
Timing Closure through a Globally Synchronous, Timing
Partitioned Design Methodology

Anders Edman1
Computer Engineering
Linköping University

SE-581 83 Linköping, Sweden
+46 13 282779

anded@isy.liu.se

Christer Svensson
Electronic Devices

Linköping University
SE-581 83 Linköping, Sweden

+46 13 281223

chs@isy.liu.se

ABSTRACT
A method to mitigate timing problems due to global wire delays is
proposed. The method follows closely a fully synchronous design
flow and utilizes only true digital library elements. The design is
partitioned into isochronous blocks at system level, where a few
clock cycles latency is inserted between the isochronous blocks.
This latency is then utilized to automatically mitigate unknown
global wire delays, unknown global clock skews and other timing
uncertainties occurring in backend design. The new method is
expected to considerably reduce the timing closure effort in large
high frequency digital designs in deep submicron technologies.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Style C – VLSI
(very large scale integration)

General Terms: Design

Keywords: Timing closure, wire delays, clock skew

1. INTRODUCTION
It has been recognized for a long time that integrated circuits in
deep submicron technologies exhibits increased timing problems
due to increased clock frequencies, increased complexity and
increased wire delays [1,8,2]. These problems manifest
themselves as a severe increase in verification cost (timing
closure), increased problems to scale up the clock frequency and
increased effort for clock distribution. Many methods to mitigate
these problems have been proposed, often calling for more or less
severe changes in a very well established standard design flow or
for nonstandard library cells. However, any discrepancy from the
established design flow severely hampers the acceptance of a new
methodology.

We aim at finding a design methodology that manages
unpredictable wire delays (data delays and clock skew) with an
absolute minimum of influence on the established design flow.

We would like to see a methodology which allow the designer to
complete his clock-true verification before moving into the
synthesis step, to use only existing tools and design flow all the
way to layout, and to use only standard library cells.

In this paper we propose a scheme to mitigate the timing
problems. Our main goal is to keep the fully synchronous design
flow even for large high-speed designs in deep submicron
processes. The idea is to take care of the inevitable wire delays
already at architecture level, and then guarantee that the
functional description at this level is valid all the way to layout.
This idea thus follows the conclusions in [7] that keeping
performance when meeting wire delay problems requires
architectural level considerations

Our scheme is based on the partition of a large design into
isochronous blocks, still keeping global synchronism. Each
isochronous block should be small enough not to exhibit severe
wire delays [8]. Between the isochronous blocks we insert a few
extra delays (pipelining). The extra delays are later utilized to
automatically mitigate unknown wire delays and clock skew. The
proposed scheme simplifies timing closure and relaxes clock
distribution constraints.

In section 2 we describe previous work and in section 3 our
proposed scheme. We describe the design methodology in section
4 and a proposed implementation section 5, followed by a
description of design constraints in section 6. In section 7 we
demonstrate a simulated example. The paper is finished by a
discussion and a conclusion in sections 8 and 9.

2. PREVIOUS WORK
One approach is to mitigate the timing problem though the
improvement of present design methodology and improved tools.
Such methods are based on a traditional, synchronous high level
design flow, followed by a modified synthesis and backend flow,
only leading to a limited improvement (less than 50%
improvement of worst case delay) [6].

More recent work propose synchronous solutions which makes a
design functionally insensitive to the latency of long wires [2].

1 Author also at: Acreo AB, Bredgatan 34, SE-602 21 Norrköping,
Sweden,Tel. +46 11 363634, email: anders.edman@acreo.se

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’04, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

5.4

71

This Latency Insensitive Design (LID) method partitions a large
design into several communicating modules, where each module
is "patient", that is its function only depends of the order of events
reaching it. It is shown that the functionality of a system built
with such modules is independent of the latency of the
communications channels between the modules. A drawback with
this method is that its performance (in cycle count for a certain
operation) is not known until after backend.

Alternative implementations of the physical layer of the LID
method, based on FIFO’s, were proposed in [4]. These FIFO's
perform synchronization between two clock domains in a similar
way as some earlier proposed synchronizers based on parallel
latches (or a pointer-FIFO) [4,5]. An elegant and very compact
solution to the synchronization problem utilizes a single-stage
FIFO, which behavior mimics a latch clocked from both clock
domains [3].

