9.2

Extending the Transaction Level Modeling Approach for
Fast Communication Architecture Exploration

Sudeep Pasricha', Nikil Dutt’, Mohamed Ben-Romdhane’

tCenter for Embedded Computer Systems
University of California, Irvine, CA
{sudeep, dutt}@cecs.uci.edu

ABSTRACT

System-on-Chip (SoC) designs are increasingly becoming more
complex. Efficient on-chip communication architectures are critical
for achieving desired performance in these systems. System
designers typically use Bus Cycle Accurate (BCA) models written
in high level languages such as C/C++ to explore the
communication design space. These models capture all of the bus
signals and strictly maintain cycle accuracy, which is useful for
reliable performance exploration but results in slow simulation
speeds for complex designs, even when they are modeled using
high level languages. Recently there have been several efforts to use
the Transaction Level Modeling (TLM) paradigm for improving
simulation performance in BCA models. However these BCA
models capture a lot of details that can be eliminated when
exploring communication architectures.

In this paper we extend the TLM approach and propose a new and
faster transaction-based modeling abstraction level (CCATB) to
explore the communication design space. Our abstraction level
bridges the gap between the TLM and BCA levels, and yields an
average performance speedup of 55% over BCA models. We
demonstrate how fast and accurate exploration of tradeoffs is
possible for high-performance shared bus architectures such as
AMBA 2.0 and AMBA 3.0 (AX]) in industrial strength designs at
the proposed abstraction level.

Categories and Subject Descriptors: 1.6.5 [Simulation
and Modeling]: Model Development; 1.6.7 [Simulation and
Modeling]: Simulation Support Systems.

General Terms: Performance, Design

Keywords: Communication Architecture Exploration,
Transaction Level Modeling, Bus Cycle Accurate Modeling, Shared
Bus Architectures, AMBA

1. INTRODUCTION

System-on-chip (SoC) designers are dealing with ever increasing
design complexity. SoC designs today have several IPs (CPUs,
DSPs, memories, peripherals etc.) which share the processing load
and frequently exchange data over system busses. Communication
inevitably becomes a bottleneck and on-chip bus configurations and
protocols significantly affect overall system performance. Shared
bus architectures such as OCP [5], AMBA [8] and CoreConnect [9]
are popular choices for on-chip communication in current designs
and open up a large exploration space because they can be
configured in so many different ways. System designers need to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC’04, June 7-11, 2004, San Diego, California, USA

Copyright 2004 ACM 1-58113-828-8/04/0006...$5.00.

113

FConexant Systems Inc.
Newport Beach, CA
m.benromdhane@conexant.com

explore tradeoffs between different communication protocols and
configurations quickly, reliably and early in the design flow to
make the right choices and eliminate performance bottlenecks under
time-to-market pressures. Traditionally, systems were captured at a
cycle and pin-accurate level in RTL and then simulated for
performance estimation before synthesis. However SoC designs
today are large and very complex, so not only does it take a lot of
time to capture them in RTL, but the resulting simulation speed is
too slow for meaningful performance exploration. To overcome
these limitations, system designers have raised the abstraction level
of system models. High level models (usually written in C/C++)
give an early estimate of the system characteristics before
committing to RTL development. To explore on-chip
communication performance, bus cycle-accurate (BCA) models
[14] are frequently used. These models capture IPs at a less
detailed, functional level for improved simulation performance
while modeling all the bus signals and timing accurately.
Transaction Level Modeling (TLM) [1-2][10] has been proposed as
a higher modeling abstraction level, above the BCA abstraction
level, for faster simulation performance. At the TLM level,
architecture IPs are modeled at a functional level and the system
bus is captured as an abstract ‘channel', independent of a particular
bus architecture or protocol implementation. A TLM model can be
used as a golden prototype of the system and for early functional
system validation and embedded software development [2].
However, these models do not capture enough detail about the on-
chip bus to allow reliable exploration of the system. Recently there
have been some efforts [11-13] to use concepts from the TLM level,
which speed up simulation performance, and apply them at the
BCA level. But these approaches do not fully exploit the potential
for speedup when modeling systems for exploring on-chip
communication tradeoffs and performance.

