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ABSTRACT 
System-on-Chip (SoC) designs are increasingly becoming more 
complex. Efficient on-chip communication architectures are critical 
for achieving desired performance in these systems. System 
designers typically use Bus Cycle Accurate (BCA) models written 
in high level languages such as C/C++ to explore the 
communication design space. These models capture all of the bus 
signals and strictly maintain cycle accuracy, which is useful for 
reliable performance exploration but results in slow simulation 
speeds for complex designs, even when they are modeled using 
high level languages. Recently there have been several efforts to use 
the Transaction Level Modeling (TLM) paradigm for improving 
simulation performance in BCA models. However these BCA 
models capture a lot of details that can be eliminated when 
exploring communication architectures.  
In this paper we extend the TLM approach and propose a new and 
faster transaction-based modeling abstraction level (CCATB) to 
explore the communication design space. Our abstraction level 
bridges the gap between the TLM and BCA levels, and yields an 
average performance speedup of 55% over BCA models. We 
demonstrate how fast and accurate exploration of tradeoffs is 
possible for high-performance shared bus architectures such as 
AMBA 2.0 and AMBA 3.0 (AXI) in industrial strength designs at 
the proposed abstraction level. 
 

Categories and Subject Descriptors: I.6.5 [Simulation 
and Modeling]: Model Development; I.6.7 [Simulation and 
Modeling]: Simulation Support Systems. 
General Terms: Performance, Design 
Keywords: Communication Architecture Exploration, 
Transaction Level Modeling, Bus Cycle Accurate Modeling, Shared 
Bus Architectures, AMBA 
 

1. INTRODUCTION 
System-on-chip (SoC) designers are dealing with ever increasing 
design complexity. SoC designs today have several IPs (CPUs, 
DSPs, memories, peripherals etc.) which share the processing load 
and frequently exchange data over system busses. Communication 
inevitably becomes a bottleneck and on-chip bus configurations and 
protocols significantly affect overall system performance. Shared 
bus architectures such as OCP [5], AMBA [8] and CoreConnect [9] 
are popular choices for on-chip communication in current designs 
and open up a large exploration space because they can be 
configured in so many different ways. System designers need to 

explore tradeoffs between different communication protocols and 
configurations quickly, reliably and early in the design flow to 
make the right choices and eliminate performance bottlenecks under 
time-to-market pressures. Traditionally, systems were captured at a 
cycle and pin-accurate level in RTL and then simulated for 
performance estimation before synthesis. However SoC designs 
today are large and very complex, so not only does it take a lot of 
time to capture them in RTL, but the resulting simulation speed is 
too slow for meaningful performance exploration. To overcome 
these limitations, system designers have raised the abstraction level 
of system models. High level models (usually written in C/C++) 
give an early estimate of the system characteristics before 
committing to RTL development. To explore on-chip 
communication performance, bus cycle-accurate (BCA) models 
[14] are frequently used. These models capture IPs at a less 
detailed, functional level for improved simulation performance 
while modeling all the bus signals and timing accurately.  
Transaction Level Modeling (TLM) [1-2][10] has been proposed as 
a higher modeling abstraction level, above the BCA abstraction 
level, for faster simulation performance. At the TLM level, 
architecture IPs are modeled at a functional level and the system 
bus is captured as an abstract ‘channel', independent of a particular 
bus architecture or protocol implementation. A TLM model can be 
used as a golden prototype of the system and for early functional 
system validation and embedded software development [2]. 
However, these models do not capture enough detail about the on-
chip bus to allow reliable exploration of the system. Recently there 
have been some efforts [11-13] to use concepts from the TLM level, 
which speed up simulation performance, and apply them at the 
BCA level. But these approaches do not fully exploit the potential 
for speedup when modeling systems for exploring on-chip 
communication tradeoffs and performance.  

 
Figure 1.  High-level System Modeling Flow 

With the widespread acceptance of platform-based modeling [20], 
system designers are using a high-level modeling flow similar to the 
one shown in Figure 1. In this flow, a system specification is 
mapped onto a TLM platform model with a generic bus, and this 
model is then transformed into a BCA model. Although a BCA 
model allows reliable exploration of the communication space, our 
studies show that it takes more than twice the simulation time taken 
by TLM models, which is a drawback. 
In this paper we introduce a new modeling abstraction level called 
Cycle Count Accurate at Transaction Boundaries (CCATB) for on-
chip communication space exploration. Our abstraction level 
bridges the gap between the TLM and BCA levels, preserving the 
accuracy of BCA models while improving on their simulation 
speed. We propose a system design methodology that integrates our 
abstraction level in a system flow and in which CCATB models are 
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derived from TLM models after refinement. We demonstrate the 
effectiveness of our approach by capturing an industrial SoC design 
at the proposed abstraction level and conducting several 
experiments that quickly and reliably explore the communication 
space. 
This paper is organized as follows. Section 2 looks at some related 
work. Section 3 gives an overview of the AMBA bus architecture. 
Section 4 introduces our modeling abstraction for exploring on-chip 
communication architectures. Section 5 describes our system 
modeling methodology. Section 6 presents results from experiments 
performed on our models. Finally Section 7 concludes the paper and 
gives directions for future work. 

2. RELATED WORK 
Transaction Level Models [1-2][10] are bit-accurate models of a 
system with specifics of the bus protocol replaced by a generic bus 
(or channel), and where communication takes place when IPs call 
read() and write() methods provided by the channel interface. Since 
detailed timing and pin-accuracy is omitted, these models are fast to 
simulate and are useful for early functional validation of the system. 
Gajski et al. [1] also proposed a top-down system design 
methodology with four models at different abstraction levels. The 
architecture model in their methodology corresponds to the TLM 
level of abstraction while the next lower abstraction level (called the 
communication model) is a BCA model where the generic channel 
has been replaced by bit and timing accurate signals corresponding 
to a specific bus protocol.  
Early work with TLM established SystemC 2.0 [3] as the modeling 
language of choice for the approach. Pasricha [2] describes how 
TLM can be used for early system prototyping and embedded 
software development. Paulin et al. [4] define a system level 
exploration platform for network processors which need to handle 
high speed packet processing. The SOCP channel described in their 
approach is based on OCP [5] semantics and is essentially a simple 
TLM channel with a few added details such as support for split 
transactions [8]. Nicolescu et al. [15] propose a component based 
bottom-up system design methodology where IPs modeled at 
different abstractions are connected together with a generic channel 
like the one used in TLM, after encapsulating them with suitable 
wrappers.  
Commercial tools such as the Incisive Verification Platform [6], 
ConvergenSC System Designer [7] and Cocentric System Studio 
[16] have also started adding support for system modeling at the 
higher TLM abstraction, in addition to lower level RTL modeling. 
Recently, research efforts [11-14] have focused on adapting TLM 
concepts to speed up architecture exploration. Xinping et al. [11] 
use function calls instead of slower signal semantics to describe 
models of AMBA2 and CoreConnect bus architectures at a high 
abstraction level. However, the resulting models are not detailed 
enough for accurate communication exploration. Caldari et al. [12] 
similarly attempt to model AMBA2 using function calls for 
reads/writes on the bus, but also model certain bus signals and make 
extensive use of SystemC clocked threads which can slow down 
simulation. Ogawa et al. [13] also model data transfers in AMBA2 
using read/write transactions but use low level handshaking 
semantics in the models which need not be explicitly modeled to 
preserve cycle accuracy. Recently, ARM released the AHB Cycle-
Level Interface Specification [14] which provides the definition and 
compliance requirements for modeling AHB at a cycle-accurate 
level in SystemC. Function calls are used to replace all bus signals 
at the interface between IPs and the bus. Although using function 
calls speeds up simulation, there is a lot of opportunity for 
improvement by reducing the number of calls while maintaining 
cycle accuracy, as we show later in this paper. 
 

