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ABSTRACT
In this paper we present a model reduction algorithm that circum-
vents some of the issues encountered for parasitic networks with
large numbers of input/output “ports”. Our approach is based on
the premise that for such networks, there are typically strong depen-
dencies between the input waveforms at different network “ports”.
We present an approximate truncated balanced realizations pro-
cedure that, by exploiting such correlation information, produces
much more compact models compared to standard algorithms such
as PRIMA.

Categories & Subject Descriptors:B.7.2 Simulation.
General Terms: Algorithms.
Keywords: Model order reduction, interconnect, parasitic.

1. INTRODUCTION
Model reduction algorithms are the backbone of contemporary

parasitic and interconnect modeling technologies. Such algorithms
are able to efficiently reduce the size of linear interconnect models
without much accuracy degradation and with substantial gains in
terms of simulation time. Projection-based Krylov subspace algo-
rithms such as PRIMA [1] and PVL [2] provide a general-purpose,
rigorous framework for deriving interconnect modeling algorithms.

Our concern in this paper is with interconnect and parasitic net-
works having a large number of input/output connections. It is well
known that the Krylov-subspace projection based reduction algo-
rithms algorithms are impractical for networks with large numbers
of input/output ports. That happens because the cost associated
with model computation is directly proportional to the number of
inputs, i.e. to the number of columns in the matrices defining the
inputs. This is often the case for such “massively coupled” parasitic
networks as occur in substrate and package modeling. For exam-
ple, in the PRIMA algorithm, if only two (block) moments are to
be matched at each port, and the network has 1000 ports, the result-
ing model will have 2000 states, and the reduced system matrices
will be dense. This makes simulation in the presence of nonlinear
elements impractical.
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A related algorithm, often regarded as an alternative for such
problems, is the PACT method [3] that relies on eigenvalue analysis
via iterative (Lanczos) methods. At low frequencies, PACT can
lead to smaller numbers of states than PRIMA, since it does not
rely on matching (block) moments. However, PACT still leads to
matrices that are dense, and whose size is still bounded from below
by the number of ports. At higher frequencies the number of states
required can again become large.

In this paper we propose a new reduction algorithm that circum-
vents some of these issues. Our approach is based on the premise
that there are typically strong dependencies between the waveforms
at the different inputs to the interconnect network. We start from the
viewpoint of truncated balanced realizations (TBR) [4] model re-
duction. As will shall demonstrate, TBR, as a reduction procedure,
is intrinsically somewhat less sensitive to the number of inputs
ports. Much more importantly, however, in the TBR framework
it is possible to exploit circuit functional information that results in
correlations between the waveforms incident on the parasitic net-
work ports. By exploiting this information, an “input-correlated”
TBR procedure can be derived that reduces the size of the final
models produced.

2. MODEL REDUCTION ALGORITHMS
In this section we will review the most common reduction al-

gorithms for interconnect and parasitic analysis applications. The
PRIMA algorithm [1], a Krylov-subspace order reduction proce-
dure, reduces a state-space model, written in the form

E
dx
dt

= Ax+Bu; y=Cx (1)

with input waveformsu(t) 2 Rp and output waveformsy(t), by
means of a projection matrixV through the operations

Ê �VTEV B̂�VTB Â�VTAV Ĉ�CV: (2)

This leads to the reduced model

Â
dz
dt

= Âz+ B̂u; y= Ĉx: (3)

wherez= Vx. In the standard approach, theV matrix is obtained
from a block Krylov subspace. As previously mentioned, the diffi-
culty with these algorithms is that the model size is proportional to
the number of moments matched multiplied by the number of ports.
For large port numbers (more than 20-30 or so) the algorithms leads
necessarily to impractically large models.

An alternative class of reduction algorithms are based on Trun-
cated Balanced Realizations (TBR) [4]. The TBR algorithm first
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computes the “Gramians”X;Y from the Lyapunov equations

AXET +EXAT =�BBT
; (4)

ATYE+ETYA=�CTC: (5)

and then reduces the model by projection onto the space associ-
ated with the dominant eigenvalues of the productXY [4] Model
size selection and error control in TBR is based on the eigenval-
ues ofXY, the Hankel singular valuesσk. In the proper case, the
frequency-domain error in the orderk TBR model is bounded by
2∑N

i=k+1 σk [5]. Note that the model selection criteria does not de-
penddirectlyon the number of inputs, though, as we shall see, there
is an indirect dependence in most problems. In principle, it is pos-
sible to have a 1000-port starting model, and obtain a good reduced
model of only, say, ten states, if theA;B;C;E matrices are such that
all but the the first ten Hankel singular values are small. In the next
section we will examine when such a situation might occur.

