
Compiler-Directed Code Restructuring for Reducing Data
TLB Energy

M. Kandemir
Dept. of Computer Science & Engr.

 Pennsylvania State Univ., USA

kandemir@cse.psu.edu

I. Kadayif
Dept. of Computer Engineering

Canakkale Onsekiz Mart Univ., TR

kadayif@comu.edu.tr

G. Chen
Dept. of Computer Science & Engr.

Pennsylvania State Univ., USA

guilchen@cse.psu.edu

ABSTRACT
Prior work on TLB power optimization considered circuit and
architectural techniques. A recent software-based technique for
data TLBs has considered the possibility of storing the frequently
used virtual-to-physical address translations in a set of translation
registers (TRs), and using them when necessary instead of going to
the data TLB. This paper presents a compiler-based strategy for
increasing the effectiveness of TRs. The idea is to restructure the
application code in such a fashion that once a TR is loaded, its
contents are reused as much as possible. Our experimental
evaluation with six array-based benchmarks from the Spec2000
suite indicates that the proposed TR reuse strategy brings
significant reductions in data TLB energy over an alternate
strategy that employs TRs but does not restructure the code for TR
reuse

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors –compilers.

General Terms
Performance, Experimentation.

Keywords
Code restructuring.

1. BACKGROUND AND MOTIVATION
The TLB provides a translation from a virtual address (provided by
the load/store instruction) to a physical address. Depending on the
time at which it is performed, this operation can get in the critical
path. Moreover, even in the cases that it is not in the critical path,
it can consume a significant amount of dynamic power during
execution as it is accessed at each load operation.

TLBs are generally designed very carefully at the circuit level to
minimize their access times and hit rates. Consequently, they are
usually highly associative structures. This characteristic, combined
with the fact that they are accessed at each memory reference, can
result in significant amount of dynamic power consumption. For
example, according to data sheets, in both Hitachi SH-3 and Intel
StrongARM, instruction and data TLBs together can consume over
15% of the overall on-chip budget [16, 7]. In addition, since TLBs
are small in size, their power densities tend to be high [9].

Because of these factors, it is important to optimize TLB power
consumption.

Optimizing TLB performance has a long history [10, 3]. Prior
research in reducing TLB energy considered both circuit level and
architectural techniques [8, 13, 4, 5, 11, 12]. A recent work has
proposed the use of translation registers (TRs) to reduce the energy
spent in data TLB (dTLB) accesses [9]. The idea can be
summarized as follows.

The architecture provides n-1 translation registers, whose format
is:
[Virtual Page Number, Physical Frame Number, Protection Bits].

These registers are manipulated by a special loadTR instruction:
loadTR Virtual Address, TRi.

When this instruction is issued, the hardware uses the virtual page
number that is given, and goes to the dTLB to get the
corresponding entry (or to the page table if it is not in the dTLB).
It, then, puts this entry (which consists of the physical frame
number, protection and other book-keeping bits such as
modified/referenced, etc.) into the specified TRi. The program is
not allowed to modify the physical address or the protection bits
that get loaded into the TR, as that would compromise protection.
When a load/store is issued, some bits of the address (indicated in
the load/store) are used to specify whether to go through the dTLB
or whether to find the translation within a specific TR.
Specifically, one can use the top log n bits (where n-1 is the
number of TRs) to indicate whether the address should go through
the dTLB for a translation (which corresponds to all these log n
bits being 0) or whether to take the physical frame number from a
TR, and if so, which specific one. Note that, while it is also
possible to associate these log n bits with the instruction itself, this
presents at least two drawbacks. First, this can increase the decode
logic complexity as a result of an increase in instruction sizes.
Second, this prevents a load operation in the program from using
different TRs at different execution phases.

In our approach, the compiler is responsible for setting these bits.
Whenever the compiler knows for sure that a TRi has the
translation that is needed, it forces these bits to correspond to that
TRi. Otherwise (i.e., if the compiler is not 100% sure), it will
conservatively set them to 0 so that the translation goes to the
dTLB.

We assume that arrays in the code are aligned to page boundaries,
which can be ensured using existing compiler directives (e.g., SGI
MIPSPro compiler has a directive to enforce this). The idea behind
our scheme is to load TRs whenever we notice that this translation
is going to be heavily used in the near future. Consider the code
fragment below:

for i: 1, N
 …U1[i]…U 2[f(i)]…

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009...$5.00.

