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ABSTRACT  
Prior work on TLB power optimization considered circuit and 
architectural techniques. A recent software-based technique for 
data TLBs has considered the possibility of storing the frequently 
used virtual-to-physical address translations in a set of translation 
registers (TRs), and using them when necessary instead of going to 
the data TLB. This paper presents a compiler-based strategy for 
increasing the effectiveness of TRs. The idea is to restructure the 
application code in such a fashion that once a TR is loaded, its 
contents are reused as much as possible. Our experimental 
evaluation with six array-based benchmarks from the Spec2000 
suite indicates that the proposed TR reuse strategy brings 
significant reductions in data TLB energy over an alternate 
strategy that employs TRs but does not restructure the code for TR 
reuse  

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors –compilers.  

General Terms 
Performance, Experimentation. 

Keywords 
Code restructuring. 

1. BACKGROUND AND MOTIVATION 
The TLB provides a translation from a virtual address (provided by 
the load/store instruction) to a physical address. Depending on the 
time at which it is performed, this operation can get in the critical 
path. Moreover, even in the cases that it is not in the critical path, 
it can consume a significant amount of dynamic power during 
execution as it is accessed at each load operation.   

TLBs are generally designed very carefully at the circuit level to 
minimize their access times and hit rates. Consequently, they are 
usually highly associative structures. This characteristic, combined 
with the fact that they are accessed at each memory reference, can 
result in significant amount of dynamic power consumption. For 
example, according to data sheets, in both Hitachi SH-3 and Intel 
StrongARM, instruction and data TLBs together can consume over 
15% of the overall on-chip budget [16, 7]. In addition, since TLBs 
are small in size, their power densities tend to be high [9].  

Because of these factors, it is important to optimize TLB power 
consumption.  

Optimizing TLB performance has a long history [10, 3]. Prior 
research in reducing TLB energy considered both circuit level and 
architectural techniques [8, 13, 4, 5, 11, 12]. A recent work has 
proposed the use of translation registers (TRs) to reduce the energy 
spent in data TLB (dTLB) accesses [9]. The idea can be 
summarized as follows.  

The architecture provides n-1 translation registers, whose format 
is:  
[Virtual Page Number, Physical Frame Number, Protection Bits]. 

These registers are manipulated by a special loadTR instruction:  
loadTR Virtual Address, TRi. 

When this instruction is issued, the hardware uses the virtual page 
number that is given, and goes to the dTLB to get the 
corresponding entry (or to the page table if it is not in the dTLB). 
It, then, puts this entry (which consists of the physical frame 
number, protection and other book-keeping bits such as 
modified/referenced, etc.) into the specified TRi. The program is 
not allowed to modify the physical address or the protection bits 
that get loaded into the TR, as that would compromise protection. 
When a load/store is issued, some bits of the address (indicated in 
the load/store) are used to specify whether to go through the dTLB 
or whether to find the translation within a specific TR. 
Specifically, one can use the top log n bits (where n-1 is the 
number of TRs) to indicate whether the address should go through 
the dTLB for a translation (which corresponds to all these log n 
bits being 0) or whether to take the physical frame number from a 
TR, and if so, which specific one. Note that, while it is also 
possible to associate these log n bits with the instruction itself, this 
presents at least two drawbacks. First, this can increase the decode 
logic complexity as a result of an increase in instruction sizes. 
Second, this prevents a load operation in the program from using 
different TRs at different execution phases. 

In our approach, the compiler is responsible for setting these bits. 
Whenever the compiler knows for sure that a TRi has the 
translation that is needed, it forces these bits to correspond to that 
TRi. Otherwise (i.e., if the compiler is not 100% sure), it will 
conservatively set them to 0 so that the translation goes to the 
dTLB.  