3. AMBA OVERVIEW 
To illustrate our approach, we model a widely used on-chip bus 
standard – AMBA. This section briefly describes this standard. 
AMBA is an on-chip bus specification that is widely used to 
interconnect IPs in System-on-chip (SoC) designs. A typical 
AMBA based design consists of a high-performance bus and a 
slower peripheral bus. The AMBA 2.0 standard is comprised of 
three bus specifications - AHB (Advanced High-performance Bus), 
APB (Advanced Peripheral Bus) and ASB (Advanced System Bus). 
The AHB bus is used for high bandwidth and low latency 
communication, primarily between CPU cores, high performance 
peripherals, DMA controllers, on-chip memories and interfaces 
such as bridges to the slower APB bus. The APB is used to connect 
slower peripherals such as timers, interrupt controllers etc. and uses 
a bridge to interface with the AHB. It is a simple bus that does not 
support the advanced features of the AHB bus. The ASB bus is an 
earlier version of the high-performance bus which has been 
superceded by AHB in current designs.  
Recently, ARM announced the release of AMBA 3.0 [18] with the 
next generation of high-performance bus protocol called the 
Advanced eXtensible Interface (AXI). In the following subsections 
we give a brief overview of the main features of the high 
performance bus protocols in AMBA. 
 

3.1 AMBA 2.0 AHB 
The Advanced High-Performance Bus (AHB) is a high-speed, high-
bandwidth bus that supports multiple masters. AHB supports a 
multi-layer bus architecture to optimize system bandwidth and 
improve performance. It supports pipelined operations for high 
speed memory and peripheral access without wasting precious bus 
cycles. Burst transfers allow optimal usage of memory interfaces by 
giving advance information of the nature of the transfers. AHB also 
allows split transactions which maximize the use of the system bus 
bandwidth by enabling high latency slaves to release the system bus 
during the dead time while the slave is completing its transaction. In 
addition, wide bus configurations from 32 up to 1024 bits wide are 
supported.  
 

3.2 AMBA 3.0 AXI 
The Advanced eXtensible Interface (AXI) has all the advanced 
features of the AHB bus such as pipelined and burst transfers, 
multi-master configuration and a wide data bus. In addition, it has 
support for multiple outstanding transactions and out of order 
transaction completion, separate read and write channels, unaligned 
data transfer using byte strobes and improved burst mode operation 
(only the start address of the burst is broadcast on the address bus). 
AXI also provides enhanced protection support (secure/non-secure 
transactions), enhanced system cache/buffer support (pins for 
specifying write-back/write through attributes and allocation 
strategies), a FIXED burst mode (for repeated access to the same 
location) and exclusive access support for semaphore type 
operations. 
 

4. CCATB MODEL OVERVIEW 
As the previous section indicated, bus architectures such as AMBA 
have several parameters which can be configured to improve 
performance. Bus topology, arbitration strategies, width and buffer 
sizes have significant impact on system performance. Our goal is to 
improve simulation performance for reliable exploration of on-chip 
communication architectures as early as possible in the design flow. 
The following subsections describe the requirements of this model 
and then elaborate on the model granularity and abstraction. 
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4.1 Requirements 
While developing our exploration framework we had several 
objectives. To obtain performance figures which were meaningful, 
we would have to capture the entire system and not just a portion of 
it. System IPs such as CPUs, memories and peripherals would have 
to be appropriately parameterized [21] and modeled at a granularity 
which would capture their precise functionality, yet not weigh down 
simulation speed due to unnecessary detail. They would also need 
to be annotated with timing wherever needed, for accuracy. Existing 
IPs that have been written at different abstraction levels (e.g. pin-
accurate interface processor ISS models) should be easily adapted 
to fit into the framework by writing an appropriate wrapper to 
interface with our bus model. Performance numbers would be 
obtained by simulating the working of the entire system – including 
running embedded software on the CPU architecture model. An 
important long-term requirement would be the ease of reuse of these 
IPs, to amortize design effort over a range of architecture 
derivatives. Our bus model would be required to support all the 
advanced high-performance bus features such as pipelined 
operation, hierarchy, SPLIT/RETRY transactions, Out-of-Order 
transaction completion, burst modes, exclusive (semaphore) access 
and protection modes etc. The bus interface to SoC IPs was 
motivated by the following requirements. It should: 
 
