Compiler-Directed Code Restructuring for Reducing Data
TLB Energy

M. Kandemir |. Kadayif G. Chen
Dept. of Computer Science & Engr. Dept. of Computer Engineering Dept. of Computer Science & Engr.
Pennsylvania State Univ., USA Canakkale Onsekiz Mart Univ., TR Pennsylvania State Univ., USA

kandemir@cse.psu.edu kadayif@comu.edu.tr guilchen@cse.psu.edu

ABSTRACT Because of these factors, it is important to optimiz& Power

Prior work on TLB power optimization considered circuit angonsumption.

architectural techniques. A recent software-based technique @gmtimizing TLB performance has a long history [10, 3]. Prior
data TLBs has considered the possibility of storing the fretjuentesearch in reducing TLB energy considered both circuit lewel
used virtual-to-physical address translations in a set wfladon architectural techniques [8, 13, 4, 5, 11, 12]. A recent work has
registers (TRs), and using them when necessary insteadhgftgoi proposed the use of translation registers (TRs) to reduentrgy

the data TLB. This paper presents a compiler-based straiegyspent in data TLB (dTLB) accesses [9]. The idea can be
increasing the effectiveness of TRs. The idea is touestie the summarized as follows.

application code in such a fashion that once a TR is loaded, {8, 5 chitecture provides n-1 translation registers, whuseat
contents are reused as much as possible. Our experlm(?5 tal

evaluation with six array-based benchmarks from the Spec20() . . .
suite indicates that the proposed TR reuse strategy bringdrtual Page Number, Physical Frame Number, ProtectitsiBi

significant reductions in data TLB energy over an alternaléese registers are manipulated by a special loadTR instructi

strategy that employs TRs but does not restructure the epdérf loadTR Virtual Address, TR
reuse When this instruction is issued, the hardware uses the virtual pag
.)) number that is given, and goes to the dTLB to get the
Categories and SUbJeCt Descriptors corresponding entry (or to the page table if it is not indREB).
D.3.4 Programming Language$: Processorscompilers. It, then, puts this entry (which consists of the physical frame
number, protection and other book-keeping bits such as
General Terms modified/referenced, etc.) into the specified.TRhe program is
Performance, Experimentation. not allowed to modify the physical address or the protectits1 bi
that get loaded into the TR, as that would compromise praect
Keywords When a load/store is issued, some bits of the address (eulice
Code restructuring. the load/store) are used to specify whether to go througtTthB
or whether to find the translation within a specific TR.
1. BACKGROUND AND MOTIVATION Specifically, one can use the top log n bits (where n-1 is the

The TLB provides a translation from a virtual address (giemviby number of TRs) to indicate whether the address should go through

the load/store instruction) to a physical address. Dependinigeonthe dTLB for a translation (which corresponds to all thegenlo

time at which it is performed, this operation can get inctitecal bits being 0) or whether to take the physical frame number &rom

path. Moreover, even in the cases that it is not in thigairpath, TR, and if so, which specific one. Note that, while it Isoa

it can consume a significant amount of dynamic power duriRgssible to associate these log n bits with the instrudsef,i this

execution as it is accessed at each load operation. presents at least two drawbacks. First, this can increasgetcode
logic complexity as a result of an increase in instructi@ess

TLBs are generally designed very carefully at the cirtwel 10 gecong, this prevents a load operation in the program from using
minimize their access times and hit rates. Consequently,at®ey jifferent TRs at different execution phases.

usually highly associative structures. This characteristimbined o)))
with the fact that they are accessed at each memorgnetercan N our approach, the compiler is responsible for setting thitse
result in significant amount of dynamic power consumption. F¥fhenever the compiler knows for sure that a; TRs the
example, according to data sheets, in both Hitachi SH-3 and Itanslation that is needed, it forces these bits to comeisfpothat
StrongARM, instruction and data TLBs together can consume oVék- Otherwise (i.e., if the compiler is not 100% sure), il wi
15% of the overall on-chip budget [16, 7]. In addition, since TLENServatively set them to 0 so that the translation godbe
are small in size, their power densities tend to be high [9]TLB-
We assume that arrays in the code are aligned to page bosndarie
which can be ensured using existing compiler directives (e&., S

Permission to make digital or hard copies of allpart of this work fc MIPSPro compiler has a directive to enforce this). Tha iakehind
personal or classroom use is granted without fewiged that copies a our scheme is to load TRs whenever we notice that thidatam

not made or distribed for profit or commercial advantage and that &s is going to be heavily used in the near future. Consider the code
bear this notice and the full citation on the figage. To copy otherwise, fragment below:

republish, to post on servers or to redistributiésts, requires prior speci fori:1, N

permission and/or a fee. . U1[|] U z[f(l)] o

CODES+ISSS’04, September 8-10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009...$5.00.

