Temporal Floorplanning Using 3D-subTCG *

Ping-Hung Yuh!, Chia-Lin Yang!, Yao-Wen Chang?, Hsin-Lung Chen?

! Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
{r91089, yangt@csie.ntu.edu.tw
2Graduate Institute of Electronics Engineering & Department of Electrical Engineering, National Taiwan University, Taipei, Taiwar
ywchang@cc.ee.ntu.edu.tw
Etron Technology Inc., Hsin-Chu, Taiwan
gis89536@cis.nctu.edu.tw

Abstract

Improving logic capacity by time-sharing, dynamically reconfigurable FP-
GAs are employed to handle designs of high complexity and functionality.
In this paper, we use a novel topological floorplan representation, nagibred
subTCG (3-Dimensional sub-Transitive Closure Graph) to deal with the 3-
dimensional (temporal) floorplanning/placement problem, arising from dy-
namically reconfigurable FPGAs. The 3D-subTCG uses three transitive clo-
sure graphs to model the temporal and spatial relations between modules.
We derive the feasibility conditions for the precedence constraints induced
by the execution of the dynamically reconfigurable FPGAs. Because the
geometric relationship is transparent to 3D-subTCG and its induced opera-
tions, we can easily detect any violation of temporal precedence constraints
on 3D-subTCG. We also derive important properties of the 3D-subTCG tdFigure 2:(a) A running program. (b) A 3D-placement of the running program.
reduce the solution space and shorten the running time for 3D (temporal)

foorplanning/placement. Experimental results show that our 3D-subTCG

based algorithm is very effective and efficient.

how to place these modules into the RFU becomes a 3-D placement pro
1 Introduction lem as shown in Figure 2(b). We may denote each module as a 3-D bc

A Field Programmable Gate Arrays (FPGA) is a (re)programmable log ith spatial dimensions andy and the temporal dimensian There exists
device that implements multilevel logic. Traditionally, an FPGA needs t mpgral reléit'grt') amon?] schedu_ll_ehd mt()).dul(es S'?Ce the relsﬂult oflone_mo.dL
be reconfigured as a whole. Recently, several vendors have proposed @y be needel ya?]otR?:rL?ne. 1€ 0 Jeﬁt've 0 terr(;pora Qorp_annm_gr:sw
chitectures that allow partially dynamic reconfiguration, such as the XiIingio(?gté};e Th(:a tuefns Igrglionstr;?n?stlmlzet eareaand execution time withot
XC4000E FPGAs [18], the Atmel AT6000 Series FPGAs [2], the Xilinx 9 P :

XC6200 Series FPGAs [11], and Xilinx Virtex Series FPGAs [20]. 11 PreviousWork

Teich et al. in [17], first usedomponent graphs to deal with such a problem

— — assuming no dependence among scheduled modules. They derived nec
e sary and sufficient conditions for a feasible placement and proposed an er
[.] CLBrowo meration scheme by using a branch-and-bound tree search algorithm to fi
a feasible solution. In practice, however, there often exist temporal prec
dence constraints among scheduled modules since the output of one mod
may be needed as the input of another module. Therefore, Fekete et al.

DLL | Pad 1 10Bs

FFy

3
‘ -
L

FFx

Left IOBS

CLBs

Left Block SelectRAM
WWR310919S %0018 1B
S80I by

Sicet || [[stice0 [7] later extended their work to solve the placement problem with tempors
y [l TR . precedence constraints by using an additional dependency graph. Bazare
_ Fix Frx et al. in their pioneering works [3], [4] and [5] considered both offline place-

| | ment (3D template placement) and online placement. In the offline place
@ ®) ment, they modeled each RFUOP as a 3D box and fixed the width and heig
of the RFU. They proposed a 3D-floorplanner which implements four effec

) tive methods, including one greedy method called KAMER-BF (Keep All
Figure 1:(a) The Virtex architecture. (b) One-column of a 2-slice Virtex CLB. Maximal Empty Rectangle with Best Fit). In the online placement, they al-
located the free space of RFU to an RFUOP dynamically based on differe

Figure 1(a) shows the Xilinx Virtex model [20]. The Virtex configurationgréedy methods (e.g. best-fit and first-fit).
memory can be considered as an array of bits. The bits of one-bit width t _—
extend from the top to the bottom of the array constitute a verticate, TE . Our Contribution . . .
which is the smallest portion of the configuration memory (i.e., the atomi@ this paper, we solve the 3-dimensional floorplanning/placement problern
unit that can be written to or read from in this device). Several frames apéthe general reconfigurable architecture by using a novel topological flool
grouped together into larger units calledumns. Figure 1(b) shows one Plan representation, call&D-subTCG (3-Dimensional sub-lTr'ansmve. Clo-
column ofconfigurable logic blocks (CLBs for short). In such a device, we Sureé Graph). To the best knowledge of the authors, this is the first wor
have to specify a full column of a chip for reconfiguration and read-in/out dfat uses a topological representation to handle the 3-dimensional placem
flip-flop of contents. problem of a dynamically reconfigurable device. _