In practice, solution of the Lyapunov equations (5) is computa-
tionally too intensive for large systems as encountered in the type
of interconnect networks we are considering here. Therefore, a va-
riety of approximate methods have been proposed [6, 7]. In this
work we will utilize one particularly simple method, the PMTBR
approach (Poor Man’s TBR) [8], which is motivated by an alterna-
tive frequency-domain expression for the Gramians:

X =

Z
( jωE�A)�1BBT( jωE�A)�Hdω (6)

The PMTBR algorithm works by constructing a matrixZ whose
kth column is

zk = (skE�A)�1B (7)

wheresk is a complex number in the right half-plane. It can be
shown that for suitably chosen complexsk, the singular value de-
composition (SVD) ofZ, Z =UΣVT , produces a matrixU whose
columns approximately span the same space as the dominant eigen-
spaces ofX. U can thus be used as a projection matrix in an ap-
proximate TBR procedure.

3. INPUT-CORRELATED TBR

3.1 Input vectors and TBR behavior
To motivate our algorithm, let us consider the impact of the input

matrices on the Gramians needed by TBR. For simplicity, consider
the case whereA= AT andE = I , B=CT . We only need consider
one Gramian, given by

AX+XAT =�BBT
: (8)

First consider the Hankel singular values for a simple system,
such as a uniform RC line, as the number of ports (i.e. columns
in the B-matrix) varies. Figure 1 shows the singular values as a
function of the number of inputs. Generally speaking, the order
needed for good accuracy grows with the number of inputs. This is
contrary to the common expectation that a few poles are sufficient
for RC systems. For systems with many inputs, many states may
be needed because of the high dimension of the controllable space.
If low accuracy (10% or so) is acceptable, sometimes models with
fairly low numbers of states can be constructed for problems with
large numbers of inputs, but this is not always possible even for the
restricted case of RC circuits.

Based on these observations, there does not seem to be much
hope of producing high-accuracy reduced order models for net-
works with many ports under general conditions.
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Figure 1: Hankel singular values for 100-segment RC line as
function of number of inputs.

3.2 Input-correlated Algorithm
The key to a more efficient procedure lies in noting that in many

practical problems, the inputs to an interconnect network are not
arbitrary. Often it is necessary to retain all the input ports if the
full impact of parasitic effects is to be correctly estimated [9], but
there may be relations between the inputs (or outputs) at different
network ports that can be exploited to generate a smaller model.

In particular consider a probabilistic model for the network input
information. Suppose a correlation matrix [10] for the input rela-
tions is known. The appropriate Gramian for this restricted problem
is given by

AXc+XcAT =�BKBT (9)

whereK is the correlation matrix.
The key insight is, for symmetric positive definiteK, the eigen-

values ofXc from Eqn. (9) decay faster than the eigenvalues of
X from Eqn. (8), if the eigenvalues ofK exhibit some decay. In
other words,Xc is closer to a low-rank matrix thanX if the in-
puts1 exhibit some correlated behavior. Postulating existence of
correlation is equivalent to saying that we have partial information
about the relation between the inputsu. Conversely, in the per-
fectly uncorrelated case, the eigenvalues ofK are identical, which
corresponds to zero information. Standard TBR can be viewed
as a “zero-input-information” version of the more general input-
correlated approach. Thus, for a given truncation criterion for the
singular values, usingXc for a model reduction procedure will lead
to smaller models. If,in addition, K is a suitably representative
model of the possible inputs, the model will be equally accurate.
Fortunately, this is usually the case in practical problems, and can
be guaranteed to occur if we are suitably conservative in the speci-
fication of the correlation matrix (K = I again corresponding to the
ultimate degree of safety, total ignorance). Note that, though the
physical interpretation as an absolute error bound no longer applies,
the eigenvalues of the Gramian can still be used for error control,
as they can be given an interpretation associated with likelihood of
error in a probabilistic input model.

To estimate input correlations, consider taking a set of N samples
of input waveforms,uk for input k, k = 1: : : p. The correlation
matrix can be estimated as

Ki j =
1
N

N

∑
l=1

ul
i u

l
j (10)

1That is, the input waveformsu(t) actually applied to the state-
space model.
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Algorithm 1. Input Correlated TBR

1. Construct the SVD of inputsU=VKSKUT
K

2. Do until error satisfactory:

3. Draw a vector r2 Rp by taking p draws
from a normal distribution, variances given byΣ2

K.

4. Select a frequency point si .

5. Compute zi = [siE�A]�1BUKr.

6. Form the matrix of columns Z= [z1;z2; : : : ;zN] .

7. Construct the singular value decomposition of Z.
If the error is satisfactory, go to Step 8.
Otherwise, go to Step 3.

8. Construct the projection space V from the
orthogonalized column span of Z, dropping columns
whose associated singular values fall below
a desired tolerance.

As is the usual case, the actual correlation matrix need not be formed.
Instead, we can take the SVD of the matrixU whose columns are
the input samplesuk, i.e.

U=VKSKUT
K (11)

with UK ;VK orthonormal.
Note that, in addition, from this information we can also obtain

estimates of the frequency profile of the inputs. These estimates can
be used to select the frequency pointssi for the PMTBR procedure.

We omit the extension to non-self-adjoint systems as this is straight-
forward. The final algorithm is shown as Algorithm 1.

4. EXAMPLES
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Figure 2: Set of waveform samples for one input on RC net-
work example.