We assume that arrays in the code are aligned to page boundaries, 
which can be ensured using existing compiler directives (e.g., SGI 
MIPSPro compiler has a directive to enforce this). The idea behind 
our scheme is to load TRs whenever we notice that this translation 
is going to be heavily used in the near future. Consider the code 
fragment below: 

for i: 1, N 
   …U1[i]…U 2[f(i)]…  
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where f() is not a compiler-analyzable function. In this case, the 
compiler restructures the computation around U1 using a loop 
transformation called strip-mining [17]: 

for s: 1, N, P 
  load translation for U1[s] to TRj 
  for i: s, max(s+P,N)  
    access U1[i] through TRj  
    access U2[i] through dTLB 

In this code sketch, P is the data page size. The first loop iterates 
over the pages, and before starting to process a new page, TRj is 
loaded (updated) from the dTLB with the associated translation. 
The inner loop, on the other hand, iterates over the current page 
using the translation in TRj (for U1). That is, during the execution 
of the inner loop, the accesses to array U1 do not lookup dTLB. 
Array U2, on the other hand, is accessed through dTLB.  

It is to be observed that satisfying most of the address translations 
from the TRs can bring large power benefits since (1) each TR has 
a very small per access power consumption compared to a dTLB, 
and (2) we do not perform any tag comparison when a TR is 
accessed. Consequently, it is important to make sure that most of 
the translation requests are satisfied from the TRs. Satisfying this 
goal depends on two major factors. First, the number of TRs can 
make a difference as more TRs means less dTLB visits (since we 
can capture more address translations, e.g., coming from different 
arrays). Second, the data access pattern determines the order in 
which address translations are requested. While the first factor is 
not something that can be changed easily, the second factor can be 
controlled by performing source code level modifications to the 
application. In particular, an optimizing compiler can play a crucial 
role here as the code/data optimizations it performs can change the 
data access pattern entirely. This paper proposes a fully automatic 
compiler-based strategy that increases the effectiveness of the TRs 
by satisfying a majority of the translation requests from them. It 
achieves this by restructuring the code (data access pattern) in such 
a way that the resulting code reuses the contents of a given TR as 
much as possible. In other words, the objective here is to increase 
TR reuse. However, since we are restructuring the code, the 
impact of our transformations on other aspects of the code (e.g., 
cache behavior) should be studied as well. In particular, an 
important question is how our code modifications interact with 
other compiler optimizations.   

Our focus in this paper is on array-intensive applications. Our 
experiments with a set of six Spec2000 array benchmarks indicate 
that the proposed compiler-based scheme cuts the number of dTLB 
accesses significantly, thereby reducing the energy spent in address 
translation. Even more importantly, the proposed scheme 
outperforms a technique that uses TRs but does not restructure the 
application code for TR reuse. The experimental analysis also 
shows that the proposed scheme performs consistently well under a 
wide variety of simulation scenarios.  

The rest of this paper is organized as follows. Section 2 presents 
our code restructuring strategy in detail. Section 3 introduces our 
experimental setup, and Section 4 discusses experimental results. 
Section 5 concludes the paper with a summary. 

2. DATA-CENTRIC CODE 
RESTRUCTURING 
We propose a compiler-directed data-centric code restructuring 
strategy for utilizing the TRs. We first focus on single array case, 
and then later show how our approach extends to multiple arrays 
case.  

A page region of an array is the set of consecutive elements that 
map to the same data page. Our approach operates on a graph 

structure called the page dependence graph (PDG). In this graph, 
each node corresponds to a set of loop iterations that access the 
elements in a particular page region. The edges between the nodes 
indicate data dependences. A traversal of this graph corresponds to 
the execution of the iteration spaces of all the loop nests in the 
code. A legal traversal is the one that respect all data 
dependences. Consider, for example, the code fragment shown in 
Figure 1(a), where four different loop nests access an array (U). 
Figure 1(b) shows how the array is divided into five page regions, 
and Figure 1(c) gives the PDG under this page region partitioning. 
To obtain this graph, each loop nest is divided into five sets. The 
iterations in the set (represented by a PDG node) marked Iij 
represent the loop iterations of nest i that access the page region j.  

In the next step, we schedule the nodes in this graph in such a way 
that the nodes that access the same page region are scheduled 
successively (i.e., one after another) as much as possible. The 
rationale behind such a schedule is to utilize the current TR 
contents as much as possible; i.e., to maximize TR reuse.  

Returning to our running example, Figure 1(d) depicts a possible 
schedule (dashed curve) determined by our approach (which will 
shortly be presented). Note that, in a sense, such a schedule (which 
starts with I11 and ends with I45) represents the ideal scenario 
where a page region is fully utilized by all loop nests before 
moving to the next page region. That is, once a TR is loaded a 
translation, that translation is reused as much as possible. This 
means that, even if we have more TRs, we could not reduce the 
number of dTLB lookups. As a second example, Figure 2 shows 
another PDG and a possible schedule determined by our approach. 
It is to be noted that the extra dependences in this example prevent 
us from fully utilizing the current page region. Consequently, each 
page region needs to be visited twice, which may mean extra TR 
updates (loads), depending on how many TRs we have.   

Formally, let us assume, without loss of generality, that the 
program to be optimized has s loop nests, and I1, I2, …, Is denote 
the iteration sets of these nests (each iteration set contains the 
iterations executed by a loop nest). We define the computational 
space of the program, Ic, as: 

Ic = ∪k Ik, 
where ∪ denote set union and 1 ≤ k ≤ s. As has been discussed 
earlier, we use Iij to denote the set of iterations from loop nest i 
that access the page region j. In formal terms, l ∈ Iij if and only if 
the following holds: 

Figure 1. 

(d) A possible schedule 

 (b) Page regions of array U 

for i: 1, N 
  for j: 1, N 
    U[i, j] = …  
for i: 1, N 
  for j: 1, N 
    U[i, j] = U[i, j] + 1 
for i: 1, N 
  for j: 1, N 
    U[i, j] = U[i, j] * U[i, j] 
for i: 1, N 
  for j: 1, N 
    U[i, j] = U[i, j] - 1 

PR1PR2PR3PR4PR5PR1PR2PR3PR4PR5  

 (a) Example code fragment 

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45  
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I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I11 I12 I13 I14 I15I11 I12 I13 I14 I15

I21 I22 I23 I24 I25I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I31 I32 I33 I34 I35I31 I32 I33 I34 I35

I41 I42 I43 I44 I45I41 I42 I43 I44 I45

 

(c) PDG for the code fragment 
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∃ R and ∃d ∈ PRj such that R(l) = d, 
where R is a reference in nest i, and PRj indicates the page region 
j. That is, iteration l (of nest i) should access a data element from 
page region j. Note that: 

∪i∪j Iij = Ic. 
We say that there is a data dependence between Iij and Imn if an 
iteration that belongs to Imn depends on (the result generated by) 
an iteration of Iij. As will be discussed shortly, in our approach, the 
nodes of this graph are scheduled using a heuristic algorithm, 
which is based on list scheduling, a scheduling paradigm used by 
compilers [14] and high-level synthesis tools [6]. Specifically, the 
algorithm first divides the PDG nodes into chains and schedules 
one chain at a time. In mathematical terms, if possible, we want 
the execution to move always from Iij to Ikj. That is, we want to 
stay within the same page region as long as possible. As has been 
discussed earlier, this helps improve TR reuse and reduce the 
number of TR updates/dTLB references. Therefore, our chain-
building strategy tries to place such nodes into the same chain. 

It should be observed that this approach requires only one TR if all 
the nodes that access a given page region can be scheduled one 
after another. For example, considering the schedule depicted in 
Figure 1(d), we can traverse all the nodes (which is the entire 
computational space) using only a single translation register; that 
is, the TR is updated only once per page region (in the first 
access). However, when we have a schedule like the one 
illustrated in Figure 2, we have two options. If we use only a single 
TR, we need to update the TR 10 times (including the initial loads 
for page regions). Alternately, we can use multiple TRs to cut the 
number of TR updates. For example, if we have 5 TRs, we can 
assign a TR to each page region, and can cover the entire 
computational space with just 5 TR updates (all of them being 
initial loads). Consequently, the number of TRs can play a crucial 
role in overall behavior of the application. As a result, effective 
use of available TRs is critical. 

An important question that needs to be answered, though, is how 
can we schedule a PDG with r translation registers (1 ≤ r ≤ N, 
where N is the total number of page regions) such that the number 
TR updates is minimized? Note that minimizing the number of TR 
updates is important as each such update increases the code size, 
and causes extra energy consumption in datapath and instruction 
cache/memory (in addition to the dTLB visit it entails). We 
address this issue by adopting a strategy, which works as follows. 
In the first step, we identify a set of threads (data dependence 
chains, or simply chains) in the PDG. Each such chain consists of 
set of nodes and edges, and does not share a node or edge with the 
other chains, except for the start or end nodes of the chain. We use 
s to denote the number of such chains. If r ≥ s, that is, the number 
of TRs is larger than the number of independent chains, we assign 
a private TR to each chain. Note that, with such an assignment, the 
contents of a TR are updated only for the initial loads. Therefore, 
the total cost of such an assignment is s. A TR is said to have 
completed its chain when it reaches the end node of the chain. 
Figure 3(a) depicts this situation for an example PDG with r=5. 

Note that, in this example, we have 5 independent chains, i.e., 
s=5. A more interesting scenario occurs when r ≤ s. In this case, 
we still assign one TR per chain. However, a TR is reassigned to 
another chain (that has not been assigned a TR yet) when it 
completes its current chain. An example of this scenario is 
illustrated in Figure 3(b), assuming r=3 (and, s=5 as before). 
However, this is still a preferable scenario since the only TR loads 
we make are the ones necessary when we move from one data page 
to another (i.e., the initial loads).  

It should be observed that once a chain is scheduled we may not be 
able to execute all its nodes one after another. This can happen as 
a result of the dependences between the chains. That is, if there is 
an edge entering to the chain from a node outside that chain, it is 
not possible to complete the chain without executing (scheduling) 
the mentioned (outsider) node. In this case, such a chain is treated 
as not a monolithic chain but a sequence of subchains; and, our 
algorithm schedules each subchain separately. However, the 
algorithm also tries to use the same TR for all subchains of a given 
chain as much as possible. The sketch of our algorithm is given in 
Figure 4. In this algorithm, at each iteration of the while loop, a 
new subchain is selected and scheduled. Note that this is a 
compiler algorithm and executed off-line, and in the last step, it 
builds the code for each subchain. The resulting (restructured) 
code is then executed at runtime. 

Before giving examples to illustrate how this algorithm works in 
practice, let us explain our chain/subchain-building process in 
more detail. Our algorithm for constructing chains is rather simple. 
We first start with a node Iij and expand it with nodes Ikj (k≠i) until 
we reach the point where it is not possible to expand it further. 
The selected nodes (that start with Iij) form a chain. Then, we 
select a new node (which is different from the ones that have 
already been placed into a chain), and repeat the process. This 
continues until all the nodes have been assigned to chains.  

Our algorithm for constructing subchains is similar to the chain 
construction algorithm described in the previous paragraph. 
Basically, we iterate over each chain determined by the chain 
construction algorithm. For each chain, we identify the points 
where there is a dependence from an outsider node to a node in the 
chain. All such nodes in the chain delimit the subchain boundaries. 
However, once a subchain is detected, all its nodes and connected 
edges are removed from the PDG, before starting to search for the 
next subchain. 

As an example, let us re-consider the PDG in Figure 1. Our 
algorithm identifies five chains, and since these chains are not 
connected, we have no subchains. Within the while loop of the 
algorithm in Figure 4, at each iteration, we select a chain and 
assign a TR to it. If we do not have enough TRs to assign a private 
TR to each chain, we reuse TRs (compare the cases in Figures 3(a) 
and 3(b)). Note that this does not cause any additional overhead 
for this example as, no matter what TR is used, each chain 
requires one TR update (the initial load). As a second example, 
consider the PDG in Figure 2. In this case, our algorithm identifies 
the same chains as before. However, this time the chains are 

Figure 2. An example PDG and a possible schedule. 
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Figure 3.Two different TR assignments. (a) 5 TRs. (b) 3 TRs. 
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dependent on each other. Consequently, the algorithm also 
identifies subchains. Note that each subchain contains a set of 
nodes, with the characteristic that the entire subchain can be 
executed without interruption when the first node starts executing. 
In this case, we divide each chain into two subchains, and schedule 
the subchains observing the data dependences between them. 
However, we are also careful in assigning the TRs in such away 
that both the subchains of a given chain use the same TR.  

In our discussion so far, we omitted an important point, which is 
the possibility that a loop iteration can touch different page 
regions. After all, if there is no data elements shared among Iijs of 
a given nest i, we cannot talk about data dependences among them 
either. Our approach to this problem can be explained as follows. 
Note that, when an iteration accesses multiple page regions, Iijs 
share page regions. For example, consider the following nested 
loop and the assignment statement within it: 
                         for i: 1, N 
                            for j: 2, N 
                               U[i, j] = U[i, j-1] +1 
The iteration point (k1,k2) accesses array elements U[k1, k2] and 
U[k1, k2-1], and these two elements can be in two different page 
regions. Now, another iteration point, (k1,k2-1), which maps to a 
different PDG node than (k1,k2), accesses array elements  U[k1, k2 -
1] and U[k1, k2-2]. That is, this iteration point shares a page region 
with (k1,k2). Since such problematic iteration points occur only 
across the page region boundaries, our implementation handles 
these iteration points separately. Returning to the example above, 
assuming that iterations (k1,y) [1 ≤ y ≤ k2-1] access only page 
region 1, iteration (k1,k2) accesses both page region 1 and page 
region 2, and iterations (k1,y) [k2+1 ≤ y ≤ N] access only page 
region 2, and that we have only two page regions, we generate two 
loop nests in the restructured code, each using its own page region 
(if we have 2 TRs, each can use a private TR). We will also have a 
separate statement between these two nests for executing iteration 
point (k1,k2). In this statement, the first array reference will be 
accessed via the first TR, and the second array reference will be 
accessed via the second TR. Since the page regions are large, we 
do not expect too much increase in code size or deterioration in 
instruction cache performance. In our experiments, we also 
quantify the increase in the code size as a result of our dTLB 
optimization.  

When we have multiple arrays in the code, it is more difficult to 
determine a good strategy to traverse the loop iterations in the 
computational space.  Basically, the main problem is to determine 
an array to restructure the computation around. This array is called 
the seed array. However, one needs to be careful in selecting the 
seed array as restructuring the entire computation around one array 
can lead to frequent dTLB visits (TR loads) during the accesses to 
the remaining arrays. That is, maximizing TR reuse for one array 
may not be preferable (let alone being optimal) for the 
performance of accesses to the remaining arrays.   

Figure 5 illustrates an example where we have three arrays 
accessed by a code fragment. If we select array U1 as the seed array 
and restructure the entire code around this array (as if it is the only 
array accessed by the application code), we should consider the 
impact of this on arrays U2 and U3. A similar argument can be 
made for other two alternatives as well (i.e., using U2 or U3 as the 
seed arrays).  

To address this problem, we use a strategy based on estimating the 
number of TR updates. This is possible in our application domain 
where nested loops access multi-dimensional arrays, and the 
compiler can figure out the data access patterns by analyzing the 
code being optimized. In addition, even large programs typically 
have a small number of arrays. Therefore, considering each array 
in turn (as a potential for using to restructure the code around) is 
not expected to incur too much overhead at compilation time. 
Focusing on the example discussed in the previous paragraph, our 
approach considers each array in turn and determines the total 
number of TR updates when the array being considered is used to 
restructure the code. Note that, in calculating the number of TR 
updates, we consider all the arrays in the code (not just the one 
being used as the seed array). This process is repeated for each 
array, and the one that leads to the minimum number of TR 
updates is selected, and the entire computational space is 
restructured using that array.  

2.1 Discussion  
It should be noted that our TR-based execution strategy is safe 
from the OS viewpoint. The only operation allowed for the 
programmer/compiler is to load a TR from the dTLB. The TRs 
themselves cannot be manipulated by normal register operations. 
As a result, a wrong update of a TR can at most corrupt the 
address space of the program in question (not the address space of 
some other program). Also, when context switching from one 
address space to another, the TRs can be treated as normal 
registers, i.e., they can be saved and restored. Therefore, they pose 
no problem even in a multi-programmed embedded environment.  

Another important issue is how our optimization affects the impact 
of other compiler optimizations and how it interacts with other 
code transformations. It should be noted that our approach tries to 
obtain data page-level locality as much as possible so that the TR 
reuse can be increased. However, this does not guarantee good 
data cache behavior as the unit of transfer between the cache and 
the memory is a cache line (block), which is much smaller in size 
than a data page. Consequently, the compiler needs to apply cache 

Build computational space 
Build the PDG (page dependence graph) 
Determine the chains in the computational space  
Divide chains into subchains if necessary 
While (there are subchains to schedule) 
 Select a schedulable subchain  
 Assign a TR to the subchain based on the following two constraints: 
    1. where possible, use the same TR as the other subchains of the chain   
        this subchain  belongs to.  
    2. where possible, do not use a TR assigned  to an unrelated subchain  
EndWhile 
Generate code for each subchain based on data dependence between subchains 

Figure 4. Subchain scheduling algorithm. 