Specification TEh dharme ECA
rnoda| - pl=tiarm [yl=1=11]
TRARFINE rrodel refinenerd

Figure 1. High-level System Modeling Flow

With the widespread acceptance of platform-based modeling [20],
system designers are using a high-level modeling flow similar to the
one shown in Figure 1. In this flow, a system specification is
mapped onto a TLM platform model with a generic bus, and this
model is then transformed into a BCA model. Although a BCA
model allows reliable exploration of the communication space, our
studies show that it takes more than twice the simulation time taken
by TLM models, which is a drawback.

In this paper we introduce a new modeling abstraction level called
Cycle Count Accurate at Transaction Boundaries (CCATB) for on-
chip communication space exploration. Our abstraction level
bridges the gap between the TLM and BCA levels, preserving the
accuracy of BCA models while improving on their simulation
speed. We propose a system design methodology that integrates our
abstraction level in a system flow and in which CCATB models are

derived from TLM models after refinement. We demonstrate the
effectiveness of our approach by capturing an industrial SoC design
at the proposed abstraction level and conducting several
experiments that quickly and reliably explore the communication
space.

This paper is organized as follows. Section 2 looks at some related
work. Section 3 gives an overview of the AMBA bus architecture.
Section 4 introduces our modeling abstraction for exploring on-chip
communication architectures. Section 5 describes our system
modeling methodology. Section 6 presents results from experiments
performed on our models. Finally Section 7 concludes the paper and
gives directions for future work.

2. RELATED WORK

Transaction Level Models [1-2][10] are bit-accurate models of a
system with specifics of the bus protocol replaced by a generic bus
(or channel), and where communication takes place when IPs call
read() and write() methods provided by the channel interface. Since
detailed timing and pin-accuracy is omitted, these models are fast to
simulate and are useful for early functional validation of the system.
Gajski et al. [1] also proposed a top-down system design
methodology with four models at different abstraction levels. The
architecture model in their methodology corresponds to the TLM
level of abstraction while the next lower abstraction level (called the
communication model) is a BCA model where the generic channel
has been replaced by bit and timing accurate signals corresponding
to a specific bus protocol.

Early work with TLM established SystemC 2.0 [3] as the modeling
language of choice for the approach. Pasricha [2] describes how
TLM can be used for early system prototyping and embedded
software development. Paulin et al. [4] define a system level
exploration platform for network processors which need to handle
high speed packet processing. The SOCP channel described in their
approach is based on OCP [5] semantics and is essentially a simple
TLM channel with a few added details such as support for split
transactions [8]. Nicolescu et al. [15] propose a component based
bottom-up system design methodology where IPs modeled at
different abstractions are connected together with a generic channel
like the one used in TLM, after encapsulating them with suitable
wrappers.

Commercial tools such as the Incisive Verification Platform [6],
ConvergenSC System Designer [7] and Cocentric System Studio
[16] have also started adding support for system modeling at the
higher TLM abstraction, in addition to lower level RTL modeling.
Recently, research efforts [11-14] have focused on adapting TLM
concepts to speed up architecture exploration. Xinping et al. [11]
use function calls instead of slower signal semantics to describe
models of AMBA2 and CoreConnect bus architectures at a high
abstraction level. However, the resulting models are not detailed
enough for accurate communication exploration. Caldari et al. [12]
similarly attempt to model AMBA2 using function calls for
reads/writes on the bus, but also model certain bus signals and make
extensive use of SystemC clocked threads which can slow down
simulation. Ogawa et al. [13] also model data transfers in AMBA2
using read/write transactions but use low level handshaking
semantics in the models which need not be explicitly modeled to
preserve cycle accuracy. Recently, ARM released the AHB Cycle-
Level Interface Specification [14] which provides the definition and
compliance requirements for modeling AHB at a cycle-accurate
level in SystemC. Function calls are used to replace all bus signals
at the interface between IPs and the bus. Although using function
calls speeds up simulation, there is a lot of opportunity for
improvement by reducing the number of calls while maintaining
cycle accuracy, as we show later in this paper.