98

where f() is not a compiler-analyzable function. In this célse fori:1,N

compiler restructures the computation around uding a loop forj: 4, N | PR, |

transformation called strip-mining [17]: forliJ:['i”N' | PR, |

fors:1, N, P forj: 1, N \ PR, |
load translation for s] to TR Ui J=Ulij]+1

for i: s, max(s+P,N) fori:1,N ‘ PR, ‘

access il through TR foljfi: 1]_N UG 1% UG | PRy |

access bfi] through dTLB for i ivj N .

In this code sketch, P is the data page size. The firstilecgtes forj: 1, N (b) Page regions of array U

over the pages, and before starting to process a new pagis, T Ul 1= UG, -1

loaded (updated) from the dTLB with the associated translation.
The inner loop, on the other hand, iterates over the current page
using the translation in TRfor Uy). That is, during the execution)

of the inner loop, the accesses to arraydd not lookup dTLB. @ @ @ @ @
Array U, on the other hand, is accessed through dTLB. () (» &

It is to be observed that satisfying most of the addrasslations
from the TRs can bring large power benefits since (1) eachabR @ @
a very small per access power consumption compared to a, dTLB @
and (2) we do not perform any tag comparison when a TR is 4

accessed. Consequently, it is important to make sure thatafmos (c) PDG for the code fragment (d) A possible schedule
the translation requests are satisfied from the TRs.f@agshis Figure 1.

goal depends on two major factors. First, the number of CBRS gty cture called th ;

. = . page dependence grafRDG). In this graph,
make a difference ag, dmore TRs lm(_eans less dTLB ws;nse(;w_e each node corresponds to a set of loop iterations thatsattwes
can capture more address translations, e.g., coming fréenetif o|oments in a particular page region. The edges between the node

arrays). Second, the data access pattern determines theirordg{jicatedata dependences traversal of this graph corresponds to
which address translations are requested. While the firstr fect (1o axecution 0% the iteration spaces of al? thF()e loop ngswe-

not something that can be changed easily, the second factbecag,je. A legal traversal is the one that respect all data

controlled by performing source code level modificationsh® yonendences. Consider, for example, the code fragment shown in

application. In particular, an optimizing compiler can playuial - pigre 1(a), where four different loop nests access an éthay
role here as the code/data optimizations it performs cargefthe Figure 1(b) shows how the array is divided into five pageoregi

data access pattern entirely. This paper proposes a fullynatito .4 Fiqure 1 ; the PD hi ; P
compiler-basectrateqy that ncreases the effeciveness of the THG obyain this graph. each Ioop nest is diided intb fve &ta,
by satisfying a majority of the translation requests ftbem. It o ations in the set (represented by a PDG node) marked |

achieves this by restructuring the code (data access palt&ugh onresent the loop iterations of nest i th i
: at access therpgiom j.
a way that the resulting code reuses the contents of a GReas P P P J

much as possible. In other words, the objective here is tedise [N the next step, we schedule the nodes in this graph in such a way
TR reuse. However, since we are restructuring the code, gt the nodes that access the same page region are scheduled
impact of our transformations on other aspects of the aegg, (successively (i.e., one after another) as much as posSibée.
cache behavior) should be studied as well. In particular, kgiionale behind such a_sch(_edule is to u_tlllze the current TR
important question is how our code modifications interact wifiPhtents as much as possible; i.e., to maximize TR reuse.

