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ABSTRACT
In this paper, we formulate symmetry detection for incom-
pletely specified functions as an equation without using co-
factor computation and equivalence checking. Based on
this equation, a symmetry detection algorithm is proposed.
This algorithm can simultaneously find non-equivalence and
equivalence symmetries. Experimental results on a set of
benchmarks show that our algorithm is indeed very effec-
tive in solving symmetry detection problem for incompletely
specified functions.
Categories and Subject Descriptors: B.6.3 [Design Aids]:
Automatic Synthesis, Switching Theory

General Terms: Design, Theory

Keywords: Equivalence Symmetry, Non-Equivalence Sym-
metry

1. INTRODUCTION
Symmetry detection is to check input symmetries of

Boolean functions. It is an important technique in many ap-
plications of logic synthesis, physical design, and testing [3]-
[10]. In 1960’s, many approaches using decomposition chart
[1] and truth tables [2] had been proposed. These methods
are based on equivalence checking of two-input cofactors,
namely the naive method. These approaches are very time-
consuming and not feasible for large functions. To alleviate
this problem, BDD’s [11] had been used in symmetry detec-
tion[12][13]. [12] proposed some criterions to avoid redun-
dant cofactor computation and thus speed up the computing
process. In [13], a very efficient algorithm without comput-
ing cofactors was proposed. These approaches are mainly
based on BDD’s traversal.

Yet, another group of researches without computing cofac-
tors take spectral approach to solve the symmetry detection
problem. Many researches had been proposed before [14]-
[16]. The major problem of using spectral method is the
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time complexity is too large while computing spectral coef-
ficients for large functions. In addition, it is not feasible for
incompletely specified functions.

Most of the researches mentioned above were proposed
to deal with completely specified functions. In this paper,
we will propose a symmetry detection method which is not
only efficient but also handle incompletely specified func-
tions. Our approach is based on removing non-symmetric
sets rather than on directly checking the equivalence of co-
factors. In other words, no cofactor computation and equiv-
alence checking will be used in our method.

The remaining of the paper is organized as follows. In Sec-
tion 2, we will briefly review different types of symmetries for
Boolean functions. In Section 3, we formulate the problem
of symmetry detection for incompletely specified functions
as an equation based on checking pairs of cubes from dif-
ferent care sets. By this equation, a symmetry detection
algorithm is proposed. Section 4 will propose a heuristic al-
gorithm to compute maximum symmetries of incompletely
specified functions. Some experimental results on a set of
benchmarks will be shown in Section 5. Finally, we give a
brief conclusion.

2. PRELIMINARIES
Given a Boolean function f(X). f is totally symmetric if

and only if it is invariant under any permutation of input
set X. f is partially symmetric if and only if it is invariant
under the permutation of a subset T ⊂ X. We call T a sym-
metric set of f . T is a symmetric pair of f if its size is 2. For
completely specified functions, symmetric pair is an equiva-
lence relation. That is, all symmetric sets can be generated
directly from symmetric pairs. However, this statement is
not true for incompletely specified functions.

The cofactor of f(X) with respect to (w.r.t.) a variable
xi ∈ X is fxi = f(x1, · · · , xi = 1, · · · , xn). The cofactor of
f(x) w.r.t. a literal x̄i is fx̄i = f(x1, · · · , xi = 0, · · · , xn).
Given any two inputs xi and xj in X. There are four co-
factors of f w.r.t. xi and xj , i.e., fx̄ix̄j , fx̄ixj , fxix̄j , and
fxixj . Different types of symmetries can be defined accord-
ing to the equality of two cofactors among them. For the
case of fx̄ixj = fxix̄j , it is non-equivalence symmetry and
denoted as NE(xi, xj). While equivalence symmetry (E)
and single variable symmetry (SV ) are defined with regard
to fx̄ix̄j = fxixj and fx̄ixj = fxixj , respectively.

Consider NE and E symmetries, it is clear that NE(xi, x̄j)
and E(xi, xj) are identical. In this paper, we will use (xi, xj)
and (xi, x̄j) to represent NE(xi, xj) and E(xi, xj), respec-
tively. Besides, (xj , xi) will be normalized to (xi, xj) if i < j.
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Figure 1: The Karnaugh map of f = (fon, foff ).

3. THE SYMMETRY DETECTION
ALGORITHM

In this section, we first show how to detect symmetries of
incompletely specified functions based on checking pairs of
cubes from different care sets. Then a symmetry detection
algorithm and some implementation issues will be addressed.