114

3. AMBA OVERVIEW

To illustrate our approach, we model a widely used on-chip bus
standard — AMBA. This section briefly describes this standard.
AMBA is an on-chip bus specification that is widely used to
interconnect IPs in System-on-chip (SoC) designs. A typical
AMBA based design consists of a high-performance bus and a
slower peripheral bus. The AMBA 2.0 standard is comprised of
three bus specifications - AHB (Advanced High-performance Bus),
APB (Advanced Peripheral Bus) and ASB (Advanced System Bus).
The AHB bus is used for high bandwidth and low latency
communication, primarily between CPU cores, high performance
peripherals, DMA controllers, on-chip memories and interfaces
such as bridges to the slower APB bus. The APB is used to connect
slower peripherals such as timers, interrupt controllers etc. and uses
a bridge to interface with the AHB. It is a simple bus that does not
support the advanced features of the AHB bus. The ASB bus is an
earlier version of the high-performance bus which has been
superceded by AHB in current designs.

Recently, ARM announced the release of AMBA 3.0 [18] with the
next generation of high-performance bus protocol called the
Advanced eXtensible Interface (AXI). In the following subsections
we give a brief overview of the main features of the high
performance bus protocols in AMBA.

3.1 AMBA 2.0 AHB

The Advanced High-Performance Bus (AHB) is a high-speed, high-
bandwidth bus that supports multiple masters. AHB supports a
multi-layer bus architecture to optimize system bandwidth and
improve performance. It supports pipelined operations for high
speed memory and peripheral access without wasting precious bus
cycles. Burst transfers allow optimal usage of memory interfaces by
giving advance information of the nature of the transfers. AHB also
allows split transactions which maximize the use of the system bus
bandwidth by enabling high latency slaves to release the system bus
during the dead time while the slave is completing its transaction. In
addition, wide bus configurations from 32 up to 1024 bits wide are
supported.

3.2 AMBA 3.0 AXI

The Advanced eXtensible Interface (AXI) has all the advanced
features of the AHB bus such as pipelined and burst transfers,
multi-master configuration and a wide data bus. In addition, it has
support for multiple outstanding transactions and out of order
transaction completion, separate read and write channels, unaligned
data transfer using byte strobes and improved burst mode operation
(only the start address of the burst is broadcast on the address bus).
AXI also provides enhanced protection support (secure/non-secure
transactions), enhanced system cache/buffer support (pins for
specifying write-back/write through attributes and allocation
strategies), a FIXED burst mode (for repeated access to the same
location) and exclusive access support for semaphore type
operations.

4. CCATB MODEL OVERVIEW

As the previous section indicated, bus architectures such as AMBA
have several parameters which can be configured to improve
performance. Bus topology, arbitration strategies, width and buffer
sizes have significant impact on system performance. Our goal is to
improve simulation performance for reliable exploration of on-chip
communication architectures as early as possible in the design flow.
The following subsections describe the requirements of this model
and then elaborate on the model granularity and abstraction.

4.1 Requirements

While developing our exploration framework we had several
objectives. To obtain performance figures which were meaningful,
we would have to capture the entire system and not just a portion of
it. System IPs such as CPUs, memories and peripherals would have
to be appropriately parameterized [21] and modeled at a granularity
which would capture their precise functionality, yet not weigh down
simulation speed due to unnecessary detail. They would also need
to be annotated with timing wherever needed, for accuracy. Existing
IPs that have been written at different abstraction levels (e.g. pin-
accurate interface processor ISS models) should be easily adapted
to fit into the framework by writing an appropriate wrapper to
interface with our bus model. Performance numbers would be
obtained by simulating the working of the entire system — including
running embedded software on the CPU architecture model. An
important long-term requirement would be the ease of reuse of these
IPs, to amortize design effort over a range of architecture
derivatives. Our bus model would be required to support all the
advanced high-performance bus features such as pipelined
operation, hierarchy, SPLIT/RETRY transactions, Out-of-Order
transaction completion, burst modes, exclusive (semaphore) access
and protection modes etc. The bus interface to SoC IPs was
motivated by the following requirements. It should:

be independent of the underlying architecture to allow effortless
plug-and-play of different on-chip communication architectures
(e.g. AMBA, OCP, CoreConnect etc.)