3. PROPOSED SCHEME
Let us define an isochronous region as a partition of the design
within which the clock is synchronous This means that the clock
skew is small enough not to give rise to any races or hazards for
any combination of cells in a given cell library. An isochronous
region can therefore be automatically synthesized without risk for
timing violations. The size of such a region is however limited,
both in the number of gates and in physical size (making wire
delays constrained to a given value). Let us further define a region
boundary as the boundary between two isochronous regions. At
system level, this boundary must allow a certain degree of latency
for all signals passing the boundary; say n clock cycles (n>0). See
fig. 2. Finally, output signals must be delivered directly from a
flip-flop and inputs can be assumed to have a timing as if they
were generated by internal flip-flops.

These definitions are sufficient constraints to system level design
and guarantee that the design can be implemented without timing
problems. When implementing a design of this kind, certain
timing cells are inserted at each signal that passes a region
boundary. Such a cell can manage a single signal or a bundle of
signals. A signal passing a boundary may pass to a neighboring
region or to a remote region. For each independent signal or
bundle of signals we add a strobe.

The clock distribution network will deliver a clock to each
isochronous region, with no skew constraint. Inside each region
the clock distribution is stricter (which should not be a problem if
the region is small enough).

4. DESIGN METHODOLOGY
The main goal with the present work is to device a design method
that mitigates the problem of timing closure. This is achieved as
follows. At early high-level system design, the design is
partitioned into blocks of limited size (anticipated limited
physical size) and with defined block-to-block link latency.
Typically, the partitioning should follow the blocks in a
functional block diagram, and not divide a function into several
blocks. The size of each block should be small enough not to
cause timing closure problems at the actual clock frequency when
treated as a separate design in the target process. Next, the
maximum delay for the longest path of the full chip is estimated.
Also, easily achievable inter-block clock skew, i.e. difference
between maximal and minimal clock insertion delay, is estimated.

Using the equations derived in section 6, a value of n (the
pipelining in the link) is calculated from these estimations. For
certain critical block-to-block links a lower value of n can be
chosen, if it can be foreseen that the floorplan allows a physically
shorter link. However, if we can use the calculated value for n in
all links, no floorplan decisions are required until back-end work
starts. Selected values for each link are implemented as an n
clock-cycle long delay unit in the clock-cycle true model of the
design, (fig. 2). This model of the system is used throughout the
design phase and also used for clock-cycle true verification. Here,
the design methodology will also have an indirect impact.
Although all link delays are early defined we can guarantee that
back-end design will not require any changes in the design. Thus,
re-design and re-verification due to implementation problems can
be avoided.
During the following synthesis, the n-cycle delays are replaced by
two-port memory synchronizers (see below). These memory
blocks are generated using flip-flops from the standard cell library
as storage elements. The cells for the two-port link memory are
placed in the receiving block.
The high-level design partitioning mentioned above is course-
grained and considered to be a natural part of system architecture.
The isochronous regions or blocks are typically processors,
controllers, or memories. These blocks are thus relatively self-
contained and have well-defined interfaces to other blocks. In IP-
based designs, each IP normally constitutes one isochronous
region.

5. IMPLEMENTATION

Link

strobe

Regm-1

Reg..

Reg1

Reg0

Reg

local clock

read ports

select signals

Data

input
counter

output
counter

write ports

Figure 1. Two-port memory synchronizer.

We will now describe a possible implementation of the proposed
scheme, based on the well-known FIFO synchronizer [5]. As said
above, a certain timing cell is inserted at each signal or signal
bundle passing a region boundary. Such a timing cell is an m-
word two-port memory with separate writing and reading ports,
inserted on the target side of the boundary. A schematic of the
timing cell is shown in Figure 1. Any incoming word is
consecutively written into the memory cells, using round robin
addressing and clocked by the incoming strobe. The memory cells
are simultaneously read, using a delayed round robin addressing
and clocked by the local clock in the target region. The addressing
delay between write and read, and the number of words in the
memory, is chosen so that write and read instances can never
collide, taking the maximum skew between the two regions into
account.