U3

Computational Space

U2U1 U3

Computational Space

U2U1  U3

Computational Space

U2U1 U3

Computational Space

U2U1  U3

Computational Space

U2U1 U3

Computational Space

U2U1  

Figure 5. Alternative ways of proceeding for a case with 3 arrays. 

Simulation Parameter Value 
L1 Data and Instruction Caches 16KB, 4-way, 32 byte blocks, 1 cycle 

latency, write-back policy 
Unified L2 Cache 256KB, 4-way, 128 byte blocks, 10 

cycle latency, write-back policy 
Data and Instruction TLBs single-level, 128 entries, full-

associative, 50 cycle miss penalty  
Page Size 4KB 
Off-Chip DRAM 128MB (divided into 32MB blocks), 

100 cycle latency 

 

Table 1. Default simulation parameters used in our experiments. 
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locality enhancing transformations following our code 
optimization. If the code is already modified for data cache 
locality, this can increase the effectiveness of our approach since 
there is more page reuse to exploit. However, even in this case, our 
code transformation still needs to be applied, as we need to make 
the page boundaries explicit so that our instructions can be 
inserted in the code.  The detailed discussion of the interactions 
between our approach and conventional code optimizations is 
beyond the scope of this paper.  

3. EXPERIMENTAL SETUP 
We enhanced SimpleScalar simulator [2] to perform a detailed 
performance and energy evaluation of the proposed scheme. The 
default simulation parameters are given in Table 1. Note that we 
use 50 cycles (instead of 100 cycles) for the TLB miss penalty, 
assuming that some of TLB misses (translations) could be satisfied 
from the cache. The dTLB energy consumptions (to be presented 
later) have been obtained using a modified version of CACTI [15]. 
Note that one could potentially have optimized the TLB structure 
to reduce the per access dTLB energy; but this would not affect our 
conclusions as we are interested in the reduction in dTLB accesses 
and percentage dTLB energy savings.  

Array accesses are dominant in many applications. In this study, 
we used six randomly selected benchmark codes from the 
Spec2000 benchmark suite. Table 2 gives these benchmark codes 
along with their dTLB accesses/misses and dTLB energy 
consumptions with the default simulation parameters shown in 
Table 1. While most of these codes are dominated by global array 
accesses, there are also nonnegligible stack references. Therefore, 
in all our experiments, we reserved one TR exclusively for the 
stack references. This is sufficient as stack references exhibit very 
good data locality.   

We performed experiments with two different optimized versions 
of each benchmark code in our suite: 

1. Base-Opt: This version is adapted from [9], and uses the 
available TRs as efficiently as possible. However, it does this 
without changing the structure of the code (except for loop strip-
mining as explained earlier and loop distribution when 
appropriate). That is, it represents the best results (the minimum 
number of dTLB accesses) under the condition that the program 
structure is not modified for TR reuse.  

2. Structured-Opt: This is the version described in this paper. 

All necessary code restructurings have been automated using the 
SUIF infrastructure [1]. All the performance and energy savings 
are given (in the following paragraphs) with respect to the original 
codes that do not make use of TRs. The behavior of this original 
version is summarized in Table 2. To obtain these results, we fast-
forwarded 1 billion instructions, and simulated the next 300 
million instructions in detail. While we have performed 
experiments with both VI-PT (virtually-indexed, physically-
tagged) and VI-VT (virtually-indexed, virtually-tagged) L1 caches, 
due to space concerns, we present only the VI-PT results. Also, 
since global “scalar” references are not significant in these 

benchmarks, we do not allocate any registers for them, and they 
always go through the dTLB. 