be generic enough to ease refinement from higher level (timing-
independent) TLM models to lower level cycle/pin-accurate
models

avoid modeling protocol signals due to simulation overhead —
instead function calls should be used

Ultimately the model should be fast, accurate and flexible —
providing good simulation speed, cycle accuracy for reliable
performance estimation and the flexibility to seamlessly plug-and-
run different bus architectures and IPs such as processors, memories
and peripherals.

4.2 Modeling language

We chose the SystemC 2.0 language [3][10] to develop our model.
SystemC provides a rich set of primitives for communication and
synchronization - channels, ports, interfaces, events, signals and
wait-state insertion. Concurrent execution is performed by multiple
threads and processes (lightweight threads) and execution schedule
is governed by the scheduler. SystemC also supports capture of a
wide range of modeling abstractions from high level specifications
to pin and timing accurate system models. Since it is a library based
on C++, it is object oriented, modular and allows data encapsulation
— all of which are essential for easing IP distribution, reuse and
adaptability across different modeling abstraction levels.

4.3 Model Abstraction

The granularity of our proposed abstraction level is ‘cycle accurate’
when viewed at ‘transaction boundaries’. For that reason we call
our model Cycle Count Accurate at Transaction Boundaries
(CCATB). Our channel model ensures that cycle accuracy is
preserved at the end of every transaction i.e. the number of bus
cycles that elapse at the end of a transaction is the same when
compared to cycles elapsed in a detailed cycle/signal accurate
system model. A similar concept can be found in [19] where
Observable Time Windows were defined and used for verifying
results of high level synthesis. In essence, our model trades off
intra-transaction visibility for simulation speedup. Improved
simulation performance in our model is because:

115

cycle accuracy is preserved only at transaction boundaries —
within a transaction we avoid multiple re-activations of IP
threads. Computation operations are clustered together and
completed in near zero time, while simulation time is increased in
chunks, which speeds up simulation while maintaining accurate
cycle count at the end of the transaction

IPs (including bridges to slower peripheral busses) that do not
have useful work to perform in a cycle do not get activated
lightweight ‘processes’ are used instead of more resource hungry
and time consuming ‘threads’ wherever possible (e.g. certain
tasks inside masters, in slaves and in bus)

multiple single-word transactions are bunched together into
bursts which reduces function call overhead

expensive signal synchronization overhead is eliminated since
function calls are used instead of signals

On-chip bus architectures are modeled by extending the TLM
channel [2] to include timing and protocol details specific to the bus
architecture used. Arbiter and decoder modules are integrated with
this channel model. On a positive clock edge, masters send
transaction requests to the channel, which are recorded in an
outstanding request queue. A transaction is a single-word read/write
transfer or a burst (collection) of reads and writes issued by a
master. On the next negative clock edge, the arbiter selects a request
from this queue after applying an arbitration strategy, decodes the
destination address and sends the request to the slave destination.
Bus cycles for arbitration delay, contention and decoding are
accounted for at this stage. The slave receives the request from the
arbiter, performs any required computation, the read/write operation
and optionally waits for a fixed number of cycles before sending a
response back to the arbiter. In the case of a SPLIT or Our-of-Order
transaction, the slave sends a response immediately and the arbiter
ensures eventual completion of the transaction.