other compiler optimizations. Returning to our running example, Figure 1(d) depicts a possible
Our focus in this paper is on array-intensive applications. Othedule (dashed curve) determined by our approach (which will
experiments with a set of six Spec2000 array benchmarks indicdtgrtly be presented). Note that, in a sense, such a schetiith (

that the proposed compiler-based scheme cuts the number of d¥iasts with 41 and ends with4) represents the ideal scenario
accesses significantly, thereby reducing the energy spent iesaddwhere a page region is fully utilized by all loop nests igefor
translation. Even more importantly, the proposed schef@Vving to the next page region. That is, once a TR is loaded
outperforms a technique that uses TRs but does not restructurdrgfeslation, that translation is reused as much as possibie. T
application code for TR reuse. The experimental analysis afgeans that, even if we have more TRs, we could not reduce the
shows that the proposed scheme performs consistently well ande¢mber of dTLB lookups. As a second example, Figure 2 shows
wide variety of simulation scenarios. another PDG and a possible schedule determined by our approach.
It is to be noted that the extra dependences in this examplenpreve
us from fully utilizing the current page region. Consequentighe

e region needs to be visited twice, which may mean eRra T
ates (loads), depending on how many TRs we have.

(a) Example code fragment

The rest of this paper is organized as follows. Sectione8epits
our code restructuring strategy in detail. Section 3 intrazloce
experimental setup, and Section 4 discusses experimental resﬁﬁ

Section 5 concludes the paper with a summary.) i
Formally, let us assume, without loss of generality, tthe

program to be optimized has s loop nests, and,l..., ks denote
2. DATA-CENTRIC CODE the iteration sets of these nests (each iteration seainenthe
RESTRUCTURING iterations executed by a loop nest). We definedbmputational
We propose a compiler-directed data-centric code restructuriiipiceof the program,q) as:
strategy for utilizing the TRs. We first focus on singleay case, le = Ok Ik,
and then later show how our approach extends to multiple arrefrered denote set union and<lk < s. As has been discussed
case. earlier, we use;jlto denote the set of iterations from loop nest i

9t access the page region j. In formal ternis il if and only if

A page regionof an array is the set of consecutive elements t epﬁollowing holds:

map to the same data page. Our approach operates on a

99

OR andd O PR such that R(l) = d, TRy TR, TRy TR, TRg TR, TR, TR; T TR,
where R is a reference in nest i, and PRicates the page region () () () () (@
j- That is, iteration | (of nest i) should access a d&ment from ! | ' ' ' ! ! ! ! !
page region j. Note that: p 1 I G &

Oi0; 1y = L. L LT T T
We say that there is data dependencbetween il and by if an iy () (» ()
iteration that belongs te.4 depends on (the result generated by) ! ! ! !
an iteration ofjl. As will be discussed shortly, in our approach, the () ' ' ' . () () 0 !)

nodes of this graph are scheduled using a heuristic algorithm, *
which is based ofist scheduling a scheduling paradigm used by Figure 3.Two different T
compilers [14] and high-level synthesis tools [6]. Specifjcahe))] . .
algorithm first divides the PDG nodes inthainsand schedules Note that, in this example, we have 5 independent chains, i.e.,
one chain at a time. In mathematical terms, if possibeewant S=5. A more interesting scenario occurs whens. In this case,

the execution to move always fromtb k. That is, we want to We still assign one TR per chain. However, a TR is igasd to

stay within the same page region as long as possible. Aseles another chain (that has not been assigned a TR yet) when it
discussed earlier, this helps improve TR reuse and reduce G@@pletes its current chain. An example of this scenario is
number of TR updates/dTLB references. Therefore, our chailfistrated in Figure 3(b), assuming r=3 (and, s=5 as before).
building strategy tries to place such nodes into the same chain. However, this is still a preferable scenario since thg Rl loads

It should be observed that this approach requires only one TR iR make are the ones necessary when we move from one gata pa

the nodes that access a given page region can be scheduIeo}go%rgeo'[her (i-e., the initial loads).

after another. For example, considering the schedule depictedf fhould be observed that once a chain is scheduled we may not be
Figure 1(d), we can traverse all the nodes (which is theeen@ble to execute all its nodes one after another. This can happen
computational space) using only a single translation registar @ result of the dependences between the chains. That is, ifighere
is, the TR is updated only once per page region (in the figdt edge entering to the chain from a node outside that chasn, it
access). However, when we have a schedule like the &®é possible to complete the chain without executing (scheduling)
illustrated in Figure 2, we have two options. If we use argjngle the mentioned (outsider) node. In this case, such a chain tsdrea
TR, we need to update the TR 10 times (including the initialsloa@ not a monolithic chain but a sequencedichains and, our

for page regions). Alternately, we can use multiple TReutothe algorithm schedules each subchain separately. However, the
number of TR updates. For example, if we have 5 TRs, we @gorithm also tries to use the same TR for all subctadiasgiven
assign a TR to each page region, and can cover the ergit@in as much as possible. The sketch of our algorithm is give
computational space with just 5 TR updates (all of them beifgure 4. In this algorithm, at each iteration of the whdlep, a
initial loads). Consequently, the number of TRs can play aatrudiew subchain is selected and scheduled. Note that this is a
role in overall behavior of the application. As a resuffiective compiler algorithm and executed off-line, and in the last step,
use of available TRs is critical. builds the code for each subchain. The resulting (restructured)
code is then executed at runtime.