98

where f() is not a compiler-analyzable function. In this case, the
compiler restructures the computation around U1 using a loop
transformation called strip-mining [17]:

for s: 1, N, P
 load translation for U1[s] to TRj
 for i: s, max(s+P,N)
 access U1[i] through TRj
 access U2[i] through dTLB

In this code sketch, P is the data page size. The first loop iterates
over the pages, and before starting to process a new page, TRj is
loaded (updated) from the dTLB with the associated translation.
The inner loop, on the other hand, iterates over the current page
using the translation in TRj (for U1). That is, during the execution
of the inner loop, the accesses to array U1 do not lookup dTLB.
Array U2, on the other hand, is accessed through dTLB.

It is to be observed that satisfying most of the address translations
from the TRs can bring large power benefits since (1) each TR has
a very small per access power consumption compared to a dTLB,
and (2) we do not perform any tag comparison when a TR is
accessed. Consequently, it is important to make sure that most of
the translation requests are satisfied from the TRs. Satisfying this
goal depends on two major factors. First, the number of TRs can
make a difference as more TRs means less dTLB visits (since we
can capture more address translations, e.g., coming from different
arrays). Second, the data access pattern determines the order in
which address translations are requested. While the first factor is
not something that can be changed easily, the second factor can be
controlled by performing source code level modifications to the
application. In particular, an optimizing compiler can play a crucial
role here as the code/data optimizations it performs can change the
data access pattern entirely. This paper proposes a fully automatic
compiler-based strategy that increases the effectiveness of the TRs
by satisfying a majority of the translation requests from them. It
achieves this by restructuring the code (data access pattern) in such
a way that the resulting code reuses the contents of a given TR as
much as possible. In other words, the objective here is to increase
TR reuse. However, since we are restructuring the code, the
impact of our transformations on other aspects of the code (e.g.,
cache behavior) should be studied as well. In particular, an
important question is how our code modifications interact with
other compiler optimizations.

Our focus in this paper is on array-intensive applications. Our
experiments with a set of six Spec2000 array benchmarks indicate
that the proposed compiler-based scheme cuts the number of dTLB
accesses significantly, thereby reducing the energy spent in address
translation. Even more importantly, the proposed scheme
outperforms a technique that uses TRs but does not restructure the
application code for TR reuse. The experimental analysis also
shows that the proposed scheme performs consistently well under a
wide variety of simulation scenarios.

The rest of this paper is organized as follows. Section 2 presents
our code restructuring strategy in detail. Section 3 introduces our
experimental setup, and Section 4 discusses experimental results.
Section 5 concludes the paper with a summary.

2. DATA-CENTRIC CODE
RESTRUCTURING
We propose a compiler-directed data-centric code restructuring
strategy for utilizing the TRs. We first focus on single array case,
and then later show how our approach extends to multiple arrays
case.

A page region of an array is the set of consecutive elements that
map to the same data page. Our approach operates on a graph

structure called the page dependence graph (PDG). In this graph,
each node corresponds to a set of loop iterations that access the
elements in a particular page region. The edges between the nodes
indicate data dependences. A traversal of this graph corresponds to
the execution of the iteration spaces of all the loop nests in the
code. A legal traversal is the one that respect all data
dependences. Consider, for example, the code fragment shown in
Figure 1(a), where four different loop nests access an array (U).
Figure 1(b) shows how the array is divided into five page regions,
and Figure 1(c) gives the PDG under this page region partitioning.
To obtain this graph, each loop nest is divided into five sets. The
iterations in the set (represented by a PDG node) marked Iij
represent the loop iterations of nest i that access the page region j.

In the next step, we schedule the nodes in this graph in such a way
that the nodes that access the same page region are scheduled
successively (i.e., one after another) as much as possible. The
rationale behind such a schedule is to utilize the current TR
contents as much as possible; i.e., to maximize TR reuse.

Returning to our running example, Figure 1(d) depicts a possible
schedule (dashed curve) determined by our approach (which will
shortly be presented). Note that, in a sense, such a schedule (which
starts with I11 and ends with I45) represents the ideal scenario
where a page region is fully utilized by all loop nests before
moving to the next page region. That is, once a TR is loaded a
translation, that translation is reused as much as possible. This
means that, even if we have more TRs, we could not reduce the
number of dTLB lookups. As a second example, Figure 2 shows
another PDG and a possible schedule determined by our approach.
It is to be noted that the extra dependences in this example prevent
us from fully utilizing the current page region. Consequently, each
page region needs to be visited twice, which may mean extra TR
updates (loads), depending on how many TRs we have.