3.1 Symmetry Detection with Don’t Cares
An incompletely specified function f is a Boolean function

with don’t cares. It involves three sets: the on-set (fon), the
off-set (foff ), and the don’t-care set (fdc). In this paper,
we will denote an incompletely specified function as f =
(fon, foff ). Consider two functions f and g w.r.t. input set
X. They are consistent, denoted as f ∼= g, if and only if
fon ∩ goff = ∅ and foff ∩ gon = ∅. They are equivalent,
denoted as f ≡ g, if and only if fon = gon and foff = goff .

By the definitions of consistency and equivalence, weak
and strong NE-symmetries can be defined below. The weak
and strong equivalence (E) and single variable (SV ) sym-
metries can be defined in a similar way.

Definition 3.1. A function f(X) is weakly NE symmet-
ric in two variables xi, xj ∈ X if and only if fx̄ixj

∼= fxix̄j .
It is denoted as WNE(xi, xj). f(X) is strongly NE symmet-
ric in two variables xi, xj ∈ X if and only if fx̄ixj ≡ fxix̄j .
It is denoted as SNE(xi, xj). 2

For ease of explaining our method, we will use minterm
pair to show our idea on symmetry detection. Given a
minterm mi w.r.t. the input set X = {x1, · · · , xn}. The
weight of mi, denoted as Weight(mi), is the number of 1
bits in the encoded binary number i. The Hamming distance
between minterms mi and mj is the number of disjoint in-
put values between them. The distance and disjoint input
set are denoted as Distance(mi, mj) and Disjoint(mi, mj),
respectively. The same definitions can be applied to cube
pairs.

Now, we will explain our method using minterm pair.
Consider a function f shown in Fig. 1. We find that
WNE(x1, x2) can’t hold since fx̄1x2 and fx1x̄2 are incon-
sistent in the minterm pair P = (m4, m8). To examine P ,
Weight(m4) = Weight(m8) and Distance(m4, m8) = 2.
WE(x1, x2) can’t hold alike. With the above observation,
Theorem 3.1 can be derived directly.

Theorem 3.1. Given a function f(X) = (fon, foff ) and
a minterm pair (ma, mb), where ma ∈ fon and mb ∈ foff .
{xi, xj} can’t be a NE (E) symmetric set of f if and only if
Weight(ma) = Weight(mb) (Weight(ma) 6= Weight(mb))
and Disjoint(ma, mb)= {xi, xj}. 2

Now consider a cube pair u ∈ fon and v ∈ foff . In
order to remove non-symmetric sets, three rules based on
Theorem 3.1 are applied to check this pair of cubes.

Rule 1: If Distance(u, v) > 2, no non-symmetric set will
be removed.

Rule 2: If Distance(u, v) = 2, one non-symmetric set will
be removed.

Rule 3: If Distance(u, v) = 1, multiple non-symmetric sets
will be removed.

Rule 1 is clear that cube pair (u, v) can’t involve any
minterm pairs with distance 2. Rule 2 means that it can
only involve one type of minterm pairs with the same dis-
joint input variables. Let xi(u) denotes the value of input
xi in cube u. The following example illustrates Rule 3.

Example 3.1. Consider two cubes u = x̄1x̄2 ∈ fon and
v = x1x̄3 ∈ foff w.r.t. input set X = {x1, x2, x3, x4}. The
Distance(u, v) = 1 and Disjoint(u, v) = {x1}. So Rule 3 is
used to remove non-symmetric sets. The remaining possible
disjoint inputs are x2, x3, and x4. W.r.t. inputs x2 and
x3, E(x1, x2) and NE(x1, x3) are removed since x1(u) =
x2(u) and x1(v) 6= x3(v), respectively. As to the input x4,
NE(x1, x4) and E(x1, x4) are removed since x4(u) and x4(v)
are don’t cares, i.e., both disjoint situations exist for x4. 2

From the above description, all symmetric sets of f =
(fon, foff ) can be detected as follows: ”Apply Rule 1, 2
and 3 to each cube pair (u, v), where u ∈ fon and v ∈ foff ,
respectively. After all cube pairs have been checked, then the
sets not removed are weakly symmetric sets of f .”

3.2 Removing Non-Symmetric Sets by Cube
Pairs

We give some notations as follows. Let u and v be binary-
valued cubes w.r.t. input set X. 1-lit(u) (0-lit(u)) is a subset
of X, where only literals of u in uncomplemented (comple-
mented) form are in the subset. xi(u) denotes the value
of xi in cube u. Non-Symmetries(u, v) denotes the non-
symmetric sets removed by cube pair (u, v), where u ∈ fon

and v ∈ foff , respectively.
By Rule 1, 2, and 3, Lemma 3.1 is proposed. Theorem 3.2

formulates symmetry detection for incompletely specified
functions as an equation using set operations.