Py

assignments. (a) 5 TRsh) 3 TRs.

Before giving examples to illustrate how this algorithmrkgoin
practice, let us explain our chain/subchain-building process in
more detail. Our algorithm for constructing chains is ragwple.

We first start with a nodg hnd expand it with nodeg (k#i) until

we reach the point where it is not possible to expand it further.
The selected nodes (that start with form a chain. Then, we
select a new node (which is different from the ones that have
already been placed into a chain), and repeat the process. This
continues until all the nodes have been assigned to chains.

Figure 2. An example PDG and a possible schedule. Our algorithm for constructing subchains is similar to thercha

construction algorithm described in the previous paragraph.

An important question that r_leeds to be answer_ed, though, is rE%Y%ically, we iterate over each chain determined by thenchai
\(/:vahn weNstchtt;dutleta} PDGb W'ﬂ; r translation reglsgetrhs t(]tﬁ N, construction algorithm. For each chain, we identify the points
TRered tls he tota '?Ufg,)e,; Ot p%g? regions) su::h a be n‘;”@%ﬁére there is a dependence from an outsider node to a node in the
upadates IS minimizeds Note that minimizing the number ol 184 - Al such nodes in the chain delimit the subchain boundaries.
updates is important as each such update increases the code ever, once a subchain is detected, all its nodes and cahnecte

and causes extra energy consumption in datapath and instru :
cache/memory (in addition to the dTLB visit it entails). W%E%:uaggh;?? oved from the PDG, before starting tofséarthe

address this issue by adopting a strategy, which works asvéoll

In the first step, we identify a set tireads(data dependence AS an example, let us re-consider the PDG in Figure 1. Our
chains,or simplychaing in the PDG. Each such chain consists @lgorithm identifies five chains, and since these chains are no
set of nodes and edges, and does not share a node or edge wigpPftgcted, we have no subchains. Within the while loop of the
other chains, except for the start or end nodes of the chains@/ealgorithm in Figure 4, at each iteration, we select arclaaid

s to denote the number of such chains.3fg, that is, the number assign a TR to it. If we do not have enough TRs to assfgivate

of TRs is larger than the number of independent chains, we asdifnto each chain, we reuse TRs (compare the cases in $-igfane

a private TR to each chain. Note that, with such an assignthent and 3(b)). Note that this does not cause any additional overhead
contents of a TR are updated only for the initial loads. &fez, for this example as, no matter what TR is used, each chain
the total cost of such an assignment is s. A TR is saitate requires one TR update (the initial load). As a second example,
completedits chain when it reaches the end node of the chafignsider the PDG in Figure 2. In this case, our algorithmifiest
Figure 3(a) depicts this situation for an example PDG with r=the same chains as before. However, this time the chaés ar

100

Build computational space Computational Space Computational Space Computational Space
Build the PDG (page dependence graph)
Determine the chains in the computational space
Divide chains into subchains if necessary

While (there are subchains to schedule)

Select a schedulable subchain
Assign a TR to the subchain based on the followirgconstraints:

1. where possible, use the same TR as the sithehains of the chain Figure 5. Alternative ways of proceeding for a caseith 3 arrays.
this subchain belongs to.

2. where possible, do not use a TR assignexh tmrelated subchain

000

00
00
00
00 [
00 e,
00

00

0000000

009
6060
009
660
000
©09
660

0000000
00000000

000!