Master Bus Slave

woid corapute() [fthread .
{ statws read(addr, wsg)
{ status x;

regdata = VALUE| 0:24;
nsglength=1;

addr = TIMER, REG2, get._recquests(zeg; switch (adds)
wiite(bus-=port1, addr, msg); sel_req = arhitrate(recy); 1
wait(); addr = decode(se]_req); M case TIMER_BEGI:

read(bus-=port2, [TC_BASE,
msgd);

switch (msgd data)
{

if (addr read)
s t= read(addr, sel_req);
else
st =write(addr, sel_req);

case TIMER,_REGZ:

g data = timer_regd;
xstatus = SLAVE QK
retum x;
cage O

readfwrite

request + arbitration +
decode cycle delay

l

\ }Slave ik

t tiom stat
+ slave +add. arbitration delay TRISaEion siats
if s being used by other rasters

Barst + pipeline + busy + interface
(e.g. for SPLIT/OO transactions)

Simulatinn
Time

Slave response

Figure 2. Transaction execution sequence
The arbiter then accounts for the burst length, pipeline, busy,
interface, additional slave and arbitration cycle delays and sends the

response back to the master. Figure 2 illustrates the sequence of
events for a transaction in our model.

We captured system IPs at the transaction abstraction level [2].
Masters are active blocks with computation threads and an interface
with the bus architecture to communicate with slaves. One of our
goals was to keep a consistent interface when refining models from
the TLM level down to our CCATB level. The interface used at
both these levels is shown below:

status readDat a (&bus_port, addr,

addr,

&data_cntrl);

status witeData (&bus_port, &data_cntrl);

At the CCATB level, masters (and slaves) are connected to a bus
through ports, as defined in SystemC. bus_port specifies the port to
send the read/write request on (since a master may be connected to
multiple busses). addr is the address of the slave to send the
transaction to. data_cntrl is a structure that contains pointers to data
and control information. Table 1 shows the fields in this data
structure passed by the master and received by the arbiter. status is
the status of the transaction, as returned by the slave.

At the TLM level, since the bus is modeled as an abstract channel
without including any specific details of the bus protocol, the
data_cntrl structure contains just the m_data, m_burst_length and
m_byte_enable fields. The other fields are specific to bus protocols
and are thus omitted since we are only concerned with transferring
data packets from the source to its destination at this level. Thus,
when we refine a master IP from the TLM level to the CCATB
level, the only change is to set protocol specific parameters before
calling the interface functions.

Request field
m data

m burst length
m_burst_type
m_byte enable

Description

pointer to an array of data

length of transaction burst

type of burst (incr, fixed, wrapping etc.)
byte enable strobe for unaligned transfers

m_read indicates whether transaction is read/write
m_lock lock bus during transaction

m_cache cache/buffer hints

m_prot protection modes

m_transID transaction ID (needed for OO access)
m_busy_idle schedule of busy/idle cycles from master
m ID ID for identifying the master

Table 1. Fields in data_cntrl structure

Slaves are passive entities, activated only when triggered by the
arbiter on a request from the master, and have a register/memory
map to handle read/write requests. The arbiter calls read() and
write() functions implemented in the slave. An excerpt of the read
function from a memory controller is shown below:

inline slave_status *mem.contr::read(MEMC_ADDR _TYPE

addr _in, slave_data_and_control * packet) {
/1 check if initial NOPs have been generated
/1 check if latency cycles have expired
swi tch (addr _in - mstart_address)
{
case MEMCONTR_MODE:
*(packet - >data) = menctontr_node;
sl ave_status->status = SLAVE_CK;
return slave_status; break;
case MEMCONTR_RESET:
}

Slaves can also have optional (lightweight) processes triggered by
SystemC events, to perform computation if needed. The
functionality of the slave IP remains unchanged when refining the
model from the TLM level to the CCATB level, unless the slave IP

116

supports special bus protocol specific features such as having an
outstanding instruction queue for out-of-order transaction
completion in the AXI protocol, in which case these details need to
be added.

In accordance with the principle of Interface Based Design [17],
preexisting master and slave IP modules with different interfaces
can be incorporated in the model using an adapter written in
SystemC. For instance, adapter code written in SystemC is used to
interface ARM processor ISS models (which are not written in
SystemC) with the TLM/CCATB SystemC interface.

5. MODELING METHODOLOGY

We define a modeling methodology which integrates our CCATB
model in a system design flow. Figure 3 depicts our proposed flow
which has five system models at different abstraction levels. At the
topmost level is a specification model which is a high level
algorithmic implementation of the functionality of the system. This
model is generally captured in C or C++ and is independent of the
hardware architecture that would eventually be used to implement
the algorithm.