Formally, let us assume, without loss of generality, that the
program to be optimized has s loop nests, and I1, I2, …, Is denote
the iteration sets of these nests (each iteration set contains the
iterations executed by a loop nest). We define the computational
space of the program, Ic, as:

Ic = ∪k Ik,
where ∪ denote set union and 1 ≤ k ≤ s. As has been discussed
earlier, we use Iij to denote the set of iterations from loop nest i
that access the page region j. In formal terms, l ∈ Iij if and only if
the following holds:

Figure 1.

(d) A possible schedule

 (b) Page regions of array U

for i: 1, N
 for j: 1, N
 U[i, j] = …
for i: 1, N
 for j: 1, N
 U[i, j] = U[i, j] + 1
for i: 1, N
 for j: 1, N
 U[i, j] = U[i, j] * U[i, j]
for i: 1, N
 for j: 1, N
 U[i, j] = U[i, j] - 1

PR1PR2PR3PR4PR5PR1PR2PR3PR4PR5

 (a) Example code fragment

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I11 I12 I13 I14 I15I11 I12 I13 I14 I15

I21 I22 I23 I24 I25I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I31 I32 I33 I34 I35I31 I32 I33 I34 I35

I41 I42 I43 I44 I45I41 I42 I43 I44 I45

(c) PDG for the code fragment

99

∃ R and ∃d ∈ PRj such that R(l) = d,
where R is a reference in nest i, and PRj indicates the page region
j. That is, iteration l (of nest i) should access a data element from
page region j. Note that:

∪i∪j Iij = Ic.
We say that there is a data dependence between Iij and Imn if an
iteration that belongs to Imn depends on (the result generated by)
an iteration of Iij. As will be discussed shortly, in our approach, the
nodes of this graph are scheduled using a heuristic algorithm,
which is based on list scheduling, a scheduling paradigm used by
compilers [14] and high-level synthesis tools [6]. Specifically, the
algorithm first divides the PDG nodes into chains and schedules
one chain at a time. In mathematical terms, if possible, we want
the execution to move always from Iij to Ikj. That is, we want to
stay within the same page region as long as possible. As has been
discussed earlier, this helps improve TR reuse and reduce the
number of TR updates/dTLB references. Therefore, our chain-
building strategy tries to place such nodes into the same chain.

It should be observed that this approach requires only one TR if all
the nodes that access a given page region can be scheduled one
after another. For example, considering the schedule depicted in
Figure 1(d), we can traverse all the nodes (which is the entire
computational space) using only a single translation register; that
is, the TR is updated only once per page region (in the first
access). However, when we have a schedule like the one
illustrated in Figure 2, we have two options. If we use only a single
TR, we need to update the TR 10 times (including the initial loads
for page regions). Alternately, we can use multiple TRs to cut the
number of TR updates. For example, if we have 5 TRs, we can
assign a TR to each page region, and can cover the entire
computational space with just 5 TR updates (all of them being
initial loads). Consequently, the number of TRs can play a crucial
role in overall behavior of the application. As a result, effective
use of available TRs is critical.

An important question that needs to be answered, though, is how
can we schedule a PDG with r translation registers (1 ≤ r ≤ N,
where N is the total number of page regions) such that the number
TR updates is minimized? Note that minimizing the number of TR
updates is important as each such update increases the code size,
and causes extra energy consumption in datapath and instruction
cache/memory (in addition to the dTLB visit it entails). We
address this issue by adopting a strategy, which works as follows.
In the first step, we identify a set of threads (data dependence
chains, or simply chains) in the PDG. Each such chain consists of
set of nodes and edges, and does not share a node or edge with the
other chains, except for the start or end nodes of the chain. We use
s to denote the number of such chains. If r ≥ s, that is, the number
of TRs is larger than the number of independent chains, we assign
a private TR to each chain. Note that, with such an assignment, the
contents of a TR are updated only for the initial loads. Therefore,
the total cost of such an assignment is s. A TR is said to have
completed its chain when it reaches the end node of the chain.
Figure 3(a) depicts this situation for an example PDG with r=5.

Note that, in this example, we have 5 independent chains, i.e.,
s=5. A more interesting scenario occurs when r ≤ s. In this case,
we still assign one TR per chain. However, a TR is reassigned to
another chain (that has not been assigned a TR yet) when it
completes its current chain. An example of this scenario is
illustrated in Figure 3(b), assuming r=3 (and, s=5 as before).
However, this is still a preferable scenario since the only TR loads
we make are the ones necessary when we move from one data page
to another (i.e., the initial loads).

It should be observed that once a chain is scheduled we may not be
able to execute all its nodes one after another. This can happen as
a result of the dependences between the chains. That is, if there is
an edge entering to the chain from a node outside that chain, it is
not possible to complete the chain without executing (scheduling)
the mentioned (outsider) node. In this case, such a chain is treated
as not a monolithic chain but a sequence of subchains; and, our
algorithm schedules each subchain separately. However, the
algorithm also tries to use the same TR for all subchains of a given
chain as much as possible. The sketch of our algorithm is given in
Figure 4. In this algorithm, at each iteration of the while loop, a
new subchain is selected and scheduled. Note that this is a
compiler algorithm and executed off-line, and in the last step, it
builds the code for each subchain. The resulting (restructured)
code is then executed at runtime.

Before giving examples to illustrate how this algorithm works in
practice, let us explain our chain/subchain-building process in
more detail. Our algorithm for constructing chains is rather simple.
We first start with a node Iij and expand it with nodes Ikj (k≠i) until
we reach the point where it is not possible to expand it further.
The selected nodes (that start with Iij) form a chain. Then, we
select a new node (which is different from the ones that have
already been placed into a chain), and repeat the process. This
continues until all the nodes have been assigned to chains.

Our algorithm for constructing subchains is similar to the chain
construction algorithm described in the previous paragraph.
Basically, we iterate over each chain determined by the chain
construction algorithm. For each chain, we identify the points
where there is a dependence from an outsider node to a node in the
chain. All such nodes in the chain delimit the subchain boundaries.
However, once a subchain is detected, all its nodes and connected
edges are removed from the PDG, before starting to search for the
next subchain.

As an example, let us re-consider the PDG in Figure 1. Our
algorithm identifies five chains, and since these chains are not
connected, we have no subchains. Within the while loop of the
algorithm in Figure 4, at each iteration, we select a chain and
assign a TR to it. If we do not have enough TRs to assign a private
TR to each chain, we reuse TRs (compare the cases in Figures 3(a)
and 3(b)). Note that this does not cause any additional overhead
for this example as, no matter what TR is used, each chain
requires one TR update (the initial load). As a second example,
consider the PDG in Figure 2. In this case, our algorithm identifies
the same chains as before. However, this time the chains are

Figure 2. An example PDG and a possible schedule.

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I11 I12 I13 I14 I15I11 I12 I13 I14 I15

I21 I22 I23 I24 I25I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I31 I32 I33 I34 I35I31 I32 I33 I34 I35

I41 I42 I43 I44 I45I41 I42 I43 I44 I45

Figure 3.Two different TR assignments. (a) 5 TRs. (b) 3 TRs.

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

TR1 TR2 TR3 TR1 TR2

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I11 I12 I13 I14 I15I11 I12 I13 I14 I15

I21 I22 I23 I24 I25I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I31 I32 I33 I34 I35I31 I32 I33 I34 I35

I41 I42 I43 I44 I45I41 I42 I43 I44 I45

TR1 TR2 TR3 TR1 TR2

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

TR1 TR2 TR3 TR4 TR5

I11 I12 I13 I14 I15

I21 I22 I23 I24 I25

I11 I12 I13 I14 I15I11 I12 I13 I14 I15

I21 I22 I23 I24 I25I21 I22 I23 I24 I25

I31 I32 I33 I34 I35

I41 I42 I43 I44 I45

I31 I32 I33 I34 I35I31 I32 I33 I34 I35

I41 I42 I43 I44 I45I41 I42 I43 I44 I45

TR1 TR2 TR3 TR4 TR5

100

dependent on each other. Consequently, the algorithm also
identifies subchains. Note that each subchain contains a set of
nodes, with the characteristic that the entire subchain can be
executed without interruption when the first node starts executing.
In this case, we divide each chain into two subchains, and schedule
the subchains observing the data dependences between them.
However, we are also careful in assigning the TRs in such away
that both the subchains of a given chain use the same TR.