Q
Q
Q
0
o
Q
<}
a

00000000

O
O
O
O
O
O
O

00000000

0
0
0
0
0
0
I3
o

00000000

0
0
0
0
0
0
o
0

00000000
00030000
00000000
00000000

o
<1
o
<1
o
o
<1
<

00000000
00030000

o
I3
o
I3
o
0
I3
o

o
3]

EndWhile . .
Generate code for each subchain based on datademerbetween subchains Figure 5 illustrates an example where we have three arrays
accessed by a code fragment. If we select ariag the seed array
Figure 4. Subchain scheduling algorithm. and restructure the entire code around this array (as iftieisnly

array accessed by the application code), we should consider the
dependent on each other. Consequently, the algorithm dlapact of this on arrays JJand W. A similar argument can be
identifies subchains. Note that each subchain contains a semafle for other two alternatives as well (i.e., usingptJUsas the
nodes, with the characteristic that the entire subchain canseed arrays).
executed without interruption when the first node starts executi address this problem, we use a strategy basestionatingthe

In this case, we divide each chain into two subchains, and sche Sber of TR updates. This is possible in our application domain
wgwg\?grchv?/g]Sargb;g)v'ggretfﬁ(le ir??gsigr?%zn?:;gl?l':\fs ti)ﬁt\gueé; atmr(_e nested loops access multi-dimensional arrays, and the
that both’the subchains of a given chain use the same TR compller_ can flgur_e out the de_lt_a access patterns by anallym_ng

: code being optimized. In addition, even large programs typicall
In our discussion so far, we omitted an important point, wrichhave a small number of arrays. Therefore, considering eaap a
the possibility that a loop iteration can touch different page turn (as a potential for using to restructure the code ardsnd)
regions. After all, if there is no data elements sharedohgnjs of not expected to incur too much overhead at compilation time.
a given nest i, we cannot talk about data dependences among therasing on the example discussed in the previous paragraph, our
either. Our approach to this problem can be explained as folloapproach considers each array in turn and determines the total
Note that, when an iteration accesses multiple page redjens,number of TR updates when the array being considered is used to
share page regions. For example, consider the following chestestructure the code. Note that, in calculating the numbeiRof T

loop and the assignment statement within it: updates, we consider all the arrays in the code (not justnide o
fori:1,N being used as the seed array). This process is repeatedcfor e

forj: 2, N array, and the one that leads to the minimum number of TR

U[i, j] = Ui, -131 updates is selected, and the entire computational space is

The iteration point (kk2) accesses array elements {J[k;] and restructured using that array.

Ulky, ko-1], and these two elements can be in two different page

regions. Now, another iteration point,,#e-1), which maps to a ; ;

different PDG node than {k;), accesses array elements 4JH- -i.slhoa::lsgg Snsoltgg that our TR-based execution strategy is safe
1] and U[k, k»-2]. That is, this iteration point shares a page regl(} m the OS viewpoint. The only operation allowed for the

with (ki,kz). Since such problematic iteration points occur on M

across the page region boundaries, our implementation han@f@grammer/compiler is to load a TR from the dTLB. ThesTR

these iteration points separately. Returning to the exampleab emselves cannot be manipulated by normal register operations.
s a result, a wrong update of a TR can at most corrupt the

assuming that iterations (k) [1 < y < kx-1] access only page . .
region 1, iteration (kkz) accesses both page region 1 and pagddress space of the program in question (not the address pace o
ome other program). Also, when context switching from one

region 2, and iterations {l) [ko+1 < y < N] access only page
; : address space to another, the TRs can be treated as normal
region 2, and that we have only two page regions, we gerterate gisters, i.e., they can be saved and restored. Thertfeyepose

loop nests in the restructured code, each using its own paga re . . :
(if we have 2 TRs, each can use a private TR). We \sitl have a 0 problem even in a multi-programmed embedded environment.

separate statement between these two nests for executaigpite Another important issue is how our optimization affects thiaict

point (ki,k2). In this statement, the first array reference will bef other compiler optimizations and how it interacts witheot
accessed via the first TR, and the second array refereitickew code transformations. It should be noted that our approachtdries
accessed via the second TR. Since the page regionsrgee wee obtain data page-level locality as much as possible sah@afR

do not expect too much increase in code size or deterionatiorreuse can be increased. However, this does not guarantee good
instruction cache performance. In our experiments, we alata cache behavior as the unit of transfer between the cadhe a
qguantify the increase in the code size as a result of our dTit® memory is a cache line (block), which is much smallesize
optimization. than a data page. Consequently, the compiler needs to apply cache