72

In order to facilitate global synchronization and clock alignment,
all local clock periods must be enumerated in the same way. This
means that we must relate each word arriving to an isochronous
region to a corresponding local clock cycle. A very simple
procedure to accomplish this is as follows. The system is initiated
by a global, asynchronous reset with no clock running. During
this reset the counters is reset to zero and m-n respectively. Then
the clock starts. The first clock cycle is distributed to each
isochronous region via the clock distribution network. Each
transmitter sends a strobe, which is equal to the clock at that
transmitter. When the first strobe pulse arrives to the receiver, it
corresponds to clock period #0 and the input counter starts to
count up from period #0. In the same way, when the first clock
pulse arrive to that same isochronous region, it corresponds to the
local clock period #0, and the output counter starts to count up
from that period. In such a way we have the same enumeration of
all clock and strobe periods in the system, so we do not need any
frame synchronization etc.
We may note that during the process described here we never
experience any risk for metastability, not even during startup. The
reason is that 1) the two FIFO pointers, clocked by different
clocks, never collide, and 2) the global clock is turned off during
reset, so the independently timed reset and clock never collide.
We should also note that clock and link delays may vary (within
certain limits) also during system operation, without any risk of
failure. Finally we use no analog functions whatsoever in the
design.

6. DESIGN CONSTRAINTS
Certain constraints must be fulfilled to guarantee error-free
function of the proposed communication scheme. Fig. 2 shows an
implementation with two links between three isochronous regions,
A, B and C. Let us further explain the proposed communication
process referring to the Tx1-Rx1 link in fig. 2. We show how a
global clock is distributed from a clock root to each isochronous
region. The total clock delays from the clock root to the
transmitter and receiver inside A and B respectively are tA and tB.
The clock at the transmitter is copied to the strobe sent from the
transmitter. We further introduce the delay of the communication
link, tL1, assumed equal for the data wires and the strobe wire.
Considering the 2-port memory as written and read at positive
clock edges, we may characterize its timing constraint as the

clock collision time tcc. tcc is defined as the minimum time
between write and read. Using the clock root as reference as
above, register0 is written by the positive clock edge at time
tA+tL1. The reading process of register0 starts at time tB+nT and
must not start before tcc after the write process. We therefore
have:

tA+tL1+tcc < tB+nT (1)

In the same way the start of next write process into that same
register, which occurs at time tA+tL1+mT must not start until tcc
after the read process. We therefor have the second constraint:

tB+nT+tcc < tA+tL1+mT (2)

The total "skew", defined as tA+tL1-tB may then vary within the
limits

(n-m)T+tcc < tA+tL1-tB < nT-tcc (3)

The nominal link delay, n, should thus be chosen from the
maximum possible total skew, consisting of the link delay, tL1 and
the clock skew, tA-tB. Note that in this case the absolute value of
clock skew is relevant, as we use the first clock cycle for local
clock cycle enumeration. After had chosen n, the number of
memory cells, m, should be chosen from the minimum possible
total skew (which may be negative if tL1 is small).

7. SIMULATION EXAMPLE
As a verification of the proposed method we performed a small
behavioral simulation. Two transmitters in two different
isochronous blocks, Tx1 and Tx2, and two receivers in the same
isochronous block, Rx1 and Rx2, were implemented in behavioral
VHDL, see fig. 3. In both links we have n=2 (two extra clock
delays on each link) and m=4. Three different clock delays from
clock root to Tx1, Tx2 and Rx resp. are defined, tA, tC and tB, as
are two different link delays, tL1 and tL2. One extreme simulated
example is shown in fig. 3, using a clock period of 5ns. The
curves shows from top: clock root, output from Tx1 (a data
sequence of 10110010110), data arrived to Rx1, Tx2 output (same
data sequence), data arrived to Rx2, output from Rx1 into Rx
block, output of Rx2 into Rx block, in-counter of Rx1, out-
counter of Rx1, in-counter of Rx2 and finally out-counter of Rx2.
In fig 3 we have all delays equal to 1ns except tL1 which is 9ns
(1.8 clock cycles). The large delay is seen as a delay between Tx1
out and Rx1 in in the figure. We note that in spite of very
different link delays, the data outputs from ports Rx1 and Rx2 in
the Rx block are completely synchronized (note that we
transmitted the same sequence from Tx1 and Tx2, aligned to
respectively local clock). We also simulated a case with the same
delays as above except the clock root to Rx block delay which is
tB=11ns (2.2 clock cycles). The large clock delay was noted as a
delay of 4.2 clock cycles (n + 2.2 clock cycles) from the start of
clk to the first data out at Rx1 out and Rx2 out. Again we
observed that correct and aligned data streams are received at
ports Rx1 out and Rx2 out in the Rx block.
The two cases represent extremes compared to the constraints eq.
(3). In the first case we have (n-m)T=-10ns, tA+tL1-tB=9ns and
nT=10ns for the worst case (Tx1-Rx1), giving us a margin of 1ns
for tcc. In the second case we have (n-m)T=-10ns, tA+tL2-tB=-9ns
and nT=10ns for the worst case (Tx2-Rx2), again giving us a
margin of 1ns for tcc.

 tB= clock delay for block B Clock root

A B

C

Tx2 out

Rx2 out

Rx1 out Tx1 out

 Rx1 in
 Rx2 in

Synchronizer as
in Figure 1

tA

tC
tL1 data

tL2

strobe

Figure 2. Clock and data links have delays and the n
clock-periods delay is replaced by a synchronizer.