In our discussion so far, we omitted an important point, which is
the possibility that a loop iteration can touch different page
regions. After all, if there is no data elements shared among Iijs of
a given nest i, we cannot talk about data dependences among them
either. Our approach to this problem can be explained as follows.
Note that, when an iteration accesses multiple page regions, Iijs
share page regions. For example, consider the following nested
loop and the assignment statement within it:
 for i: 1, N
 for j: 2, N
 U[i, j] = U[i, j-1] +1
The iteration point (k1,k2) accesses array elements U[k1, k2] and
U[k1, k2-1], and these two elements can be in two different page
regions. Now, another iteration point, (k1,k2-1), which maps to a
different PDG node than (k1,k2), accesses array elements U[k1, k2 -
1] and U[k1, k2-2]. That is, this iteration point shares a page region
with (k1,k2). Since such problematic iteration points occur only
across the page region boundaries, our implementation handles
these iteration points separately. Returning to the example above,
assuming that iterations (k1,y) [1 ≤ y ≤ k2-1] access only page
region 1, iteration (k1,k2) accesses both page region 1 and page
region 2, and iterations (k1,y) [k2+1 ≤ y ≤ N] access only page
region 2, and that we have only two page regions, we generate two
loop nests in the restructured code, each using its own page region
(if we have 2 TRs, each can use a private TR). We will also have a
separate statement between these two nests for executing iteration
point (k1,k2). In this statement, the first array reference will be
accessed via the first TR, and the second array reference will be
accessed via the second TR. Since the page regions are large, we
do not expect too much increase in code size or deterioration in
instruction cache performance. In our experiments, we also
quantify the increase in the code size as a result of our dTLB
optimization.

When we have multiple arrays in the code, it is more difficult to
determine a good strategy to traverse the loop iterations in the
computational space. Basically, the main problem is to determine
an array to restructure the computation around. This array is called
the seed array. However, one needs to be careful in selecting the
seed array as restructuring the entire computation around one array
can lead to frequent dTLB visits (TR loads) during the accesses to
the remaining arrays. That is, maximizing TR reuse for one array
may not be preferable (let alone being optimal) for the
performance of accesses to the remaining arrays.

Figure 5 illustrates an example where we have three arrays
accessed by a code fragment. If we select array U1 as the seed array
and restructure the entire code around this array (as if it is the only
array accessed by the application code), we should consider the
impact of this on arrays U2 and U3. A similar argument can be
made for other two alternatives as well (i.e., using U2 or U3 as the
seed arrays).

To address this problem, we use a strategy based on estimating the
number of TR updates. This is possible in our application domain
where nested loops access multi-dimensional arrays, and the
compiler can figure out the data access patterns by analyzing the
code being optimized. In addition, even large programs typically
have a small number of arrays. Therefore, considering each array
in turn (as a potential for using to restructure the code around) is
not expected to incur too much overhead at compilation time.
Focusing on the example discussed in the previous paragraph, our
approach considers each array in turn and determines the total
number of TR updates when the array being considered is used to
restructure the code. Note that, in calculating the number of TR
updates, we consider all the arrays in the code (not just the one
being used as the seed array). This process is repeated for each
array, and the one that leads to the minimum number of TR
updates is selected, and the entire computational space is
restructured using that array.

2.1 Discussion
It should be noted that our TR-based execution strategy is safe
from the OS viewpoint. The only operation allowed for the
programmer/compiler is to load a TR from the dTLB. The TRs
themselves cannot be manipulated by normal register operations.
As a result, a wrong update of a TR can at most corrupt the
address space of the program in question (not the address space of
some other program). Also, when context switching from one
address space to another, the TRs can be treated as normal
registers, i.e., they can be saved and restored. Therefore, they pose
no problem even in a multi-programmed embedded environment.

Another important issue is how our optimization affects the impact
of other compiler optimizations and how it interacts with other
code transformations. It should be noted that our approach tries to
obtain data page-level locality as much as possible so that the TR
reuse can be increased. However, this does not guarantee good
data cache behavior as the unit of transfer between the cache and
the memory is a cache line (block), which is much smaller in size
than a data page. Consequently, the compiler needs to apply cache

Build computational space
Build the PDG (page dependence graph)
Determine the chains in the computational space
Divide chains into subchains if necessary
While (there are subchains to schedule)
 Select a schedulable subchain
 Assign a TR to the subchain based on the following two constraints:
 1. where possible, use the same TR as the other subchains of the chain
 this subchain belongs to.
 2. where possible, do not use a TR assigned to an unrelated subchain
EndWhile
Generate code for each subchain based on data dependence between subchains

Figure 4. Subchain scheduling algorithm.

U3

Computational Space

U2U1 U3

Computational Space

U2U1 U3

Computational Space

U2U1 U3

Computational Space

U2U1 U3

Computational Space

U2U1 U3

Computational Space

U2U1

Figure 5. Alternative ways of proceeding for a case with 3 arrays.

Simulation Parameter Value
L1 Data and Instruction Caches 16KB, 4-way, 32 byte blocks, 1 cycle

latency, write-back policy
Unified L2 Cache 256KB, 4-way, 128 byte blocks, 10

cycle latency, write-back policy
Data and Instruction TLBs single-level, 128 entries, full-

associative, 50 cycle miss penalty
Page Size 4KB
Off-Chip DRAM 128MB (divided into 32MB blocks),

100 cycle latency

Table 1. Default simulation parameters used in our experiments.

101

locality enhancing transformations following our code
optimization. If the code is already modified for data cache
locality, this can increase the effectiveness of our approach since
there is more page reuse to exploit. However, even in this case, our
code transformation still needs to be applied, as we need to make
the page boundaries explicit so that our instructions can be
inserted in the code. The detailed discussion of the interactions
between our approach and conventional code optimizations is
beyond the scope of this paper.

3. EXPERIMENTAL SETUP
We enhanced SimpleScalar simulator [2] to perform a detailed
performance and energy evaluation of the proposed scheme. The
default simulation parameters are given in Table 1. Note that we
use 50 cycles (instead of 100 cycles) for the TLB miss penalty,
assuming that some of TLB misses (translations) could be satisfied
from the cache. The dTLB energy consumptions (to be presented
later) have been obtained using a modified version of CACTI [15].
Note that one could potentially have optimized the TLB structure
to reduce the per access dTLB energy; but this would not affect our
conclusions as we are interested in the reduction in dTLB accesses
and percentage dTLB energy savings.

Array accesses are dominant in many applications. In this study,
we used six randomly selected benchmark codes from the
Spec2000 benchmark suite. Table 2 gives these benchmark codes
along with their dTLB accesses/misses and dTLB energy
consumptions with the default simulation parameters shown in
Table 1. While most of these codes are dominated by global array
accesses, there are also nonnegligible stack references. Therefore,
in all our experiments, we reserved one TR exclusively for the
stack references. This is sufficient as stack references exhibit very
good data locality.

We performed experiments with two different optimized versions
of each benchmark code in our suite:

1. Base-Opt: This version is adapted from [9], and uses the
available TRs as efficiently as possible. However, it does this
without changing the structure of the code (except for loop strip-
mining as explained earlier and loop distribution when
appropriate). That is, it represents the best results (the minimum
number of dTLB accesses) under the condition that the program
structure is not modified for TR reuse.

2. Structured-Opt: This is the version described in this paper.

All necessary code restructurings have been automated using the
SUIF infrastructure [1]. All the performance and energy savings
are given (in the following paragraphs) with respect to the original
codes that do not make use of TRs. The behavior of this original
version is summarized in Table 2. To obtain these results, we fast-
forwarded 1 billion instructions, and simulated the next 300
million instructions in detail. While we have performed
experiments with both VI-PT (virtually-indexed, physically-
tagged) and VI-VT (virtually-indexed, virtually-tagged) L1 caches,
due to space concerns, we present only the VI-PT results. Also,
since global “scalar” references are not significant in these

benchmarks, we do not allocate any registers for them, and they
always go through the dTLB.

4. RESULTS
In our first set of experiments, we measure the success of Base-Opt
and Structured-Opt in reducing the number of dTLB accesses. The
results are given in Figure 6. On the x-axis, the pair (a,b) indicates
“a” TRs for the stack and “b” TRs for the array references. As
discussed earlier, in our experiments “a” is always 1. The y-axis
gives the number of dTLB accesses as a fraction of the original
case where we do not use any TRs. We first notice that the
applications with large number of stack references benefit from
allocating a TR for stack references (that is, the configuration (1,0)
on the x-axis). On the other hand, we do not gain much with this
configuration in other benchmarks since the global references
dominate memory accesses. As we increase the TRs for global
arrays, one can observe that the number of dTLB visits reduces
significantly for both Base-Opt and Structured-Opt. In particular,
with the (1,8) configuration – i.e., a total of only 9 TRs – the
normalized dTLB lookups is 54.5% and 32.6%, on the average,
for Base-Opt and Structured-Opt, respectively. We also see that, in
all benchmark codes considered, Structured-Opt outperforms Base-
Opt as the former increases the reuse of TR contents.

While the reduction in dTLB misses is an important metric, one
would ultimately be interested in reducing the dTLB energy
consumption. Also, one could ask how our approach compares with
respect to a multi-level dTLB structure. To answer these questions,
in our next set of experiments, we measured the normalized dTLB
energy consumptions. Figure 7 shows these results as a fraction of
the monolithic 128-entry dTLB (without any TR). The bars on the
left side of each graph show the energy consumption with our
scheme using different number of TRs for stack and global
references. It should be emphasized that the energy values given in
this figure include the energy cost of accessing the TRs (in
addition to the dTLB lookups). The bars on the right side of each
graph give the total energy consumption for a two-level dTLB
structure. In this structure, the second level has always 128 entries;
and we vary the entries in the first level from 1 to 8.

We see from these graphs that our scheme (Structured-Opt) brings
much more benefits as compared to a multi-level dTLB, with the
first level having as many entries as the TRs in our scheme. This is
due to three main factors. First, since a TR access in our scheme
does not involve any tag comparison cost, it is more efficient than
a multi-level dTLB access even if the latter hits in the first level.
Second, the per access dynamic energy cost of a multi-level
increases when the number of entries in the first level is increased.
Third, since the TRs are managed by the software (compiler), they
are more effective (in terms of exploiting locality) than LRU-
managed dTLBs.

The next metric that we study in our experimental evaluation is
performance behavior. Our approach incurs a performance
overhead due to TR updates. In our six applications, the maximum
increase in execution cycles with respect to the original case
(where no TR is employed) is 3.15%, and in three of them the
increase in execution cycles is negligible. Overall, these results
demonstrate that the proposed scheme can improve dTLB energy
consumption significantly without much impacting the original
execution cycles.

5. CONCLUDING REMARKS
Virtual-to-physical address translation consumes as much as 16%
of the chip power on some processors due to its high associativity
and access frequency. As opposed to most prior work that focuses

Table 2. The benchmark codes used in our evaluation.

Benchmark dTLB
Accesses

dTLB
Miss Rate

dTLB
Energy (mJ)

177.mesa 1622495502 0.682% 328.7
178.galgel 1334208722 0.418% 266.1
179.art 1880061704 1.003% 390.4
183.equake 1568740411 1.277% 341.4
187.facerec 1066528717 0.930% 304.8
188.ammp 1872011056 1.365% 429.0

102

mainly on circuit and architecture optimizations for reducing dTLB
energy consumption, this paper uses compiler to restructure the
application code so that it works better with explicit address
translation registers (TRs) that keep frequently used virtual-to-
physical address translations. Results with a suite of six Spec2000
applications indicate significant reductions in dTLB accesses as a
result of the compiler-based scheme. This results in significant
reduction in dTLB energy, at the expense of a very small increase
in the execution cycles.

6. ACKNOWLEDGMENTS
This work was supported by NSF Career Award #0093082.

7. REFERENCES
[1] S. Amarasinghe, J. Anderson, C. Wilson, S. Liao, R. French, M. Hall, B.

Murphy, and M. Lam. The multiprocessor as a general-purpose
processor: a software perspective. IEEE Micro, 1996.

[2] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the Simplescalar toolset. Technical Report CS-TR-
1996-1308, Department of Computer Science, UW, 1996.

[3] T.-C. Chiueh and R. H. Katz. Eliminating. address translation bottleneck
for physical address cache. In Proceedings of ASPLOS, 1992.

[4] J.-H. Choi, J.-H. Leek, S.-W. Jeong, S.-D. Kim, and C. Weems. A low
power TLB structure for embedded systems. IEEE Computer
Architecture Letters, Volume 1, January 2002.

[5] L. T. Clark, B. Choi, and M. Wilkerson. Reducing translation lookaside
buffer active power. In Proceedings of the International Symposium on
Low-Power Electronics and Design, p.10-13, 2003, Seoul, Korea.

[6] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[7] Intel StrongArm Processor.
http://www.intel.com/design/pca/applicationsprocessors/1110_brf.htm.

[8] T. Juan, T. Lang, and J. J. Navarro. Reducing TLB power requirements.
In Proceedings of the International Symposium on Low-Power
Electronics and Design, 1997.