Because of the partial reconfiguration capability in an FPGA, studieg_Transitive closure graphs were previously proposed to handle classic
have shown that an FPGA-based reconfigurable hardware system can #R-floorplanning/placement problems [15]. The main challenge to solve th
prove performance for many applications [10]. A reconfigurable system & floorplanning problems is that there exists additioteaiporal prece-
usually composed of a host processor and an FPGA coprocessor, aafled &lence consiraints, for which some tasks must be executed before othe
configurable functional unit (RFU) [3]. An RFU, which can be reconfigured tasks start. We use the 3D-subTCG which consists of three transitive cle
during program execution, may have various configurations at different timigre graphs to model the temporal as well as the spatial relations betwe
Figure 2(a) shows a program with four parts of codes mapped into RFU ks/modules. We derive the feasibility conditions for the temporal prece
erations (calledRFUOPs or modules). Because of the place constraint, wed€nce and the spatial constraints induced by the execution of the dynan
may not load all the modules into the device at the same time. Therefof@lly reconfigurable FPGAs. Because the geometric relationship is tran
parent to the 3D-subTCG and its induced operations, we can easily d

*Yao-Wen Chang'’s work was partially supported by the National Science CoundfCt any violation of temporal precedence and spatial constraints in the 3L
of Taiwan under Grant No. NSC 91-2215-E-002-038. subTCG. Therefore, we can guarantee a feasible solution without resortir

to time-consuming post-processing to remove infeasible ones. We also &- 3D-subTCG for Temporal Floorplanning

rive important properties of the 3D-subTCG to reduce the solution space .

shorten the running time for 3D (temporal) foorplanning/placement. Ea)gul) Re\/le_w of TCG))

perimental results show that our 3D-subTCG based algorithm can obtdif¢ first review the TCG representation presented in [15]. TCG uses tw

significantly better floorplans than the Sequence Triplet (ST) representati@iPhs.a horizontal transitive closure graph C), anda vertical transitive

(35.18% deadspace in ST v.s. 14.86% in 3D-subTCG). The running-tir§osure graph C,, to describe the geometric relations among modules. Fo

requirement of 3D-subTCG is also significantly smaller than ST (312.18 s&¥0 non-overlap modules, andb;, b; is said to benorizontally (vertically)

as ST v.s. 166.46 sec as 3D-subTCG). related to b;, denoted by; - b; (b;Lb;), if b; is on the left (bottom) side of
The remainder of this paper is organized as follows. Section 2 formulats@nd their projections o (x) axis overlap. For two non-overlap modules

the temporal floorplanning problem. Section 3 reviews the TCG represen-andb;, b; is said to bediagonally related to b, if b; is on the left side

tation and presents the 3D-subTCG for temporal floorplanning. Section®4 b;. and their projections on the axis andy axis do not overlap. To

introduces our temporal floorplanning algorithm. Section 5 reports the eXIMPplify the operations on geometric relations, we treat a diagonal relatio
perimental results. Finally, conclusions are given at Section 6. as a horizontal one, unless there exists a chain of vertical relationsbfrom

(b;), followed by the modules enclosed with the rectangle defined by th
. two closest corners df; andb, , and finally tob; (b;), for which we make

2 Formulation b; Lbj(b;Lb;). For each modjuléi, we introduée one node; both inCj,
In the reconfigurable architecturetask v is loaded into the device for a andC,. If b; - b;, a directed edgeng, n;) is constructed irC. Similarly,
period of time for execution. Let” = {v1,vs, ..., vm } be a set ofn tasks we construct a directed edge;(n;) in C, if b; Lb;. Figure 3(a) shows a
whose widths, heights, and durations are denotetihyH,;, andT;, 1 < placement with five modules, b, ¢, d, ande whose widths and heights are
i < m. Let(z;,y:) (=}, y;)) denote the coordinate of the bottom-left (top-(2, 1), (2, 2), (3, 2), (1, 2), and (3, 1), respectively. Figure 3(b) shows the
right) corner of a task; and ,1 < i < m, on the chip. We usé¢; (t;)to TCG corresponding to the placement of Figure 3(a). The weight of eac
represrent the starting (ending) timew@f 1 < ¢ < m, scheduled in the node inC}, (C,) represents the width (height) of the corresponding module
reconfigurable device. b;. Sinceb, F by, we construct a directed edg@e,, n) in Cj,. Similarly,

To guarantee the correctness of the functions in the reconfigurable arc$inceb, Lb., a directed edgen(, n.) is constructed irC..
tecture, we must satisfy temporal precedence requirements, which describel CG has the following thregeasibility properties [15]:
the temporal ordering among tasks. We refer to the temporal precedence re-

quirements aprecedence congtraints. LetD = {(v;, v;)|1 < i,j < m,i # 1. Gy andC, are acyclic.
j} denote the precedence constraints for the taskadv;. The precedence 2. Each pair of nodes must be connected by exactly one edge either
constraints should not be violated during floorplanning/placement. CrorinC,.

In order to measure the quality of a floorplan, we consider the following 3. The transitive closure af), (C.) is equal toCy, (C,) itself.!
objective functions:

e Volume (the minimum bounding box of a placement): In a tem-
poral floorplanning, we need to consider the area of a device and the
total execution time tradeoff. If we use a larger device, the total ex- e
ecution time could be shorten. In contrast, it takes longer time if a
smaller one is used. