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ABSTRACT 
A method to mitigate timing problems due to global wire delays is 
proposed. The method follows closely a fully synchronous design 
flow and utilizes only true digital library elements. The design is 
partitioned into isochronous blocks at system level, where a few 
clock cycles latency is inserted between the isochronous blocks. 
This latency is then utilized to automatically mitigate unknown 
global wire delays, unknown global clock skews and other timing 
uncertainties occurring in backend design. The new method is 
expected to considerably reduce the timing closure effort in large 
high frequency digital designs in deep submicron technologies. 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Style C  – VLSI 
(very large scale integration)  

General Terms: Design 

Keywords: Timing closure, wire delays, clock skew 

1. INTRODUCTION 
It has been recognized for a long time that integrated circuits in 
deep submicron technologies exhibits increased timing problems 
due to increased clock frequencies, increased complexity and 
increased wire delays [1,8,2]. These problems manifest 
themselves as a severe increase in verification cost (timing 
closure), increased problems to scale up the clock frequency and 
increased effort for clock distribution. Many methods to mitigate 
these problems have been proposed, often calling for more or less 
severe changes in a very well established standard design flow or 
for nonstandard library cells. However, any discrepancy from the 
established design flow severely hampers the acceptance of a new 
methodology. 

We aim at finding a design methodology that manages 
unpredictable wire delays (data delays and clock skew) with an 
absolute minimum of influence on the established design flow.  

We would like to see a methodology which allow the designer to 
complete his clock-true verification before moving into the 
synthesis step, to use only existing tools and design flow all the 
way to layout, and to use only standard library cells. 

In this paper we propose a scheme to mitigate the timing 
problems. Our main goal is to keep the fully synchronous design 
flow even for large high-speed designs in deep submicron 
processes. The idea is to take care of the inevitable wire delays 
already at architecture level, and then guarantee that the 
functional description at this level is valid all the way to layout.  
This idea thus follows the conclusions in [7] that keeping 
performance when meeting wire delay problems requires 
architectural level considerations 

Our scheme is based on the partition of a large design into 
isochronous blocks, still keeping global synchronism. Each 
isochronous block should be small enough not to exhibit severe 
wire delays [8]. Between the isochronous blocks we insert a few 
extra delays (pipelining). The extra delays are later utilized to 
automatically mitigate unknown wire delays and clock skew.  The 
proposed scheme simplifies timing closure and relaxes clock 
distribution constraints.  

In section 2 we describe previous work and in section 3 our 
proposed scheme. We describe the design methodology in section 
4 and a proposed implementation section 5, followed by a 
description of design constraints in section 6. In section 7 we 
demonstrate a simulated example. The paper is finished by a 
discussion and a conclusion in sections 8 and 9. 

2. PREVIOUS WORK 
One approach is to mitigate the timing problem though the 
improvement of present design methodology and improved tools. 
Such methods are based on a traditional, synchronous high level 
design flow, followed by a modified synthesis and backend flow, 
only leading to a limited improvement (less than 50% 
improvement of worst case delay) [6].  

More recent work propose synchronous solutions which makes a 
design functionally insensitive to the latency of long wires [2].        
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This Latency Insensitive Design  (LID) method partitions a large 
design into several communicating modules, where each module 
is "patient", that is its function only depends of the order of events 
reaching it. It is shown that the functionality of a system built 
with such modules is independent of the latency of the 
communications channels between the modules. A drawback with 
this method is that its performance (in cycle count for a certain 
operation) is not known until after backend.  

Alternative implementations of the physical layer of the LID 
method, based on FIFO’s, were proposed in [4]. These FIFO's 
perform synchronization between two clock domains in a similar 
way as some earlier proposed synchronizers based on parallel 
latches (or a pointer-FIFO) [4,5]. An elegant and very compact 
solution to the synchronization problem utilizes a single-stage 
FIFO, which behavior mimics a latch clocked from both clock 
domains [3]. 

3. PROPOSED SCHEME 
Let us define an isochronous region as a partition of the design 
within which the clock is synchronous  This means that the clock 
skew is small enough not to give rise to any races or hazards for 
any combination of cells in a given cell library. An isochronous 
region can therefore be automatically synthesized without risk for 
timing violations. The size of such a region is however limited, 
both in the number of gates and in physical size (making wire 
delays constrained to a given value). Let us further define a region 
boundary as the boundary between two isochronous regions. At 
system level, this boundary must allow a certain degree of latency 
for all signals passing the boundary; say n clock cycles (n>0). See 
fig. 2. Finally, output signals must be delivered directly from a 
flip-flop and inputs can be assumed to have a timing as if they 
were generated by internal flip-flops.  

These definitions are sufficient constraints to system level design 
and guarantee that the design can be implemented without timing 
problems. When implementing a design of this kind, certain 
timing cells are inserted at each signal that passes a region 
boundary. Such a cell can manage a single signal or a bundle of 
signals. A signal passing a boundary may pass to a neighboring 
region or to a remote region. For each independent signal or 
bundle of signals we add a strobe. 