Lemma 3.1. If Distance(u, v) > 2, then
Non-Symmetries(u, v) = ∅.
If Distance(u, v) = 2 and Disjoint(u, v) = {xi, xj}, then

Non-Symmetries(u, v) =

{

{(xi, xj)} : if xi(u) 6= xj(u)
{(xi, x̄j)} : if xi(u) = xj(u).

(1)
If Distance(u, v) = 1 , then

Non-Symmetries(u, v) =

{

A × (B ∪ C) : if xi(u) = 0
A × (B ∪ C) : if xi(u) = 1

(2)
, where A = Disjoint(u, v) = {xi}, B = ((X−0-lit(u)) ∩
(X−1-lit(v)))−A, and C = ((X−1-lit(u))∩ (X−0-lit(v)))−
A. B̄ (C̄) includes all inputs of B (C) in complemented
form. 2

Theorem 3.2. Given f = (fon, foff ). The equivalence
and non-equivalence symmetric sets ψ of f can be formulated
as

ψ = Sym-totality −
⋃

i=1,...,|fon|

j=1,··· ,|foff |

Non-Symmetries(ui, vj)

(3)
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Algorithm Compute-Symmetries(f(X))

Input: f(X) = (fon, foff );
Output: return ψ or ∅;
Begin

ψ = Sym-totality;
S = ∅;
for each cube ui ∈ fon do

if (ui is redundant) then continue;
ω = Non-Symmetries(u, v);
ψ = ψ − ω;
if (ψ is ∅) then return ∅;

endfor

S = Non-Symmetric-Inputs(ψ);

if (S is changed) then Reduction(foff , S);
endfor

return ψ;
End

Figure 2: The Compute-Symmetries algorithm.

, where Sym-totaliy = {(xi, xj), (xi, x̄j)|i = 1, · · · , |X| −
1, j = i + 1, · · · , |X|}, |fon| and |foff | are the numbers of
cubes for fon and foff , ui ∈ fon and vj ∈ foff , respectively.
2

3.3 Implementation Issues
By Equation (3), we must check all cube pairs to remove

non-symmetric sets. However, many non-symmetric sets re-
movals are redundant and thus increase the computing time.
For example, if input xi had been found that it can’t be sym-
metric with the other inputs, then any removal involving xi

is redundant. By such an observation, let S be such inputs
computed by procedure Non-Symmetric-Inputs. A cube in
on-set and off-set is redundant if it only involves inputs from
S. Redundant cubes must be deleted during the computa-
tion process. The procedure Reduction is called to remove
redundant cubes. Our experimental results show that many
redundant cubes are found during the computing process.
The above symmetry detection algorithm is implemented as
procedure Computing-Symmetries shown in Fig. 2.

4. MAXIMUM SYMMETRIES OF INCOM-
PLETELY SPECIFIED FUNCTIONS

The difficulties of finding large symmetric sets for incom-
pletely specified functions is due to that weak symmetry is
not an equivalence relation. Large symmetric sets can’t be
deduced from weakly symmetric pairs directly. In this sec-
tion, we propose a heuristic algorithm Compute-Maximum-
Symmetry to solve this problem. It is shown in Fig. 3.

The procedure Compute-Maximum-Symmetry will return
a derived function f̃ and a minimum-sized partition P of X,
where f̃ is strongly symmetric in P . This algorithm uses
strong symmetric sets as the initial partition of X. Then
based on weak symmetry checking, these symmetric sets can
grow gradually by adding inputs to them. In this algorithm,
the procedure Make-Strong-Symmetries transforms a weakly
symmetric set (xi, xj) of f into a strongly symmetric one. It

returns a function f̃ derived from f by assigning don’t cares
to f .

Initially, weakly symmetric sets (WSS) are computed first.
Strongly symmetric sets (SSS) can be computed from WSS
by calling the procedure Modified-Compute-Symmetries

Algorithm Compute-Maximum-Symmetries(f, X)

Input: f(X) = (fon, foff );

Output: return (f̃ , P );
Begin

WSS = Compute-Symmetries(f);
SSS = Modified-Compute-Symmetries(f, WSS);
P = Equivalence-Classes(SSS);
(xi, Y ) = Maximum-Set(f, WSS, P );

f̃ = f ;
while (there exists such an input xi) do

g = f̃ ;
for each xj ∈ Y do

f̃ = Make-Strong-Symmetry(f̃ , xi, xj);
endfor

WSS = Revise-WSS(WSS, g, f̃);

SSS = Modified-Compute-Symmetries(f̃ , WSS);
P = Equivalence-Classes(SSS);