[9] I. Kadayif, P. Nath, M. Kandemir, and A. Sivasubramaniam. Compiler-
directed physical address generation for reducing data TLB power. In
Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software, March 2004.

[10] J. Knight and P. Rosenfeld. Segmented virtual to real translation assist.
IBM Technical Disclosure Bulletin, 27(2):1077-1078, July 1984.

[11] H.-H. S. Lee and C. S. Ballapuram. Energy efficient data TLB and data
cache using semantic-aware multilateral partitioning. In Proceedings of
the International Symposium on Low-Power Electronics and Design,
2003.

[12] J.-H. Lee, G.-H. Park, S.-B. Park, and S.-D. Kim. A selective filter-bank
TLB system. In Proceedings of the International Symposium on Low-
Power Electronics and Design, pp. 312-317, 2003, Seoul, Korea.

[13] S. Manne, A. Klauser, D. Grunwald, and F. Somenzi. Low-power TLB
design for high-performance microprocessor. Technical Report,
Department of Electrical and Computer Engineering and Department of
Computer Science, University of Colorado, Boulder, CO, 1997.

[14] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan-Kaufmann, 1997.

[15] G. Reinman and N. P. Jouppi. CACTI 2.0: an integrated cache timing
and power model. Research Report 2000/7, Compaq WRL, 2000.

[16] SH-3 RISC processor family. http://www.hitachi-
eu.com/hel/ecg/products/micro/32bit/sh_3.html.

[17] M. Wolfe. High-performance compiler for parallel computing. Addison-
Wesley, 1996.

Figure 6. Normalized dTLB lookups for the VI-PT cache lookup
mechanism. On the x-axis, the pair (a,b) means “a” TRs for the stack
and “b” TRs for the global references.

179.art

0
20
40
60
80

100

(1
,0

)

(1
,1

)

(1
,2

)
(1

,4
)

(1
,8

)

N
or

m
al

iz
ed

 d
T

LB

Lo
ok

up
s

183.equake

0
20
40
60
80

100

(1
,0

)

(1
,1

)

(1
,2

)

(1
,4

)

(1
,8

)

177.mesa

0
20
40
60
80

100
(1

,0
)

(1
,1

)

(1
,2

)

(1
,4

)

(1
,8

)

N
or

m
al

iz
ed

 d
T

LB

Lo
ok

up
s

Base-Opt Structured-Opt

178.galgel

0
20
40
60
80

100

(1
,0

)

(1
,1

)

(1
,2

)

(1
,4

)

(1
,8

)

187.facerec

0
20
40
60
80

100

(1
,0

)

(1
,1

)

(1
,2

)
(1

,4
)

(1
,8

)N
or

m
al

iz
ed

 d
T

LB

Lo
ok

up
s

188.ammp

0
20
40
60
80

100

(1
,0

)

(1
,1

)

(1
,2

)

(1
,4

)

(1
,8

)

177.mesa

0

50

100

150

(1
,0

)
(1

,1
)

(1
,2

)
(1

,4
)

(1
,8

) 1 2 4 8

N
or

m
al

iz
ed

E

ne
rg

y

178.galgel

0

50

100

150

(1
,0

)
(1

,1
)

(1
,2

)
(1

,4
)

(1
,8

) 1 2 4 8

179.art

0

50

100

150

(1
,0

)
(1

,1
)

(1
,2

)
(1

,4
)

(1
,8

) 1 2 4 8

N
or

m
al

iz
ed

E

ne
rg

y

183.equake

0
50

100
150
200

(1
,0

)
(1

,1
)

(1
,2

)
(1

,4
)

(1
,8

) 1 2 4 8

187.facerec

0

50

100

150

(1
,0

)
(1

,1
)

(1
,2

)
(1

,4
)

(1
,8

) 1 2 4 8

N
or

m
al

iz
ed

E

ne
rg

y

188.ammp

0
50

100
150
200

(1
,0

)
(1

,1
)

(1
,2

)
(1

,4
)

(1
,8

) 1 2 4 8

Figure 7. Normalized energy consumptions for the VI-PT cache
lookup mechanism. On the left side of the x-axis, the pair (a,b)
indicates “a” TRs for the stack and “b” TRs for the global
references. The bars on the right side of each graph are for a
multi-level dTLB with 1, 2, 4, and 8 entries in the first level and
128 entries in the second level.

103

	Main Page
	CODES+ISSS'04
	Front Matter
	Table of Contents
	Author Index