When we have multiple arrays in the code, it is more diffito .)) .
determine a good strategy to traverse the loop iteraiiortsie Table 1. Default simulation parameters used in ouexperiments.
computational space. Basically, the main problem is tomate —ELUEIEEINEC, Value
an array to restructure the computation around. This arcalled L1 Data and Instruction Caches | tlneKB\,N:i‘.t-V_/gy, Ifz lliiym:ks, 1 cycle
the seed array However, one needs to be careful in selecting the— gency, wite-vack potcy

i N . Unified L2 Cache 256KB, 4-way, 128 byte blocks, [LO
seed array as restructuring the entire computation around rarye a|

L . cycle latency, write-back policy
can lead to frequent dTLB visits (TR loads) during the acseSse |54tz and Instruction TLBs single-level, 128 entriesfull-
the remaining arrays. That IS, maximizing TR reuse for amay associative, 50 Cyc|e miss pena|ty
may not be preferable (let alone being optimal) for thEpage Size 4KB
performance of accesses to the remaining arrays. Off-Chip DRAM 128MB (divided into 32MB blocks)

100 cycle latency

101

Table 2. The benchmark codes used in our evaluation

benchmarks, we do not allocate any registers for them, and the

Benchmark dTLB dTLB dTLB always go through the dTLB.
Accesses Miss Rate Energy (mJ)

177.mesa 1622495502 0.682% 328.7 4. RESULTS

0, . .
178.galgel | 1334208722 0.418% 266.1 In our first set of experiments, we measure the succedasetOpt
179.art 1880061704 1.003% 390.4 . :
183 and Structured-Opt in reducing the number of dTLB accesses. The

.equake | 1568740411 1.277% 341.4 ; gl) - =

o results are given in Figure 6. On the x-axis, the pair (adiyates
187.facerec | 1066528717 0.930% 304.8 e for th K ‘b TRs for th ;
188.ammp | 1872011056 1.365% 429.0 a’ TRs for the stack and *b” TRs for the array referendcés
_ _ _) discussed earlier, in our experiments “a” is always 1. Thgis-

locality enhancing transformations following our codgives the number of dTLB accesses as a fraction of tiggnali

optimization. If the code is already modified for data cachmse where we do not use any TRs. We first notice that the
locality, this can increase the effectiveness of our aphrsénce applications with large number of stack references benefit fro
there is more page reuse to exploit. However, even ircdlsis, our allocating a TR for stack references (that is, the cardigon (1,0)
code transformation still needs to be applied, as we nee@hke mon the x-axis). On the other hand, we do not gain much with this
the page boundaries explicit so that our instructions can dehfiguration in other benchmarks since the global references
inserted in the code. The detailed discussion of the intemactidominate memory accesses. As we increase the TRsdbalgl
between our approach and conventional code optimizationsaigays, one can observe that the number of dTLB visits reduces
beyond the scope of this paper. significantly for both Base-Opt and Structured-Opt. In particula
with the (1,8) configuration — i.e., a total of only 9 TRghe
normalized dTLB lookups is 54.5% and 32.6%, on the average,
We enhanced SimpleScalar simulator [2] to perform a detailf® Base-Opt and Structured-Opt, respectively. We alsastein
performance and energy evaluation of the proposed scheme. i kenchmark codges considered, Structured-Opt outperforms Base-
default simulation parameters are given in Table 1. Noteweat OPt s the former increases the reuse of TR contents.

use 50 cycles (instead of 100 cycles) for the TLB miss penalyhile the reduction in dTLB misses is an important metric, one
assuming that some of TLB misses (translations) couldtisfied would ultimately be interested in reducing the dTLB energy
from the cache. The dTLB energy consumptions (to be presentedsumption. Also, one could ask how our approach compares with
later) have been obtained using a modified version of CACT! [1Bespect to a multi-level dTLB structure. To answer thesstpres,

Note that one could potentially have optimized the TLB strectuin our next set of experiments, we measured the normalized dTLB
to reduce the per access dTLB energy; but this would not affiect energy consumptions. Figure 7 shows these results as arfratti
conclusions as we are interested in the reduction in dTLB sexeshe monolithic 128-entry dTLB (without any TR). The bars on the
and percentage dTLB energy savings. left side of each graph show the energy consumption with our
eme using different number of TRs for stack and global