. : C { C++ model
Specification model "algnrithm level”
early e SW development
functional validatinn
CCATR model fast commumication
read() arch. exploration
write(Q
[request()
response()
has_prant() 5
e 0 BCA model dehugfvalidate
set_data()
end_trans{) &
cycle/pin-accurate cosimulation
model with RTL

Figure 3. System Design Flow

After selecting available hardware IPs and partitioning functionality
between hardware and software, we arrive at the 7LM model ported
to SystemC. At this level, high level functional blocks representing
hardware IPs such as CPUs, memories and peripherals are
connected together using a bus architecture-independent generic
channel. This system model is used for early embedded software
development and high-level platform validation. It is generally
untimed but the model can be annotated with timing information if
a high level estimate of system performance is required.

When the bus architecture is decided, the channel is annotated with
timing and protocol details and the interface is refined to obtain the
CCATB model. This model is used for fast communication space
and system performance exploration. The read(), write() channel
interface from the 7LM level remains the same as explained earlier
— except that now bus-architecture specific control information also
needs to be passed. IPs from the TLM level can be easily and
quickly refined to add this detail.

To obtain observable cycle accuracy for system debugging and

validation, the read() and write() interface calls are decomposed into
several method calls which correspond to bus pins in the BCA level.
This is a cycle accurate model, but since method calls are used
instead of pins (represented by signals in SystemC), simulation is
faster. Finally these method calls can be replaced by signals and the
IPs refined further to obtain pin/cycle-accurate models which can
be manually or automatically mapped to RTL, or simply be used to
co-simulate with existing RTL IPs for better simulation
performance while validating system design at a low level.

6. EXPERIMENTS

To evaluate our CCATB modeling approach, we modeled an actual
industrial strength platform and performed several exploration
studies with it. We present four of these in this section. All of these
experiments were reproduced and verified at the more refined BCA
level [14]. Figure 4 shows this SoC platform which has applications
in the broadband communication domain. We execute three
proprietary benchmarks (COMPLY, USBDRV and SWITRN) on the
ARMO926 1SS, each of which activate different modes of operation
for the platform. COMPLY configures the USB, switch and DMA
modules to drive traffic on the shared bus. USBDRV also
configures the USB and DMA to drive traffic normally on the bus
but the switch activity is restricted. SWITRN configures the switch
to drive traffic on the bus normally but restricts USB and DMA
activity.

I LAN IF

——

Ti = MEM

| |-

i i

I poripharal bus TX RX MAC

AHB/APB DMA
s G o]
main bus
16KB 16KB
SDRAM ROM RAM LCache | D-Cache
1Sb)E b ¥ 16k x 32 4K X 32

[ARMBDISEIS

Figure 4. SoC platform

In our first experiment, we attempted to observe the effect of
changing communication protocol on overall system performance.
We first simulated the platform with the AMBA2 AHB system bus
and then replaced it with the AMBA3 AXI bus protocol, keeping
the same driver application in both cases and without changing any
bus parameters such as arbitration strategy. Figure 5 shows that the
AXI protocol improves overall system throughput compared to
AHB. This is because in AMBA 2.0, the address bus is occupied
mostly by transmission of addresses of transactions within a burst.
In contrast, only the first address of a burst is transmitted in AMBA
3.0 AXI, which coupled with transaction reordering allows
improved simultaneous read/write transaction execution and better
throughput. Our model allows rapid plug-and-play exploration of
different bus architectures, requiring changes in just a few lines of
code to declare and instantiate the bus in the top-level file.

Next, we explore the effect of arbitration strategies on system
performance. We used the AMBA2 AHB system bus and tested the
following arbitration strategies - static priority (SP), random priority
(RP), round robin (RR), time division multiple access or TDMA
with 2 slots for the USB host and 1 for the rest (TDMA1), TDMA
with 2 slots for the switch subsystem and 1 for the rest (TDMA2),
TDMAI1 with RR (TDMAI/RR) and TDMA2 with RR

(TDMAZ2/RR), where the RR strategy is applied only if the selected
master has no transaction to issue.