� be independent of the underlying architecture to allow effortless 

plug-and-play of different on-chip communication architectures 
(e.g. AMBA, OCP, CoreConnect etc.) 
� be generic enough to ease refinement from higher level (timing-

independent) TLM models to lower level cycle/pin-accurate 
models 

� avoid modeling protocol signals due to simulation overhead – 
instead function calls should be used 

 
Ultimately the model should  be fast, accurate and flexible – 
providing good simulation speed, cycle accuracy for reliable 
performance estimation and the flexibility to seamlessly plug-and-
run different bus architectures and IPs such as processors, memories 
and peripherals. 
4.2 Modeling language 
We chose the SystemC 2.0 language [3][10] to develop our model. 
SystemC provides a rich set of primitives for communication and 
synchronization - channels, ports, interfaces, events, signals and 
wait-state insertion. Concurrent execution is performed by multiple 
threads and processes (lightweight threads) and execution schedule 
is governed by the scheduler. SystemC also supports capture of a 
wide range of modeling abstractions from high level specifications 
to pin and timing accurate system models. Since it is a library based 
on C++, it is object oriented, modular and allows data encapsulation 
– all of which are essential for easing IP distribution, reuse and 
adaptability across different modeling abstraction levels. 
4.3 Model Abstraction 
The granularity of our proposed abstraction level is ‘cycle accurate’ 
when viewed at ‘transaction boundaries’. For that reason we call 
our model Cycle Count Accurate at Transaction Boundaries 
(CCATB). Our channel model ensures that cycle accuracy is 
preserved at the end of every transaction i.e. the number of bus 
cycles that elapse at the end of a transaction is the same when 
compared to cycles elapsed in a detailed cycle/signal accurate 
system model. A similar concept can be found in [19] where 
Observable Time Windows were defined and used for verifying 
results of high level synthesis. In essence, our model trades off 
intra-transaction visibility for simulation speedup. Improved 
simulation performance in our model is because: 
 

� cycle accuracy is preserved only at transaction boundaries – 
within a transaction we avoid multiple re-activations of IP 
threads. Computation operations are clustered together and 
completed in near zero time, while simulation time is increased in 
chunks, which speeds up simulation while maintaining accurate 
cycle count at the end of the transaction 
� IPs (including bridges to slower peripheral busses) that do not 

have useful work to perform in a cycle do not get activated 
� lightweight ‘processes’ are used instead of more resource hungry 

and time consuming ‘threads’ wherever possible (e.g. certain 
tasks inside masters, in slaves and in bus) 

� multiple single-word transactions are bunched together into 
bursts which reduces function call overhead 

� expensive signal synchronization overhead is eliminated since 
function calls are used instead of signals 

 
On-chip bus architectures are modeled by extending the TLM 
channel [2] to include timing and protocol details specific to the bus 
architecture used. Arbiter and decoder modules are integrated with 
this channel model. On a positive clock edge, masters send 
transaction requests to the channel, which are recorded in an 
outstanding request queue. A transaction is a single-word read/write 
transfer or a burst (collection) of reads and writes issued by a 
master. On the next negative clock edge, the arbiter selects a request 
from this queue after applying an arbitration strategy, decodes the 
destination address and sends the request to the slave destination. 
Bus cycles for arbitration delay, contention and decoding are 
accounted for at this stage. The slave receives the request from the 
arbiter, performs any required computation, the read/write operation 
and optionally waits for a fixed number of cycles before sending a 
response back to the arbiter. In the case of a SPLIT or Our-of-Order 
transaction, the slave sends a response immediately and the arbiter 
ensures eventual completion of the transaction.  
 