3. EXPERIMENTAL SETUP

Array accesses are dominant in many applications. In this,st . 9
we used six randomly selected benchmark codes from {faErences. It should be emphasized that the energy valuesigive
Spec2000 benchmark suite. Table 2 gives these benchmark cBdss figure include the energy cost of accessing the TRs (in
along with their dTLB accesses/misses and dTLB ene,g dition to the dTLB lookups). The bars on the right side of each
consumptions with the default simulation parameters shown§itPh give the total energy consumption for a two-level dTLB
Table 1. While most of these codes are dominated by gloket aStructure. In this structure, the second level has always 188ssnt
accesses, there are also nonnegligible stack refererfreefare, and we vary the entries in the first level from 1 to 8.
in all our experiments, we reserved one TR exclusively Her tWe see from these graphs that our scheme (Structured-Qmg} bri
stack references. This is sufficient as stack referendgbievery much more benefits as compared to a multi-level dTLB, with
good data locality. first level having as many entries as the TRs in our sch&hig is
We performed experiments with two different optimized vesio@ggst?]é?riﬁsomg";g;‘f[taoéséoi']r;;’ri:g'nciozt-r'; iicfnecfrz ilerzsfﬁcmwthlar?

f h benchmark in our suite: X . AP

of each benc é COdef i a multi-level dTLB access even if the latter hits in tinst flevel.

1. Base-Opt: This version is adapted from [9], and uses thgecond, the per access dynamic energy cost of a multi-level
available TRs as efficiently as possible. However, iesdthis jncreases when the number of entries in the first level isased.
without changing the structure of the code (except for loop-strirhird, since the TRs are managed by the software (compitey,
mining as explained earlier and loop distribution whegre more effective (in terms of exploiting locality) thaRU-
appropriate). That is, it represents the best results (theno managed dTLBs.

number of dTLB accesses) under the condition that the prog

r . . . L
structure is not modified for TR reuse. ?pﬂe next metric that we study in our experimental evaluation is

]) o performance behavior. Our approach incurs a performance
2. Structured-OptThis is the version described in this paper. overhead due to TR updates. In our six applications, the maximum
All necessary code restructurings have been automated usingiifeease in_execution cycles with respect to the originak ca
SUIF infrastructure JJ. All the performance and energy saving§where no TR is employed) is 3.15%, and in three of them the
are given (in the following paragraphs) with respect to tiginal _Increase in execution cycles is negligible. Overall, theselts
codes that do not make use of TRs. The behavior of thisatigideémonstrate that the proposed scheme can improve dTLB energy
version is summarized in Table 2. To obtain these resultfaste consumption significantly without much impacting the original
forwarded 1 billion instructions, and simulated the next 3@¥¥ecution cycles.
million instructions in detail. While we have performed
experiments with both VI-PT (virtually-indexed, physicallys, CONCLUDING REMARKS
tagged) and VI-VT (virtually-indexed, virtually-tagged) L1 leas, Virtual-to-physical address translation consumes as much as 16%
due to space concerns, we present only the VI-PT results, Alsf the chip power on some processors due to its high assigiat
since global “scalar” references are not significant inse¢heand access frequency. As opposed to most primk that focuses

102

—&—Base-Opt —®— Structured-Opt
177.mesa 178.galgel
@ 100
5, 801 80 -
o

E 2 601 60

T S 401 40 A

E~ 20 20 A

2 04— 0 +—————
gaNS® SEaNST®©
ddddd ddddd

179.art 183.equake

8 100 - 100

5, 80 80 -

§ g 60 60

T 8 40 407

E- 20 20 1

(@]

b4 0 —T—T 0 e
5389w gadSYx
— = A ddddd
187 .facerec 188.ammp

@ 100 100 -

5 g 80 80 -

§ S 60+ 60 -

=S 401 40 4

€~ 20 20

(=]

=2 O T T T T O T T T T
SaNST @ S aNST©
ddddd ddddd

Figure 6. Normalized dTLB lookups for the VI-PT ceche lookup
mechanism. On the x-axis, the pair (a,b) means “aTRs for the stack
and “b” TRs for the global references.