Figure 6 shows the bus throughput for the three benchmarks. It can
be seen that TDMA1/RR outperforms other schemes for COMPLY,
while static priority works best for USBDRV (with the USB host
given the maximum priority) and SWITRN (where the switch
subsystem is given the maximum priority). We measure overall bus
throughput — however if bandwidth constraints for certain masters
need to be met and overall throughput is a less important criteria,
then other strategies might give better results. Also, more involved
strategies such as a dynamic priority scheme can be easily
introduced into this framework if traffic based adaptable behavior is
preferred.

To ascertain the influence of bus hierarchy on improving system
performance by eliminating conflicts on a shared bus, we
decomposed the shared bus into two hierarchical busses in our next
experiment — in configuration A we kept the ARM CPU and DMA
master on one bus and the switch subsystem and USB host master
on the other. In configuration B we kept the ARM CPU, DMA and
the switch subsystem on one bus while the USB host was given a
dedicated bus. We used the TDMA1/RR strategy for conflict
resolution.

Transactions (read/write) / sec
COMPLY
USBDRV W AMBA3 (AXI)
@ AMBA2 (AHB)
SWITRN
0 500 1000 1500 2000
Figure 5. Bus protocol comparison
Transactions (read/write) / sec
2000
1800
1600
1400
1200 mCOMPLY
1000 mUSBDRV
800
200 O SWITRN
400
200
0
< NG <& A At N\ N
2 & <& & & > Q)
& < < & &
A A

Figure 6. Arbitration strategy comparison

Conflicts (%)

ECOMPLY
mUSBDRV
OSWITRN

Original

config A config B

Figure 7. Topology configuration comparison

Figure 7 shows bus conflicts for these cases. It can be seen that
configuration A has the least conflicts for COMPLY and SWITRN.
This is because configuration A avoids conflicts between the DMA
and the switch module which is the main source of conflict in
SWITRN and one of the main ones in COMPLY (along with the
USB-switch conflict). Configuration B is the best for USBDRV
since conflicts between the USB (which drives the maximum
traffic) and the DMA (which also drives a lot of traffic) are reduced
when the USB is given a dedicated bus.

Finally, we study the effect of changing outstanding request queue
size for the SDRAM IF module which supports out-of-order
execution of read/write requests as specified by the AMBA3 AXI
protocol [18]. Figure 8 shows the effect of change in performance
when the queue size is changed. It can be seen that performance
saturates and no more gain can be obtained after the queue size has
been increased to 4 for COMPLY, and 6 for SWITRN and USBDRYV.
This is a limit on the number of simultaneous requests issued at any
given time for the SDRAM IF by the masters in the system for these
benchmarks. It can be seen that this parameter is highly application
dependent and changes with changing application requirements,
demonstrating the need for this type of an exploration environment.

Transactions (read/write) /sec

1800
1700
1600
1500
1400
1300
1200
1100
1000 -+

—+— COMPLY
—m=—USBDRYV
SWITRN

1 2

Figure 8. Varying SDRAM OO queue size

3 4 5 6 7

To validate our approach we compared the results of all our
exploration experiments on the CCATB model with results obtained
on the bus cycle-accurate (BCA) model described in [14]. The
performance statistics obtained at the end of simulation for these
explorations were verified to be the same for both models. Figure 9
compares the simulation speeds in terms of number of transactions
executed every second for our CCATB model and the BCA model
for the topology configuration comparison experiment (Figure 7). In
the figure, orig c refers to the COMPLAY benchmark executing on
the original configuration, 4 u refers to the USBDRV benchmark
executing on configuration A, and so on. It is apparent from the
results that the CCATB model consistently performs better than the
BCA model by almost 55% on an average. This speedup is
invaluable when exploring the communication space of complex
SoC designs running large time-consuming applications.