 
Figure 2. Transaction execution sequence  

The arbiter then accounts for the burst length, pipeline, busy, 
interface, additional slave and arbitration cycle delays and sends the 
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response back to the master. Figure 2 illustrates the sequence of 
events for a transaction in our model.  
We captured system IPs at the transaction abstraction level [2]. 
Masters are active blocks with computation threads and an interface 
with the bus architecture to communicate with slaves. One of our 
goals was to keep a consistent interface when refining models from 
the TLM level down to our CCATB level. The interface used at 
both these levels is shown below: 
 
status = readData (&bus_port, addr, &data_cntrl); 
 
status = writeData (&bus_port, addr, &data_cntrl); 
 

At the CCATB level, masters (and slaves) are connected to a bus 
through ports, as defined in SystemC. bus_port specifies the port to 
send the read/write request on (since a master may be connected to 
multiple busses). addr is the address of the slave to send the 
transaction to. data_cntrl is a structure that contains pointers to data 
and control information. Table 1 shows the fields in this data 
structure passed by the master and received by the arbiter. status is 
the status of the transaction, as returned by the slave.  
At the TLM level, since the bus is modeled as an abstract channel 
without including any specific details of the bus protocol, the 
data_cntrl structure contains just the m_data, m_burst_length and 
m_byte_enable fields. The other fields are specific to bus protocols 
and are thus omitted since we are only concerned with transferring 
data packets from the source to its destination at this level. Thus, 
when we refine a master IP from the TLM level to the CCATB 
level, the only change is to set protocol specific parameters before 
calling the interface functions. 
 

Table 1. Fields in data_cntrl structure 
 
Slaves are passive entities, activated only when triggered by the 
arbiter on a request from the master, and have a register/memory 
map to handle read/write requests. The arbiter calls read() and 
write() functions implemented in the slave. An excerpt of the read 
function from a memory controller is shown below: 
 
inline slave_status *mem_contr::read(MEMC_ADDR_TYPE 
addr_in, slave_data_and_control * packet) { 
      // check if initial NOPs have been generated 
      // check if latency cycles have expired  
      … 
      switch (addr_in - m_start_address) 
        { 
        case MEMCONTR_MODE: 
          *(packet->data) = memcontr_mode; 
          slave_status->status = SLAVE_OK; 
          return slave_status; break; 
        case MEMCONTR_RESET: … 
}  
 
Slaves can also have optional (lightweight) processes triggered by 
SystemC events, to perform computation if needed. The 
functionality of the slave IP remains unchanged when refining the 
model from the TLM level to the CCATB level, unless the slave IP 

supports special bus protocol specific features such as having an 
outstanding instruction queue for out-of-order transaction 
completion in the AXI protocol, in which case these details need to 
be added. 
In accordance with the principle of Interface Based Design [17], 
preexisting master and slave IP modules with different interfaces 
can be incorporated in the model using an adapter written in 
SystemC. For instance, adapter code written in SystemC is used to 
interface ARM processor ISS models (which are not written in 
SystemC) with the TLM/CCATB SystemC interface.  
 

5. MODELING METHODOLOGY 
We define a modeling methodology which integrates our CCATB 
model in a system design flow. Figure 3 depicts our proposed flow 
which has five system models at different abstraction levels. At the 
topmost level is a specification model which is a high level 
algorithmic implementation of the functionality of the system. This 
model is generally captured in C or C++ and is independent of the 
hardware architecture that would eventually be used to implement 
the algorithm.  
 

 
Figure 3. System Design Flow 

 

After selecting available hardware IPs and partitioning functionality 
between hardware and software, we arrive at the TLM model ported 
to SystemC. At this level, high level functional blocks representing 
hardware IPs such as CPUs, memories and peripherals are 
connected together using a bus architecture-independent generic 
channel. This system model is used for early embedded software 
development and high-level platform validation. It is generally 
untimed but the model can be annotated with timing information if 
a high level estimate of system performance is required. 
When the bus architecture is decided, the channel is annotated with 
timing and protocol details and the interface is refined to obtain the 
CCATB model. This model is used for fast communication space 
and system performance exploration. The read(), write() channel 
interface from the TLM level remains the same as explained earlier 
– except that now bus-architecture specific control information also 
needs to be passed. IPs from the TLM level can be easily and 
quickly refined to add this detail.  
To obtain observable cycle accuracy for system debugging and 