73

8. DISCUSSION
The proposed scheme is easily generalized to multiport
isochronous regions, to any number of isochronous regions, to
bidirectional links and to any number of links. Extending the
number of ports into one isochronous region do not introduce any
problem, as the local clock is the same for all ports and as the
local clock period enumeration is based on this clock and not on
the strobes. Any number of isochronous regions can be used, as
each is managed independently of the others. A bidirectional link
is simply created by using two independent unidirectional links
(with individual strobes). Links can be extended to have multiple
receiving blocks, each with its own synchronizer. Finally, any
number of links between any isochronous regions can be
implemented, as each link is independent of the other links.

9. CONCLUSION
We have proposed a new method addressing the timing closure
problem in IC design. The method is based on early system
partitioning into synchronous blocks of limited size and the
insertion of fixed latencies between these blocks. These latencies
are automatically utilized to mitigate layout-induced delays and
clock skews during the physical design stage. The method has the
following benefits:

• Correct clock-true verification before synthesis and
physical design.

• Standard synchronous design framework kept
unchanged.

• Any standard digital cell library supports the method.

• Both data delays and clock skews induced by place and
route are mitigated.

• Robust to late changes in RTL-code or floorplan.

• Full clock alignment between blocks automatically
satisfied.

• Prevents redesign due to timing issues in back-end
design.

• Simplifies RTL sign-off for large high-speed designs.

10. REFERENCES
[1] M. Afghahi and C. Svensson, “Performance of Synchronous

and Asynchronous Schemes for VLSI Systems”, IEEE
Trans. on Computers, Vol. 41, pp. 858-872, 1992.

[2] L. P. Carloni, K. L. McMillan, A. Saldanha and A. L.
Sangiovanni-Vincentelli, "A Methodology for Correct-by-
Construction Latency Insensitive Design", 1999 IEEE/ACM
International Conference on Computer Aided Design, pp.
309-315, Nov. 1999.

[3] A. Chakraborty and M. R. Greenstreet, "A Minimal Source-
Synchronous Interface", 15th Annual IEEE International
ASIC/SOC Conference, pp. 443-447, Sept. 2002.

[4] T. Chelcea and S. M. Nowick, "Robust Interfaces for Mixed-
Timing Systems with Application to Latency-Insensitive
Protocols", Proceedings of 2001 Design Automation
Conference, pp. 21-26, June 2001.

[5] W. J. Dally and J. W. Poulton, Digital Systems Engineering,
Cambridge University Press, 1998, chapter 10.3.

[6] W. Gosti, S. P. Khatri and A. L. Sangiovanni-Vincentelli,
"Addressing the Timing Closure Problem by Integrating
Logic Optimization and Placement", IEEE/ACM Int.
Conference on CAD 1998, pp. 224-231, 2001.

[7] D. G. Messerschmitt, "Synchronization in Digital System
Design", IEEE Journal on Selected Areas in
Communications, vol. 8, pp. 1404-1419, 1990.

[8] D. Sylvester and K. Keutzer, "Getting to the bottom of deep
submicron", IEEE/ACM Int. Conference on Computer Aided
Design 1998, Digest of Technical Papers, pp. 203-211, 1998.

00 01 10 11 00 01 10 11 00 01

10 11 00 01 10 11 00 01 10 11 00 01

00 01 10 11 00 01 10 11 00 01 10

10 11 00 01 10 11 00 01 10 11 00 01

0 20 ns 40 ns 60 ns

00 01 10 11 00 01 10 11 00 01

10 11 00 01 10 11 00 01 10 11 00 01

00 01 10 11 00 01 10 11 00 01 10

10 11 00 01 10 11 00 01 10 11 00 01

Clk

Tx1 out

Rx1 in

Tx2 out

Rx2 in

Rx1 out

Rx2 out

Rx1 in count

Rx1 out count

Rx2 in count

Rx2 out count

Figure. 3. Examples of waveforms of a virtually synchronous link between two transmitters in different blocks, Tx1 and Tx2,
and two receivers in the same block, Rx1 and Rx2.

74

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

