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ABSTRACT A related algorithm, often regarded as an alternative for such

In this paper we present a model reduction algorithm that circum- problems, is the PACT method [3] that relies on eigenvalue analysis

vents some of the issues encountered for parasitic networks with 12 iterative (Lanczos) methods. At low frequencies, PACT can
large numbers of input/output “ports”. Our approach is based on lead to smaller numbers of states than PRIMA, since it does not

the premise that for such networks, there are typically strong depen-rely on matching (block) moments. F.'OW.e"eF PACT still leads to
dencies between the input waveforms at different network “ports”. matrices that are dense, and whose size is still bounded from below

We present an approximate truncated balanced realizations pro-by the r(]jumber of.pobrts. At hllgher frequencies the number of states
cedure that, by exploiting such correlation information, produces recnuws_ can again become farge. ducti lqorithm that i
much more compact models compared to standard algorithms such n this paper we propose a new reduction algorithm that circum-

as PRIMA. vents some of these issues. Our approach is based on the premise
that there are typically strong dependencies between the waveforms

Categories & Subject Descriptors:B.7.2 Simulation. at the different inputs to the interconnect network. We start from the

General Terms: Algorithms. viewpoint of truncated balanced realizations (TBR) [4] model re-

Keywords: Model order reduction, interconnect, parasitic. duction. As will shall demonstrate, TBR, as a reduction procedure,
is intrinsically somewhat less sensitive to the number of inputs

1 INTRODUCTION ports. Much more importantly, however, in the TBR framework

it is possible to exploit circuit functional information that results in

Model reduction algorithms are the backbone of contemporary correlations between the waveforms incident on the parasitic net-
parasitic and interconnect modeling technologies. Such algorithmswork ports. By exploiting this information, an “input-correlated”
are able to efficiently reduce the size of linear interconnect models TBR procedure can be derived that reduces the size of the final
without much accuracy degradation and with substantial gains in models produced.
terms of simulation time. Projection-based Krylov subspace algo-
rithms such as PRIMA [1] and PVL [2] provide a general-purpose,
rigorous framework for deriving interconnect modeling algorithms. 2. MODEL REDUCTION ALGORITHMS

Our concern in this paper is with interconnect and parasitic net-  In this section we will review the most common reduction al-
works having a large number of input/output connections. Itis well gorithms for interconnect and parasitic analysis applications. The
known that the Krylov-subspace projection based reduction algo- PRIMA algorithm [1], a Krylov-subspace order reduction proce-
rithms algorithms are impractical for networks with large numbers dure, reduces a state-space model, written in the form
of input/output ports. That happens because the cost associated
with model computation is directly proportional to the number of Ed_x =Ax+Bu, y=Cx 1)
inputs, i.e. to the number of columns in the matrices defining the dt

inputs. This is often the case for such “massively coupled” parasitic with input waveformsu(t) € RP and output waveformg(t), by
networks as occur in substrate and package modeling. For exam-means of a projection matri through the operations

ple, in the PRIMA algorithm, if only two (block) moments are to

be matched at each port, and the network has 1000 ports, the result- E=VTEV B=V'B A=VvTay C=cCV. 2)
ing model will have 2000 states, and the reduced system matrices_

will be dense. This makes simulation in the presence of nonlinear TNis leads to the reduced model

elements impractical. ~dz . ~ “
Aa =Az+Bu, y=Cx 3)

wherez =V x In the standard approach, tiematrix is obtained
Permission to make digital or hard copies of all or part of this work for from a block Krylov subspace. As previously mentioned, the diffi-
personal or classroom use is granted without fee provided that copies areculty with these algorithms is that the model size is proportional to
not made or distributed for profit or commercial advantage and that copies the number of moments matched multiplied by the number of ports.

bear this notice and the full citation on the first page. To copy otherwise, to For |arge port numbers (more than 20-30 or so) the algorithms leads
republish, to post on servers or to redistribute to lists, requires prior specific necessarily to impractically large models

permission and/or a fee. . - :
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computes the “GramiansX,Y from the Lyapunov equations o [
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AXET +EXAT = —BBT, @) .
ATYE+ETYA= —CTC. (5) B
Aﬁ\
and then reduces the model by projection onto the space associ- T \
ated with the dominant eigenvalues of the prodxist [4] Model \
size selection and error control in TBR is based on the eigenval- Wi

ues ofXY, the Hankel singular values. In the proper case, the
frequency-domain error in the ordefrTBR model is bounded by
23N 10k [5]. Note that the model selection criteria does not de-
penddirectlyon the number of inputs, though, as we shall see, there
is an indirect dependence in most problems. In principle, it is pos-
sible to have a 1000-port starting model, and obtain a good reduced
model of only, say, ten states, if theB, C, E matrices are such that

all but the the first ten Hankel singular values are small. In the next
section we will examine when such a situation might occur.