177.mesa

178.galgel

5 150 150 929

S H

5 St00 100 -

Egso 50

Z o0 0
eaNgeT Ny ® AN NY®
ddddd ddddd

179.art 183.equake

g 200

N 3100 150 4

g3 100

su 50 50 4

z 0 04
SaNge TN ® AN NY®
ddddd ddddd

187.facerec 188.ammp

° 150 200

& B100 150

g] 100 1

5@ %0 50

=z 0 0
SANTE I NT® gagNIe_NT®
e el aRa

ool

Figure 7. Normalized energy consumptions for the \-PT cache
lookup mechanism. On the left side of the x-axishé pair (a,b)
indicates “a” TRs for the stack and “b” TRs for the global
references. The bars on the right side of each grhpare for a
multi-level dTLB with 1, 2, 4, and 8 entries in thefirst level and
128 entries in the second level.

[5] L.T.Clark, B. Choi, and M. Wilkerson. Reducingtslation lookaside
buffer active power. In Proceedings of the Intepometl Symposium on
Low-Power Electronics and Design, p.10-13, 2008u§&orea.

G. De Micheli. Synthesis and Optimization of Digi@rcuits. McGraw-
Hill, 1994.

Intel StrongArm Processor.
http://www.intel.com/design/pca/applicationsprooesd 110 _brf.htm.

[6]
[7]

mainly on circuit and architecture optimizations for reducingRIT [8] T.Juan, T.Lang, and J. J. Navarro. Reducing TaBgy requirements.
energy consumption, this paper uses compiler to restructure the In Proceedings of the International Symposium ow-Bower
application code so that it works better with explicit address Electronics and Design, 1997.

translation registers (TRs) that keep frequently used vittual-[9] I. Kadayif, P. Nath, M. Kandemir, and A. Sivasubeatiam. Compiler-

physical address translations. Results with a suite of sig2808

applications indicate significant reductions in dTLB accessea a
result of the compiler-based scheme. This results in signtfic

directed physical address generation for reducatg @TLB power. In
Proceedings of the IEEE International SymposiurPerformance
Analysis of Systems and Software, March 2004.

reduction in dTLB energy, at the expense of a very small asere [10] J. Knight and P. Rosenfeld. Segmented virtualdbtranslation assist.

in the execution cycles.

6. ACKNOWLEDGMENTS
This work was supported by NSF Career Award #0093082.

7. REFERENCES

S. Amarasinghe, J. Anderson, C. Wilson, S. Liad;iiench, M. Hall, B.
Murphy, and M. Lam. The multiprocessor as a geraugbose
processor: a software perspective. IEEE Micro, 1996

D. Burger, T. M. Austin, and S. Bennett. Evaluatinire
microprocessors: the Simplescalar toolset. TechRieport CS-TR-
1996-1308, Department of Computer Science, UW, 1996

T.-C. Chiueh and R. H. Katz. Eliminating. addreasslation bottleneck
for physical address cache. In Proceedings of ASRLI092.

J.-H. Choi, J.-H. Leek, S.-W. Jeong, S.-D. Kim, &hdVeems. A low
power TLB structure for embedded systems. |IEEE Lder
Architecture Letters, Volume 1, January 2002.

IBM Technical Disclosure Bulletin, 27(2):1077-10738ly 1984.

[11] H.-H. S. Lee and C. S. Ballapuram. Energy efficiata TLB and data
cache using semantic-aware multilateral partitignin Proceedings of
the International Symposium on Low-Power Electrs@ind Design,
2003.

[12] J.-H. Lee, G.-H. Park, S.-B. Park, and S.-D. Kinsefective filter-bank
TLB system. In Proceedings of the Internationahfgsium on Low-
Power Electronics and Design, pp. 312-317, 2008ylS&orea.

[13] S. Manne, A. Klauser, D. Grunwald, and F. Someriv-power TLB
design for high-performance microprocessor. Tectmeport,
Department of Electrical and Computer Engineerimg) @epartment of
Computer Science, University of Colorado, Boul@®, 1997.

[14] S. S. Muchnick. Advanced Compiler Design and Imgetation.
Morgan-Kaufmann, 1997.

[15] G. Reinman and N. P. Jouppi. CACTI 2.0: an integtatche timing
and power model. Research Report 2000/7, Compad,\2600.

[16] SH-3 RISC processor family. http:/www.hitachi-
eu.com/hel/ecg/products/micro/32bit/sh_3.html.

[17] M. Wolfe. High-performance compiler for parallehsputing. Addison-
Wesley, 1996.

103

	Main Page
	CODES+ISSS'04
	Front Matter
	Table of Contents
	Author Index

