independent of each other.

THEOREM 1. Global pipelined interconnects are minimized if and
only if the width of every channel is minimized.

Since data links are implemented by global pipelined interconnect,
the total width of channels directly reflects the cost of global
wiring and pipeline registers. The problem of minimizing the total
global interconnects and pipeline registers can be transformed
into a sequence of problems for minimizing the width of each
individual channel.

4.2.3 Data Transfer Scheduling
The example shown Section 4.2.1 indicates that data link sharing
can be realized by data transfer scheduling.
The transfer e with producer pe and consumer ce can be issued
within [T(pe)+1, T(ce)-D(A, B)], where pe ∈ A and ce ∈ B, and the
effective occupancy time of a transfer on a data link is only one
cycle. Therefore, channel width minimization can be formulated
as a transfer scheduling problem:

PROBLEM. Transfer Scheduling
Given: (1) A channel (A, B) of width m. (2) A data transfer set {e
| pe ∈ A and ce ∈ B}, where each transfer e is associated with an
arrival time T(pe)+1, a deadline T(ce)-D(A, B), and the unit
effective occupancy time.

Assumption: For every time slot, at most one transfer can be
issued on a data link.

Objective: To find a feasible transfer schedule on these data links.
If we view a data link as a processor and a transfer as a task with
unit execution time, this problem is a special case of the deadline
scheduling of tasks with ready times on processors, which is
solvable in polynomial time by an earliest deadline first (EDF)
algorithm [1].

 Algorithm: Transfer Scheduling (X, m)
Objective:

Check whether transfer set X can be scheduled to m data links.
Assumption:

1) Every xi of X has an arrival time ai and a deadline di
2) The minimal arrival time is T0, and maximal deadline is Tm

Begin
Sort X by the non-descending order of their deadline
t := T0

while t ≤ Tm do
 A := ∅; k := 0
 for each unassigned xi of X
 if di < t then return fail
 if ai ≥ t then A = A ∪ {xi}

while A is not empty and k < m do
 Remove the first xi from A

Assign xi to the next free data link
 k := k + 1
t := t + 1

return success

Figure 7. Transfer scheduling algorithm.
The pseudo-code of the algorithm is shown in Figure 7. First, the
transfers are sorted by the non-descending order of their deadlines.
Then repeatedly in every time slot, active unassigned tasks are
scheduled to the data links according to this order. Notice A
denotes the active unassigned task set. The algorithm will return a
feasible schedule if one exists.
THEOREM 2. The algorithm is optimal for the transfer scheduling
problem, with a run time complexity of O(nlogn), where n is the
number of the given transfers.

605

It is easy to show the equivalence of the transfer scheduling and
the deadline scheduling of tasks with ready times. The original
optimality proof of the latter problem can be found in [1]. The
complexity is dominated by the sorting, which is O(nlogn).
The solution to the whole global interconnect sharing problem is
straightforward. First, we will construct the transfer tasks for each
channel. For each channel, since the upper bound of its width is
the number of transfers on it, we perform a binary search for the
minimum number of data links required for the transfer set, using
the transfer scheduling algorithm.

COROLLARY 1. The pipelined interconnect sharing problem can
be solved optimally with run time complexity O(Cnlog2n), where
C is the total number of channels, and n is the maximum number
of transfers of all the channels.

4.3 Register Allocation Based on Minimized
Channels
After channel minimization, pipeline registers are allocated for
every data link according to its latency. At last, sender and
receiver register sharing are performed, according to the
variables’ new lifetimes determined by operation scheduling, as
well as transfer scheduling.
Since a variable’s sender and receiver registers are located in the
producer and consumer islands respectively, their lifetimes are
split into several segments, one for sending in its producer island
and the others for receiving in different consumer islands. For the
example in Figure 6, the sending lifetime of a variable produced
by pg is [2, 3] and its receiving lifetime is [5, 7]. Similarly, the
sending and receiving lifetimes for pe are [4, 4] and [6, 7]
respectively. In this example, variables produced by pe and pe can
actually share one sender register since their sending lifetimes, [4,
4] and [2, 3], are compatible. The multiplexor is also reduced due
to the register sharing.