Transactions (read/write) / sec

1800+
1600 1
1400+
1200+
1000+
800
600
400
200

mCCATB
mBCA

orig_c orig_u orig_s

Figure 9. Simulation performance comparison

7. CONCLUSION AND FUTURE WORK

We presented the Cycle Count Accurate at Transaction Boundaries
(CCATB) modeling abstraction which is a fast, efficient and
flexible approach for exploring the vast communication space for
shared-bus architectures in SoC designs. Models at this abstraction
level possess the accuracy of BCA models, yet they simulate almost
55% faster on average. This improved simulation performance
comes at the cost of intra-transaction visibility during execution.
Our model allows plug-and-play exploration of various facets of the
communication space such as entire communication architectures
and their arbitration strategies. IPs can be easily removed and
replaced with their architecture variants, as long as their interface is
the same. Existing IPs, which have different interfaces, can be

118

adapted to our approach by using appropriate wrappers. We also
propose a five layer design methodology that incorporates our
CCATB abstraction level. Interface refinement from higher
abstraction levels to lower levels is simplified as we avoid altering
the interface between IPs and the communication channel as much
as possible. This also eases co-simulation of SoC IPs modeled at
different abstraction levels in our system flow. We have
successfully applied our approach to the industrial strength
broadband communication domain SoC design, and performed
several exploration studies, some of which are presented in this
paper.

Our future work will focus on modeling the OCP [5] and
CoreConnect [9] bus architectures at the CCATB abstraction. We
are also working on automating the refinement of the
communication interface from the TLM level down to the pin/cycle
accurate level. This will be the basis for interconnect and IP based
architecture synthesis.

8. ACKNOWLEDGEMENTS
This research was partially supported by grants from Conexant
Systems Inc. and UC Micro (03-029).

9. REFERENCES

[1] D. Gajski et al., “SpecC: Specification Language and Methodology”,
Kluwer Academic Publishers, January 2000

[2] Sudeep Pasricha, “Transaction Level Modeling of SoC with SystemC
2.0”, Synopsys User Group Conference (SNUG), 2002

[3] SystemC initiative. www.systemc.org

[4] P. Paulin et al., “StepNP: A system-level exploration platform for
network processors”, I[EEE Design and Test of Computers, 2002

[5] Open Core Protocol International Partnership (OCP-IP), www.ocpip.org.
[6] Cadence NCSystemC www.cadence.com/products/nc systemc.html

[7] Coware. www.coware.com

[8] D. Flynn. “AMBA: enabling reusable on-chip designs”. /[EEE Micro,
17(4):20--27, July-Aug 1997

[9] IBM CoreConnect www.chips.ibm.com/products/powerpc/cores

[10] T. Grotker, S. Liao, G. Martin, S. Swan. “System Design with
SystemC”. Kluwer Academic Publishers, 2002

[11] Xinping Zhu et al, “A hierarchical modeling framework for on-chip
communication architectures”, Proc. ICCAD, 2002

[12] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, C. Turchetti
“Transaction-Level Models for AMBA Bus Architecture Using SystemC
2.0”, Proc. DATE 2003

[13] O. Ogawa et al, “A Practical Approach for Bus Architecture
Optimization at Transaction Level”, Proc. DATE 2003

[14] AHB CLI Specification www.arm.com/armtech/ahbcli

[15] G. Nicolescu, et al, "Mixed-Level Cosimulation for Fine Gradual
Refinement of Communication in SoC Design", Proc. DATE, 2001

[16] CoCentric Studio www.synopsys.com/products/cocentric_studio

[17] J.A. Rowson and A. Sangiovanni-Vincentelli. “Interface-Based

Design”. Proc. DAC, 1997

[18] AMBA AXI Specification www.arm.com/armtech/AXI

[19] Reinaldo A. Bergamaschi and Salil Raje, “Observable Time Windows:
Verifying the Results of High-Level Synthesis”, Proc. European conference
on Design and Test, 1996

[20] K. Keutzer et al. “System-Level Design: Orthogonalization of Concerns
and Platform-Based Design”. [EEE Transactions on Computer-Aided
Design. Vol. 19, No. 12. December 2000

[21] Mohamed Ben-Romdhane et al. “Quick-Turnaround ASIC Design in
VHDL: Core-Based Behavioral Synthesis” Kluwer Academic Publishers,
1996

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