The clock distribution network will deliver a clock to each 
isochronous region, with no skew constraint. Inside each region 
the clock distribution is stricter (which should not be a problem if 
the region is small enough).  

4. DESIGN METHODOLOGY 
The main goal with the present work is to device a design method 
that mitigates the problem of timing closure. This is achieved as 
follows. At early high-level system design, the design is 
partitioned into blocks of limited size (anticipated limited 
physical size) and with defined block-to-block link latency. 
Typically, the partitioning should follow the blocks in a 
functional block diagram, and not divide a function into several 
blocks. The size of each block should be small enough not to 
cause timing closure problems at the actual clock frequency when 
treated as a separate design in the target process. Next, the 
maximum delay for the longest path of the full chip is estimated. 
Also, easily achievable inter-block clock skew, i.e. difference 
between maximal and minimal clock insertion delay, is estimated. 

Using the equations derived in section 6, a value of n (the 
pipelining in the link) is calculated from these estimations. For 
certain critical block-to-block links a lower value of n can be 
chosen, if it can be foreseen that the floorplan allows a physically 
shorter link. However, if we can use the calculated value for n in 
all links, no floorplan decisions are required until back-end work 
starts. Selected values for each link are implemented as an n 
clock-cycle long delay unit in the clock-cycle true model of the 
design, (fig. 2). This model of the system is used throughout the 
design phase and also used for clock-cycle true verification. Here, 
the design methodology will also have an indirect impact. 
Although all link delays are early defined we can guarantee that 
back-end design will not require any changes in the design. Thus, 
re-design and re-verification due to implementation problems can 
be avoided. 
During the following synthesis, the n-cycle delays are replaced by 
two-port memory synchronizers (see below). These memory 
blocks are generated using flip-flops from the standard cell library 
as storage elements. The cells for the two-port link memory are 
placed in the receiving block.  
The high-level design partitioning mentioned above is course-
grained and considered to be a natural part of system architecture. 
The isochronous regions or blocks are typically processors, 
controllers, or memories. These blocks are thus relatively self-
contained and have well-defined interfaces to other blocks. In IP-
based designs, each IP normally constitutes one isochronous 
region. 

5.  IMPLEMENTATION 
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Figure 1. Two-port memory synchronizer. 

 
We will now describe a possible implementation of the proposed 
scheme, based on the well-known FIFO synchronizer [5]. As said 
above, a certain timing cell is inserted at each signal or signal 
bundle passing a region boundary. Such a timing cell is an m-
word two-port memory with separate writing and reading ports, 
inserted on the target side of the boundary. A schematic of the 
timing cell is shown in Figure 1. Any incoming word is 
consecutively written into the memory cells, using round robin 
addressing and clocked by the incoming strobe. The memory cells 
are simultaneously read, using a delayed round robin addressing 
and clocked by the local clock in the target region. The addressing 
delay between write and read, and the number of words in the 
memory, is chosen so that write and read instances can never 
collide, taking the maximum skew between the two regions into 
account.  
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In order to facilitate global synchronization and clock alignment, 
all local clock periods must be enumerated in the same way. This 
means that we must relate each word arriving to an isochronous 
region to a corresponding local clock cycle. A very simple 
procedure to accomplish this is as follows. The system is initiated 
by a global, asynchronous reset with no clock running. During 
this reset the counters is reset to zero and m-n respectively. Then 
the clock starts. The first clock cycle is distributed to each 
isochronous region via the clock distribution network. Each 
transmitter sends a strobe, which is equal to the clock at that 
transmitter. When the first strobe pulse arrives to the receiver, it 
corresponds to clock period #0 and the input counter starts to 
count up from period #0. In the same way, when the first clock 
pulse arrive to that same isochronous region, it corresponds to the 
local clock period #0, and the output counter starts to count up 
from that period. In such a way we have the same enumeration of 
all clock and strobe periods in the system, so we do not need any 
frame synchronization etc. 
We may note that during the process described here we never 
experience any risk for metastability, not even during startup. The 
reason is that 1) the two FIFO pointers, clocked by different 
clocks, never collide, and 2) the global clock is turned off during 
reset, so the independently timed reset and clock never collide. 
We should also note that clock and link delays may vary (within 
certain limits) also during system operation, without any risk of 
failure. Finally we use no analog functions whatsoever in the 
design. 

6. DESIGN CONSTRAINTS  
Certain constraints must be fulfilled to guarantee error-free 
function of the proposed communication scheme. Fig. 2 shows an 
implementation with two links between three isochronous regions, 
A, B and C. Let us further explain the proposed communication 
process referring to the Tx1-Rx1 link in fig. 2. We show how a 
global clock is distributed from a clock root to each isochronous 
region. The total clock delays from the clock root to the 
transmitter and receiver inside A and B respectively are tA and tB. 
The clock at the transmitter is copied to the strobe sent from the 
transmitter. We further introduce the delay of the communication 
link, tL1, assumed equal for the data wires and the strobe wire. 
Considering the 2-port memory as written and read at positive 
clock edges, we may characterize its timing constraint as the 

clock collision time tcc. tcc is defined as the minimum time 
between write and read. Using the clock root as reference as 
above, register0 is written by the positive clock edge at time 
tA+tL1. The reading process of register0 starts at time tB+nT and 
must not start before tcc after the write process. We therefore 
have: 

tA+tL1+tcc < tB+nT      (1) 