In practice, solution of the Lyapunov equations (5) is computa-
tionally too intensive for large systems as encountered in the type .
of interconnect networks we are considering here. Therefore, ava-?"2 Input-correlated Algorlthm
riety of approximate methods have been proposed [6, 7]. In this The key to a more efficient procedure lies in noting that in many
work we will utilize one particularly simple method, the PMTBR  practical problems, the inputs to an interconnect network are not
approach (Poor Man’s TBR) [8], which is motivated by an alterna- arbitrary. Often it is necessary to retain all the input ports if the

Figure 1: Hankel singular values for 100-segment RC line as
function of number of inputs.

tive frequency-domain expression for the Gramians: full impact of parasitic effects is to be correctly estimated [9], but

there may be relations between the inputs (or outputs) at different
X = /(wa ~A) BB (juE —A) Mdw (6) network ports that can be exploited to generate a smaller model.

In particular consider a probabilistic model for the network input

The PMTBR algorithm works by constructing a matfixvhose information. Suppose a correlation matrix [10] for the input rela-
kth column is tions is known. The appropriate Gramian for this restricted problem

E_ AR ; is given by
%=(8E-H ) AX+ XAT = —BKBT )

wheres, is a complex number in the right half-plane. It can be ) ) )

shown that for suitably chosen complgy the singular value de- ~ WhereK'is the correlation matrix. - _ _
composition (SVD) ofZ, Z =U3VT, produces a matrikl whose The key insight is, for symmetric positive definite Fhe eigen-
columns approximately span the same space as the dominant eiger@lues ofXe from Eqn. (9) decay faster than the eigenvalues of

spaces oiX. U can thus be used as a projection matrix in an ap- X from Eqn. (8), if the eigenvalues ¢t exhibit some decay. In
proximate TBR procedure. other words,X; is closer to a low-rank matrix thaK if the in-

putst exhibit some correlated behavior. Postulating existence of
correlation is equivalent to saying that we have partial information

3. INPUT-CORRELATED TBR about the relation between the inputs Conversely, in the per-
) fectly uncorrelated case, the eigenvalue&dre identical, which
3.1 Input vectors and TBR behavior corresponds to zero information. Standard TBR can be viewed

To motivate our algorithm, let us consider the impact of the input @S @ “Zero-input-information” version of the more general input-
matrices on the Gramians needed by TBR. For simplicity, consider correlated approach. Thus, for a given truncation criterion for the
the case wherd = AT andE = |, B = CT. We only need consider singular values, using. for a model reduction procedure will lead

one Gramian, given by to smaller models. Ifjn addition K is a suitably representative
model of the possible inputs, the model will be equally accurate.
AX+XAT = —BB. (8) Fortunately, this is usually the case in practical problems, and can

) ) ) ) be guaranteed to occur if we are suitably conservative in the speci-
First consider the Hankel singular values for a simple system, fication of the correlation matrix{ = | again corresponding to the
such as a uniform RC line, as the number of ports (i.e. columns yiimate degree of safety, total ignorance). Note that, though the
in the B-matrix) varies. Figure 1 shows the singular values as a physical interpretation as an absolute error bound no longer applies,
function of the number of inputs. Generally speaking, the order the eigenvalues of the Gramian can still be used for error control,
needed for good accuracy grows with the number of inputs. This is a5 they can be given an interpretation associated with likelihood of

contrary to the common expectation that a few poles are sufficient gryor in a probabilistic input model.
for RC systems. For systems with many inputs, many states may g estimate input correlations, consider taking a set of N samples
be needed because of the high dimension of the controllable spaceof input waveforms,uy for inputk, k = 1...p. The correlation
If low accuracy (10% or so) is acceptable, sometimes models With atrix can be estimated as
fairly low numbers of states can be constructed for problems with
large numbers of inputs, but this is not always possible even for the
restricted case of RC circuits.

Based on these observations, there does not seem to be much

hope of producing high-accuracy reduced order models for net- 1That is, the input waveforma(t) actually applied to the state-
works with many ports under general conditions. space model.

Kij = uju (10)
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f h This is intended to mimic the situation where signals incident on

Algorithm 1. Input Correlated TBR the network have some correlation for example because they origi-
. _ T nate from the same functional block (mixer, oscillator, etc.) or are
1. Construct the SVD of inputé = Vi Uk time-correlated due to a common clock. The dither represents the
2. Do until error satisfactory: fact that the signals themselves can be known only approximately
3. Draw a vector re RP by taking p draws before the reduction procedure.
from a normal distribution, variances given B§ .

Select a frequency point s
Computejz= [SE — A~ 1BUkr.
Form the matrix of columns Z [z,2,...,z7] .