Request field Description 
m_data pointer to an array of data 
m_burst_length length of transaction burst 
m_burst_type type of burst (incr, fixed, wrapping etc.) 
m_byte_enable byte enable strobe for unaligned transfers 
m_read indicates whether transaction is read/write 
m_lock lock bus during transaction 
m_cache cache/buffer hints 
m_prot protection modes 
m_transID transaction ID (needed for OO access) 
m_busy_idle schedule of busy/idle cycles from master 
m_ID ID for identifying the master 
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validation, the read() and write() interface calls are decomposed into 
several method calls which correspond to bus pins in the BCA level. 
This is a cycle accurate model, but since method calls are used 
instead of pins (represented by signals in SystemC), simulation is 
faster. Finally these method calls can be replaced by signals and the 
IPs refined further to obtain pin/cycle-accurate models which can 
be manually or automatically mapped to RTL, or simply be used to 
co-simulate with existing RTL IPs for better simulation 
performance while validating system design at a low level. 
 

6. EXPERIMENTS 
To evaluate our CCATB modeling approach, we modeled an actual 
industrial strength platform and performed several exploration 
studies with it. We present four of these in this section. All of these 
experiments were reproduced and verified at the more refined BCA 
level [14]. Figure 4 shows this SoC platform which has applications 
in the broadband communication domain. We execute three 
proprietary benchmarks (COMPLY, USBDRV and SWITRN) on the 
ARM926 ISS, each of which activate different modes of operation 
for the platform. COMPLY configures the USB, switch and DMA 
modules to drive traffic on the shared bus. USBDRV also 
configures the USB and DMA to drive traffic normally on the bus 
but the switch activity is restricted. SWITRN configures the switch 
to drive traffic on the bus normally but restricts USB and DMA 
activity. 
 

 
Figure 4. SoC platform 

 

In our first experiment, we attempted to observe the effect of 
changing communication protocol on overall system performance. 
We first simulated the platform with the AMBA2 AHB system bus 
and then replaced it with the AMBA3 AXI bus protocol, keeping 
the same driver application in both cases and without changing any 
bus parameters such as arbitration strategy. Figure 5 shows that the 
AXI protocol improves overall system throughput compared to 
AHB. This is because in AMBA 2.0, the address bus is occupied 
mostly by transmission of addresses of transactions within a burst. 
In contrast, only the first address of a burst is transmitted in AMBA 
3.0 AXI, which coupled with transaction reordering allows 
improved simultaneous read/write transaction execution and better 
throughput. Our model allows rapid plug-and-play exploration of 
different bus architectures, requiring changes in just a few lines of 
code to declare and instantiate the bus in the top-level file. 
Next, we explore the effect of arbitration strategies on system 
performance. We used the AMBA2 AHB system bus and tested the 
following arbitration strategies - static priority (SP), random priority 
(RP), round robin (RR), time division multiple access or TDMA 
with 2 slots for the USB host and 1 for the rest (TDMA1), TDMA 
with 2 slots for the switch subsystem and 1 for the rest (TDMA2), 
TDMA1 with RR (TDMA1/RR) and TDMA2 with RR 

(TDMA2/RR), where the RR strategy is applied only if the selected 
master has no transaction to issue.  
Figure 6 shows the bus throughput for the three benchmarks. It can 
be seen that TDMA1/RR outperforms other schemes for COMPLY, 
while static priority works best for USBDRV (with the USB host 
given the maximum priority) and SWITRN (where the switch 
subsystem is given the maximum priority). We measure overall bus 
throughput – however if bandwidth constraints for certain masters 
need to be met and overall throughput is a less important criteria, 
then other strategies might give better results. Also, more involved 
strategies such as a dynamic priority scheme can be easily 
introduced into this framework if traffic based adaptable behavior is 
preferred. 
To ascertain the influence of bus hierarchy on improving system 
performance by eliminating conflicts on a shared bus, we 
decomposed the shared bus into two hierarchical busses in our next 
experiment – in configuration A we kept the ARM CPU and DMA 
master on one bus and the switch subsystem and USB host master 
on the other. In configuration B we kept the ARM CPU, DMA and 
the switch subsystem on one bus while the USB host was given a 
dedicated bus. We used the TDMA1/RR strategy for conflict 
resolution. 
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Figure 5. Bus protocol comparison 
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Figure 6. Arbitration strategy comparison 
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Figure 7. Topology configuration comparison 