In the same way the start of next write process into that same 
register, which occurs at time tA+tL1+mT must not start until tcc 
after the read process. We therefor have the second constraint: 

tB+nT+tcc < tA+tL1+mT    (2) 

The total "skew", defined as tA+tL1-tB may then vary within the 
limits 

(n-m)T+tcc < tA+tL1-tB < nT-tcc    (3) 

The nominal link delay, n, should thus be chosen from the 
maximum possible total skew, consisting of the link delay, tL1 and 
the clock skew, tA-tB. Note that in this case the absolute value of 
clock skew is relevant, as we use the first clock cycle for local 
clock cycle enumeration. After had chosen n, the number of 
memory cells, m, should be chosen from the minimum possible 
total skew (which may be negative if tL1 is small). 

7. SIMULATION EXAMPLE 
As a verification of the proposed method we performed a small 
behavioral simulation. Two transmitters in two different 
isochronous blocks, Tx1 and Tx2, and two receivers in the same 
isochronous block, Rx1 and Rx2, were implemented in behavioral 
VHDL, see fig. 3. In both links we have n=2 (two extra clock 
delays on each link) and m=4. Three different clock delays from 
clock root to Tx1, Tx2 and Rx resp. are defined, tA, tC and tB, as 
are two different link delays, tL1 and tL2. One extreme simulated 
example is shown in fig. 3, using a clock period of 5ns. The 
curves shows from top: clock root, output from Tx1 (a data 
sequence of 10110010110), data arrived to Rx1, Tx2 output (same 
data sequence), data arrived to Rx2, output from Rx1 into Rx 
block, output of Rx2 into Rx block, in-counter of Rx1, out-
counter of Rx1, in-counter of Rx2 and finally out-counter of Rx2. 
In fig 3 we have all delays equal to 1ns except tL1 which is 9ns 
(1.8 clock cycles). The large delay is seen as a delay between Tx1 
out and Rx1 in in the figure. We note that in spite of very 
different link delays, the data outputs from ports Rx1 and Rx2 in 
the Rx block are completely synchronized (note that we 
transmitted the same sequence from Tx1 and Tx2, aligned to 
respectively local clock). We also simulated a case with the same 
delays as above except the clock root to Rx block delay which is 
tB=11ns (2.2 clock cycles). The large clock delay was noted as a 
delay of 4.2 clock cycles (n + 2.2 clock cycles) from the start of 
clk to the first data out at Rx1 out and Rx2 out. Again we 
observed that correct and aligned data streams are received at 
ports Rx1 out and Rx2 out in the Rx block.  
The two cases represent extremes compared to the constraints eq. 
(3). In the first case we have (n-m)T=-10ns, tA+tL1-tB=9ns and 
nT=10ns for the worst case (Tx1-Rx1), giving us a margin of 1ns 
for tcc. In the second case we have (n-m)T=-10ns, tA+tL2-tB=-9ns 
and nT=10ns for the worst case (Tx2-Rx2), again giving us a 
margin of 1ns for tcc. 
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Figure 2. Clock and data links have delays and the n 
clock-periods delay is replaced by a synchronizer. 
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8. DISCUSSION 
The proposed scheme is easily generalized to multiport 
isochronous regions, to any number of isochronous regions, to 
bidirectional links and to any number of links. Extending the 
number of ports into one isochronous region do not introduce any 
problem, as the local clock is the same for all ports and as the 
local clock period enumeration is based on this clock and not on 
the strobes. Any number of isochronous regions can be used, as 
each is managed independently of the others. A bidirectional link 
is simply created by using two independent unidirectional links 
(with individual strobes). Links can be extended to have multiple 
receiving blocks, each with its own synchronizer. Finally, any 
number of links between any isochronous regions can be 
implemented, as each link is independent of the other links.  

9. CONCLUSION 
We have proposed a new method addressing the timing closure 
problem in IC design. The method is based on early system 
partitioning into synchronous blocks of limited size and the 
insertion of fixed latencies between these blocks. These latencies 
are automatically utilized to mitigate layout-induced delays and 
clock skews during the physical design stage. The method has the 
following benefits: 

• Correct clock-true verification before synthesis and 
physical design. 

• Standard synchronous design framework kept 
unchanged. 

• Any standard digital cell library supports the method. 

• Both data delays and clock skews induced by place and 
route are mitigated. 

• Robust to late changes in RTL-code or floorplan. 

• Full clock alignment between blocks automatically 
satisfied. 

• Prevents redesign due to timing issues in back-end 
design. 

• Simplifies RTL sign-off for large high-speed designs. 
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Figure. 3. Examples of waveforms of a virtually synchronous link between two transmitters in different blocks, Tx1 and Tx2, 
and two receivers in the same block, Rx1 and Rx2.  
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