Construct the singular value decomposition of Z.
If the error is satisfactory, go to Step 8.
Otherwise, go to Step 3.

8. Construct the projection space V from the
orthogonalized column span of Z, dropping columns
whose associated singular values fall below

a desired tolerance.
TBR

L L L
[ 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

N o g A

voltage (mv)

time (ns)

As is the usual case, the actual correlation matrix need not be formedkigure 3: Simulation results for one output on RC network
Instead, we can take the SVD of the maftbwhose columns are  example. PMTBR with correlation information out-performs
the input samplesy, i.e. TBR.

U =Vk UL (11)
) Figure 3 shows results from setting the SVD tolerance to*10
with Uy, Vic orthonormal. o , _ Algorithm 1, and extracting a 14-state reduced model. The results
Note that, in addition, from this information we can also obtain om the input-correlated TBR method are quite acceptable. For
estimates of the frequency profile of the inputs. These estimates cancomparison, we also show the 14-state TBR model: the accuracy
be used to select the frequency poistior the PMTBR procedure. o this model is clearly unacceptable. For equivalent accuracy, TBR

We omit the extension to non-self-adjoint systems as this is straigrpéquires amodel with at least 45 states. Note that PRi#ching

forward. The final algorithm is shown as Algorithm 1. only one momentvould require a 32-state model and its accuracy
would also be fairly low. For this example, PRIMA requires at
4, EXAMPLES least two moments for acceptable accuracy, i.e. 64 states. A PACT

model incorporating poles up to only the sinusoid frequency would
have over seventy states.

Of course, the drawback to the input-correlated procedure is that
it is fragile. If the inputs venture far from the distribution assumed
when the model was built, accuracy will deteriorate and more states
will be required in the model. To illustrate this, we re-ran the same
example, again using sinusoids for inputs, but completely changing
the phase relation between the inputs (as opposed to the low-level
dither introduced in Figure 3). Figure 4 shows the results from
the same 14-state models as used previously. The TBR model is
about as (in)accurate as previously. However, the accuracy of the
input-correlated reduction procedure degrades noticeably. Recov-
ering accuracy requires a model of many more states, so without
some degree of information about the input correlation, there is no
advantage over using TBR. However, as Figure 1 illustrates, there
) ) could still be an advantage over PRIMA.

Figure 2: Set of waveform samples for one input on RC net- Finally we consider application of the method to a real circuit
work example. (a data converter) with an extracted substrate network. First, for
the purpose of assessing the actual error performance of the model

Our first example is a 32-port RC network. Using this example reduction algorithm, we extracted only a small portion of the sub-
circuit we will illustrate the basic characteristics of the proposed strate network connection involving the bulk nodes of the MOS
reduction method. transistors. 150 ports of the substrate network were extracted using

To simulate the situation where there is some degree of infor- a boundary-element procedure. Both resistive and capacitive terms
mation about the relation between input waveforms, we drive the were retained, leading to a 150-state model. To obtain estimates of
network with a set of sinusoids with fixed, but somewhat uncertain, the signal correlations at the inputs of the parasitic network we sim-
phase relation. That is, each input is of the form shown in Figure 2: ulate the nonlinear circuivithoutthe substrate network and mea-

a single sinusoid, but on each input, the set from which the input sure the values of the MOS transistor bulk current signals. We then
is drawn has some dither introduced into its phase and frequency.carry those measurements as inputs to the input-correlated TBR

voltage (v)
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Figure 4: Simulation results for one output on RC network ex- Figure 6: Error estimate based on singular value analysis of
ample, with re-randomized phase relation. PMTBR with cor- Z-matrix from input-correlated TBR, for 1000-port substrate
relation information breaks down. network with inputs from data converter example.

procedure?. Using Algorithm 1, a reduced model is produced. We 5. CONCLUSIONS

then compare the results of simulation with the reduced model to  In this work we demonstrated that exploiting input information,
simulation with the full substrate model. These results are shown such as from nominal circuit function, can help reduce the size of
in Figure 5 for a representative node. In this case, fair agreementparasitic models obtained from projection-like procedures. This is
with the full model was obtained using only four states, and ex- particularly relevant for problems with a large number of inputs
cellent agreement is obtained with eight states. Similar accuracy which are known not to reduce efficiently under such methods. We
is obtained at all ports of the substrate network. We point out that introduced an input-correlated TBR-like procedure to perform the
this is a 20X compression from the full model. Note also that this computation of the reduced model. When there is strong correlation
network is, for most intents, unreducible with standard projection between input waveforms on different input ports, large reductions

methods. in model size can be achieved. In many practical settings this is
a common situation since spatial and temporal dependencies dic-

2 ‘ ‘ ‘ ‘ ‘ tated by the circuit topology and functionality will tend to highly
15 == Reduced || correlate the signals seen at the ports of the interconnect networks.
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