 

Figure 7 shows bus conflicts for these cases. It can be seen that 
configuration A has the least conflicts for COMPLY and SWITRN. 
This is because configuration A avoids conflicts between the DMA 
and the switch module which is the main source of conflict in 
SWITRN and one of the main ones in COMPLY (along with the 
USB-switch conflict). Configuration B is the best for USBDRV 
since conflicts between the USB (which drives the maximum 
traffic) and the DMA (which also drives a lot of traffic) are reduced 
when the USB is given a dedicated bus. 

117



Finally, we study the effect of changing outstanding request queue 
size for the SDRAM IF module which supports out-of-order 
execution of read/write requests as specified by the AMBA3 AXI 
protocol [18]. Figure 8 shows the effect of change in performance 
when the queue size is changed. It can be seen that performance 
saturates and no more gain can be obtained after the queue size has 
been increased to 4 for COMPLY, and 6 for SWITRN and USBDRV. 
This is a limit on the number of simultaneous requests issued at any 
given time for the SDRAM IF by the masters in the system for these 
benchmarks. It can be seen that this parameter is highly application 
dependent and changes with changing application requirements, 
demonstrating the need for this type of an exploration environment. 
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Figure 8. Varying SDRAM OO queue size 

 

To validate our approach we compared the results of all our 
exploration experiments on the CCATB model with results obtained 
on the bus cycle-accurate (BCA) model described in [14]. The 
performance statistics obtained at the end of simulation for these 
explorations were verified to be the same for both models. Figure 9 
compares the simulation speeds in terms of number of transactions 
executed every second for our CCATB model and the BCA model 
for the topology configuration comparison experiment (Figure 7). In 
the figure, orig_c refers to the COMPLAY benchmark executing on 
the original configuration, A_u refers to the USBDRV benchmark 
executing on configuration A, and so on.  It is apparent from the 
results that the CCATB model consistently performs better than the 
BCA model by almost 55% on an average. This speedup is 
invaluable when exploring the communication space of complex 
SoC designs running large time-consuming applications. 
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Figure 9. Simulation performance comparison 

 

7. CONCLUSION AND FUTURE WORK 
We presented the Cycle Count Accurate at Transaction Boundaries 
(CCATB) modeling abstraction which is a fast, efficient and 
flexible approach for exploring the vast communication space for 
shared-bus architectures in SoC designs. Models at this abstraction 
level possess the accuracy of BCA models, yet they simulate almost 
55% faster on average. This improved simulation performance 
comes at the cost of intra-transaction visibility during execution. 
Our model allows plug-and-play exploration of various facets of the 
communication space such as entire communication architectures 
and their arbitration strategies. IPs can be easily removed and 
replaced with their architecture variants, as long as their interface is 
the same. Existing IPs, which have different interfaces, can be 

adapted to our approach by using appropriate wrappers. We also 
propose a five layer design methodology that incorporates our 
CCATB abstraction level. Interface refinement from higher 
abstraction levels to lower levels is simplified as we avoid altering 
the interface between IPs and the communication channel as much 
as possible. This also eases co-simulation of SoC IPs modeled at 
different abstraction levels in our system flow. We have 
successfully applied our approach to the industrial strength 
broadband communication domain SoC design, and performed 
several exploration studies, some of which are presented in this 
paper.  
Our future work will focus on modeling the OCP [5] and 
CoreConnect [9] bus architectures at the CCATB abstraction. We 
are also working on automating the refinement of the 
communication interface from the TLM level down to the pin/cycle 
accurate level. This will be the basis for interconnect and IP based 
architecture synthesis. 
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