4. RESULTS 
In our first set of experiments, we measure the success of Base-Opt 
and Structured-Opt in reducing the number of dTLB accesses. The 
results are given in Figure 6. On the x-axis, the pair (a,b) indicates 
“a” TRs for the stack and “b” TRs for the array references. As 
discussed earlier, in our experiments “a” is always 1. The y-axis 
gives the number of dTLB accesses as a fraction of the original 
case where we do not use any TRs. We first notice that the 
applications with large number of stack references benefit from 
allocating a TR for stack references (that is, the configuration (1,0) 
on the x-axis). On the other hand, we do not gain much with this 
configuration in other benchmarks since the global references 
dominate memory accesses. As we increase the TRs for global 
arrays, one can observe that the number of dTLB visits reduces 
significantly for both Base-Opt and Structured-Opt. In particular, 
with the (1,8) configuration – i.e., a total of only 9 TRs – the 
normalized dTLB lookups is 54.5%  and 32.6%, on the average, 
for Base-Opt and Structured-Opt, respectively. We also see that, in 
all benchmark codes considered, Structured-Opt outperforms Base-
Opt as the former increases the reuse of TR contents.  

While the reduction in dTLB misses is an important metric, one 
would ultimately be interested in reducing the dTLB energy 
consumption. Also, one could ask how our approach compares with 
respect to a multi-level dTLB structure. To answer these questions, 
in our next set of experiments, we measured the normalized dTLB 
energy consumptions. Figure 7 shows these results as a fraction of 
the monolithic 128-entry dTLB (without any TR). The bars on the 
left side of each graph show the energy consumption with our 
scheme using different number of TRs for stack and global 
references. It should be emphasized that the energy values given in 
this figure include the energy cost of accessing the TRs (in 
addition to the dTLB lookups). The bars on the right side of each 
graph give the total energy consumption for a two-level dTLB 
structure. In this structure, the second level has always 128 entries; 
and we vary the entries in the first level from 1 to 8.  

We see from these graphs that our scheme (Structured-Opt) brings 
much more benefits as compared to a multi-level dTLB, with the 
first level having as many entries as the TRs in our scheme. This is 
due to three main factors. First, since a TR access in our scheme 
does not involve any tag comparison cost, it is more efficient than 
a multi-level dTLB access even if the latter hits in the first level. 
Second, the per access dynamic energy cost of a multi-level 
increases when the number of entries in the first level is increased. 
Third, since the TRs are managed by the software (compiler), they 
are more effective (in terms of exploiting locality) than LRU-
managed dTLBs.  

The next metric that we study in our experimental evaluation is 
performance behavior. Our approach incurs a performance 
overhead due to TR updates. In our six applications, the maximum 
increase in execution cycles with respect to the original case 
(where no TR is employed) is 3.15%, and in three of them the 
increase in execution cycles is negligible. Overall, these results 
demonstrate that the proposed scheme can improve dTLB energy 
consumption significantly without much impacting the original 
execution cycles. 

5. CONCLUDING REMARKS 
Virtual-to-physical address translation consumes as much as 16% 
of the chip power on some processors due to its high associativity 
and access frequency. As opposed to most prior work that focuses 

Table 2. The benchmark codes used in our evaluation. 

Benchmark dTLB 
Accesses  

dTLB  
Miss Rate  

dTLB 
Energy (mJ) 

177.mesa 1622495502 0.682% 328.7 
178.galgel 1334208722 0.418% 266.1 
179.art 1880061704 1.003% 390.4 
183.equake 1568740411 1.277% 341.4 
187.facerec 1066528717 0.930% 304.8 
188.ammp 1872011056 1.365% 429.0 
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mainly on circuit and architecture optimizations for reducing dTLB 
energy consumption, this paper uses compiler to restructure the 
application code so that it works better with explicit address 
translation registers (TRs) that keep frequently used virtual-to-
physical address translations. Results with a suite of six Spec2000 
applications indicate significant reductions in dTLB accesses as a 
result of the compiler-based scheme. This results in significant 
reduction in dTLB energy, at the expense of a very small increase 
in the execution cycles. 
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Figure 6. Normalized dTLB lookups for the VI-PT cache lookup 
mechanism. On the x-axis, the pair (a,b) means “a” TRs for the stack 
and “b” TRs for the global references.  
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Figure 7. Normalized energy consumptions for the VI-PT cache 
lookup mechanism. On the left side of the x-axis, the pair (a,b) 
indicates “a” TRs for the stack and “b” TRs for the global 
references. The bars on the right side of each graph are for a 
multi-level dTLB with 1, 2, 4, and 8 entries in the first level and 
128 entries in the second level. 
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