5. EXPERIMENTAL RESULTS
We implemented the MCAS-Pipe synthesis system in C++/UNIX
environments. For comparison, we set up three alternative flows,
which are conventional, MCAS, and MCAS-Pipe flows. The
conventional high-level synthesis flow is based on the
conventional architecture with a centralized register file and a
global control. It performs the binding and list-scheduling
algorithm sequentially without considering the layout. The MCAS
flow, which is presented in [6], is built on top of the RDR micro-
architecture, and the physical information is provided by the
scheduling-driven placement. The MCAS-Pipe flow is based on
the RDR-Pipe micro-architecture and is an extension to MCAS
flow. It performs the global interconnect sharing algorithm to
minimize the global wiring and number of pipeline registers. All

three flows share the same backend to generate datapath and
controllers. For MCAS flow, multi-cycle path constraints are also
generated by the backend.
To obtain the final performance, wirelength, and area results,
Altera’s Quartus II version 3.0 [15] is used to implement the
datapath and controllers into a real FPGA device, 1 Stratix™
EP1S40F1508C5. All the pipelined multipliers are implemented
into the dedicated DSP blocks of the Stratix™ device. We set the
target clock frequency at 200 MHz and use the default
compilation options. In consistent with [7], we applied a 7×4
RDR-Pipe micro-architecture, and used LogicLock™ to constrain
every instance into its corresponding island.
We use a set of data-intensive benchmarks to test our architectural
synthesis system. All of them are from [13], including several
DCT algorithms, such as PR, WANG, LEE, and DIR, and two
DSP programs, MCM and HONDA.
The performance comparison results are shown in Table 1, where
the results from MCAS flow, including clock period (CP), clock
cycles (CS), and latency (LAT, the product of CP and CS), are
listed in absolute values. The clock periods are reported by
Quartus II, and clock cycles are determined by the CDFG
scheduling algorithm. For comparison, the relative numbers of the
conventional flow and MCAS-Pipe flow over MCAS results are
listed. We can see that MCAS-Pipe matches or exceeds the
MCAS flow in performance. Compared to the conventional flow,
MCAS-Pipe achieves a 38% improvement in terms of clock
period and a 30% reduction in total latency on average.
We collect the wirelength results for these designs after place-
and-route. Eight types of general wires in Stratix devices are
considered: LL and LO are local wires in LABs with unit length.
Wire types named Hn (n ∈ {4, 8, 24}) and Vm (m ∈ {4, 8, 16})
are horizontal wire length n and vertical wire length m
respectively. Table 2 shows the wirelength comparison of the
MCAS-Pipe versus MCAS. In this table, absolute numbers of the
total wirelengths for four wire type groups are listed for MCAS
flow, followed by ratios of MCAS-Pipe flow over MCAS flow.
Since the RDR-Pipe micro-architecture allows the automatic on-
chip interconnect pipelining and the global interconnect sharing to
further minimize the global wiring, we are able to share more data
transfers on the same interconnect. Consequently, MCAS-Pipe

1 Considering the availability of design tools, cell libraries and

timing models, we chose the FPGA platform. We would expect
similar or better experimental results in the ASIC platform, in
which the interconnect delay versus gate delay ratio and
communication overhead are higher.

Table 1. Performance comparison of three alternative flows.
CONV / MCAS MCAS MCAS-Pipe / MCAS Designs

CP CS LAT CP (ns) CS LAT (ns) CP CS LAT
PR 1.67 0.90 1.51 5.86 21 123.06 1.00 1.00 1.00

WANG 1.63 0.89 1.46 5.40 19 102.56 0.89 1.00 0.89
LEE 1.57 0.91 1.43 5.91 34 200.77 1.04 1.00 1.04

MCM 1.52 0.94 1.43 7.13 32 228.19 0.88 1.00 0.88
HONDA 1.43 0.88 1.26 7.35 50 367.65 1.00 1.00 1.00

DIR 1.52 0.91 1.38 7.12 55 391.38 0.97 1.00 0.97
Average 1.56 0.91 1.41 6.46 35.17 235.60 0.96 1.00 0.96

606

reduces 28.8% global wirelength (total length of wire type V16
and H24) and 19.3% total wirelength on average.
Table 3 also lists the ratios of the resource used by different
design flows in terms of logic elements (LEs) and registers. The
MCAS-Pipe uses 9% more registers than MCAS flow, while
slightly less LEs on average. The transfer scheduling changed the
allocation of sender and receiver registers so that the multiplexor
network structures are changed, which could affect the final area.

6. CONCLUSIONS
In this paper we present a high-level solution to automatic on-chip
interconnect pipelining during the architectural synthesis stage.
We propose the RDR-Pipe micro-architecture to extend the RDR
micro-architecture for automatic interconnect pipelining. Also, we
develop a novel global interconnect sharing algorithm to
effectively reduce the global wiring. Experimental results show
that our approach matches or exceeds the RDR-based approach in
performance, with a greatly reduced wiring demand.

ACKNOWLEDGEMENTS
This research is partially funded by MARCO/DARPA Gigascale
Silicon Research Center (GSRC), National Science Foundation
under award CCR-0096383, and Altera Corporation under the
California MICRO program. The authors thank the anonymous
reviewers of [6] and [7] for pointing out the wiring overhead
problem associated with the RDR architecture, and Dr. Vaughn
Betz of Altera Corporation for providing the detailed instructions
of experimentation on the Quartus II development system.

REFERENCES
[1] J. Blazewicz, “Deadline Scheduling of Tasks with Ready Times

and Resource Constraints,” Information Processing Letters, vol.
8(2), pp. 60-63, 1979.

[2] P. Chong and R. K. Brayton, “Characterization of Feasible
Retimings,” Proc. of International Workshop on Logic and
Synthesis, pp. 1-6, Jun. 2001.

[3] P. Cocchini, “Concurrent Flip-Flop and Repeater Insertion for
High Performance Integrated Circuits,” Proc. of International
Conference on Computer Aided Design, pp. 268-273, Nov.
2002.

[4] J. Cong and X. Yuan, “Multilevel Global Placement with
Retiming,” Proc. of 40th Design Automation Conference, pp.
208-213, Jun. 2003.

[5] J. Cong, Y. Fan, X. Yang and Z. Zhang, “Architecture and
Synthesis for Multi-Cycle Communication,” Proc. of 2003
International Symposium on Physical Design, pp. 190-196, Apr.
2003.

[6] J. Cong, Y. Fan, G. Han, X. Yang and Z. Zhang, “Architectural
Synthesis Integrated with Global Placement for Multi-Cycle
Communication,” Proc. of International Conference on
Computer Aided Design, pp. 536-543, Nov. 2003.

[7] J. Cong, Y. Fan, G. Han, X. Yang and Z. Zhang, “Architecture
and Synthesis for On-Chip Multicycle Communication,” to
appear in IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems.

[8] R. Lu, G. Zhong, C. Koh and K. Chao, “Flip-Flop and Repeater
Insertion for Early Interconnect Planning,” Proc. of Design
Automation and Test in European Conference, pp. 690-695,
Mar. 2002.

[9] R. McInerney, K. Leeper, T. Hill, H. Chan, B. Basaran and L.
McQuiddy, “Methodology for Repeater Insertion Management
in the RTL, Layout, Floorplan and Fullchip Timing Databases of
the ItaniumTM Microprocessor,” Proc. of 2000 International
Symposium on Physical Design, pp. 99-104, Apr. 2000.

[10] M. C. Papaefthymiou, “Understanding Retiming Through
Maximum Average-Delay Cycles,” Mathematical Systems
Theory, vol. 27, pp. 65-84, 1994.

[11] L. Scheffer, “Methodologies and Tools for Pipelined On-Chip
Interconnect,” Proc. of International Conference on Computer
Design, pp. 152-157, Sep. 2002.

[12] D. P. Singh and S. D. Brown, “Integrated Retiming and
Placement for Field Programmable Gate Arrays,” Proc. of
International Symposium on Field Programmable Gate Arrays,
pp. 67-76, Feb. 2002.

[13] M. B. Srivastava and M. Potkonjak, “Optimum and Heuristic
Transformation Techniques for Simultaneous Optimization of
Latency and Throughput,” IEEE Trans. on VLSI Systems, vol.
3(1), pp. 2-19, Mar. 1995.

[14] Semiconductor Industry Association, International Technology
Roadmap for Semiconductors, 2001.

[15] Altera Web Site, http://www.altera.com.

Table 3. Logic utilizations of three alternative flows.
CONV / MCAS MCAS MCAS-Pipe / Designs
Reg# LE Reg# LE Reg# LE

PR 0.71 0.95 31 1181 1.19 0.95
WANG 0.63 0.81 40 1435 1.20 0.85

LEE 0.76 0.96 29 988 1.00 0.84
MCM 0.75 1.00 57 2467 1.05 1.19

HONDA 0.83 0.90 41 2542 1.05 1.01
DIR 0.75 0.95 44 2260 1.05 1.01

Average 0.74 0.93 - - 1.09 0.98

Table 2. Wirelength comparison of MCAS-Pipe vs. MCAS.
MCAS MCAS-Pipe / MCAS Designs

LL+LO H4+V4 H8+V8 V16+H24 Total LL+LO H4+V4 H8+V8 V16+H24 Total
PR 3304 14900 8472 26808 53484 0.95 0.84 0.97 0.69 0.79

WANG 3882 14880 11088 14368 44218 0.84 0.82 0.91 0.69 0.80
LEE 2649 11772 6904 17896 39221 0.89 0.80 0.62 0.89 0.82

MCM 7173 34076 20672 32240 94161 1.15 0.90 1.07 0.60 0.85
HONDA 7076 28560 18232 17312 71180 0.99 0.80 0.77 0.76 0.80

DIR 6138 26044 17904 20264 70350 1.06 0.94 0.85 0.64 0.84
Average - - - - - 0.98 0.85 0.86 0.71 0.82

607

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