Our first example is a 32-port RC network. Using this example
circuit we will illustrate the basic characteristics of the proposed
reduction method.

To simulate the situation where there is some degree of infor-
mation about the relation between input waveforms, we drive the
network with a set of sinusoids with fixed, but somewhat uncertain,
phase relation. That is, each input is of the form shown in Figure 2:
a single sinusoid, but on each input, the set from which the input
is drawn has some dither introduced into its phase and frequency.

This is intended to mimic the situation where signals incident on
the network have some correlation for example because they origi-
nate from the same functional block (mixer, oscillator, etc.) or are
time-correlated due to a common clock. The dither represents the
fact that the signals themselves can be known only approximately
before the reduction procedure.
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Figure 3: Simulation results for one output on RC network
example. PMTBR with correlation information out-performs
TBR.

Figure 3 shows results from setting the SVD tolerance to 10�3 in
Algorithm 1, and extracting a 14-state reduced model. The results
from the input-correlated TBR method are quite acceptable. For
comparison, we also show the 14-state TBR model: the accuracy
of this model is clearly unacceptable. For equivalent accuracy, TBR
requires a model with at least 45 states. Note that PRIMAmatching
only one moment, would require a 32-state model and its accuracy
would also be fairly low. For this example, PRIMA requires at
least two moments for acceptable accuracy, i.e. 64 states. A PACT
model incorporating poles up to only the sinusoid frequency would
have over seventy states.

Of course, the drawback to the input-correlated procedure is that
it is fragile. If the inputs venture far from the distribution assumed
when the model was built, accuracy will deteriorate and more states
will be required in the model. To illustrate this, we re-ran the same
example, again using sinusoids for inputs, but completely changing
the phase relation between the inputs (as opposed to the low-level
dither introduced in Figure 3). Figure 4 shows the results from
the same 14-state models as used previously. The TBR model is
about as (in)accurate as previously. However, the accuracy of the
input-correlated reduction procedure degrades noticeably. Recov-
ering accuracy requires a model of many more states, so without
some degree of information about the input correlation, there is no
advantage over using TBR. However, as Figure 1 illustrates, there
could still be an advantage over PRIMA.

Finally we consider application of the method to a real circuit
(a data converter) with an extracted substrate network. First, for
the purpose of assessing the actual error performance of the model
reduction algorithm, we extracted only a small portion of the sub-
strate network connection involving the bulk nodes of the MOS
transistors. 150 ports of the substrate network were extracted using
a boundary-element procedure. Both resistive and capacitive terms
were retained, leading to a 150-state model. To obtain estimates of
the signal correlations at the inputs of the parasitic network we sim-
ulate the nonlinear circuitwithout the substrate network and mea-
sure the values of the MOS transistor bulk current signals. We then
carry those measurements as inputs to the input-correlated TBR

387



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

time (ns)

vo
lta

ge
 (

m
v)

Original
Correlated
TBR

Figure 4: Simulation results for one output on RC network ex-
ample, with re-randomized phase relation. PMTBR with cor-
relation information breaks down.

procedure2. Using Algorithm 1, a reduced model is produced. We
then compare the results of simulation with the reduced model to
simulation with the full substrate model. These results are shown
in Figure 5 for a representative node. In this case, fair agreement
with the full model was obtained using only four states, and ex-
cellent agreement is obtained with eight states. Similar accuracy
is obtained at all ports of the substrate network. We point out that
this is a 20X compression from the full model. Note also that this
network is, for most intents, unreducible with standard projection
methods.
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Figure 5: Simulation results for data converter example, 150
port substrate models, full vs. 4-state reduced model.

To illustrate the capabilities of the algorithm on larger networks,
we also applied the proposed technique to a larger section of the
extracted substrate network, this time comprising 1000 substrate
ports. Figure 6 shows the error estimate data obtained from the sin-
gular value analysis in Algorithm 1. In this case a model size of 30
states is sufficient to achieve high accuracy. This represents a com-
pression of over 30X in model size and, because of the superlinear
complexity associated with factorizing dense matrix blocks, con-
siderably more savings in time required for linear system solution
in simulation.

2Note that, should the substrate network result in suchlarge
changes to the circuit operation that these estimates were com-
pletely unrepresentative, we would have to iterate this procedure
to obtain a self-consistent estimate. This would probably indicate
that the circuit ceased to function as designed.
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Figure 6: Error estimate based on singular value analysis of
Z-matrix from input-correlated TBR, for 1000-port substrate
network with inputs from data converter example.

5. CONCLUSIONS
In this work we demonstrated that exploiting input information,

such as from nominal circuit function, can help reduce the size of
parasitic models obtained from projection-like procedures. This is
particularly relevant for problems with a large number of inputs
which are known not to reduce efficiently under such methods. We
introduced an input-correlated TBR-like procedure to perform the
computation of the reduced model. When there is strong correlation
between input waveforms on different input ports, large reductions
in model size can be achieved. In many practical settings this is
a common situation since spatial and temporal dependencies dic-
tated by the circuit topology and functionality will tend to highly
correlate the signals seen at the ports of the interconnect networks.
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