(xi, Y ) = Maximum-Set(f̃ , WSS, P );
endwhile

return (f̃ , P );
End

Figure 3: The Compute-Maximum-Symmetries algo-
rithm.

which only deals with cube pairs from fdc and fon ∪ foff .
Equivalent-Classes procedure is used to find the initial parti-
tion P of X. The reason we use this initial partition is that
no don’t cares will be assigned by P . Following this, the
procedure Maximum-Set is called to search an input xi and
a symmetry set Y in P such that Y ∪{xi} can form a larger
weakly symmetric set. The heuristic behind Maximum-Set
procedure is to select the largest Y among those strong sym-
metric sets in the partition P and xi such that minimum
don’t cares will be assigned. Make-Strong-Symmetry proce-
dure is called to compute the derived function f̃ . Finally,
Revise-WSS is called to revise WSS. Repeat the above pro-
cess until no xi and Y can be grouped to form a larger
symmetric set w.r.t. f̃ .

5. EXPERIMENTAL RESULTS
We have implemented the proposed symmetry detection

algorithm in C language on SUN-Blade 1000 station. The
implementation platform is based upon Espresso package in
SIS [17]. Our algorithm can be applied both to completely
specified and incompletely specified functions. To demon-
strate the efficiency of our algorithm, MCNC benchmarking
circuits have been tested in our experiments.

The first experiment was performed on completely speci-
fied functions. We also implemented the naive method using
cube notations and compared it with our method. Table 1
shows the experimental results. The columns with labels
#in and #out show the numbers of inputs and outputs of
circuits, respectively. The column #avg indicates the av-
erage number of non-symmetric sets removed by each cube
pair. The column CPU shows the running time in seconds.
The columns naive and ours show the running time of naive
method and ours. The column #symm gives the informa-
tion on symmetries of benchmarking circuits: n(m) means
that there are n symmetric sets of m input variables. The
symbol - in this column indicates the circuit doesn’t have
any symmetric sets. Summing up the total running time of
all benchmark circuits, the running time is 2.12 second. It
shows that our method is very efficient for large functions.
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Table 1: Benchmarking Results for Completely
Specified Functions

circuit #in #out #avg
CPU

#symm
naive ours

9sym 9 1 2 0.04 0.00 1(9)

alu4 14 8 8 0.00 0.08 -

apex1 45 45 35 0.65 0.01 -

apex2 39 3 40 12.87 0.31 1(3), 3(2)

apex3 54 50 36 1.43 0.01 -

apex5 117 88 204 682.20 0.19 2(5)

cordic 23 2 24 1.06 0.58 2(4), 3(3)

duke2 22 29 20 0.03 0.01 -

ex4 128 28 148 562.20 0.09 1(87), 14(2)

e64 65 65 87 0.00 0.50 -

misex2 25 18 39 0.03 0.00 1(6), 1(2)

pdc 16 40 6 0.30 0.15 -

seq 41 35 35 4.67 0.02 2(2)

spla 16 46 6 0.18 0.02 -

t481 16 1 15 0.09 0.14 8(2)

vg2 25 8 29 0.08 0.01 2(2), 21(1)

Total 1265.83 2.12

Ratio (%) 100.00 0.2

The second experiment is conducted for incompletely spec-
ified functions. To show the different size of don’t care set,
we perform this experiment by removing the cubes from on-
set and off-set. Table 2 shows the experimental results. The
column -80% and -40% show the results of cases, where
80% and 40% cubes in care sets are removed, respectively.
The column #max gives the maximum number of equiva-
lence and non-equivalence symmetric pairs, i.e., n× (n− 1),
where n is the number of inputs. The columns W and S
show the number of weakly and strongly symmetric pairs,
respectively. In average, the ratios of W to #max are 77%
and 29% for the cases of removing 80% and 40% cubes, re-
spectively. For strong symmetry, the ratios are 8% and 5%
w.r.t. the cases of removing 80% and 40% cubes, respec-
tively. It shows that few strongly symmetric sets exist for
incompletely specified functions.

The third experiment is to find the possible maximum
symmetries for incompletely specified functions. 60% don’t
cares are removed from the care-sets of benchmarking cir-
cuits. Table 3 shows the experimental results. The columns
initial and final give the initial strongly symmetric sets and
the maximum symmetric sets computed by our algorithm,
respectively. It shows our algorithm can effectively find large
symmetric sets.

6. CONCLUSION
In this paper, we propose an algorithm to detect symme-

tries for incompletely specified functions. Our algorithm can
simultaneously find non-equivalence and equivalence sym-
metries. Experimental results show that our algorithm is
indeed very efficient for many benchmarking circuits. Future
works will use BDD’s instead of cube notations to represent
Boolean functions in our algorithm.
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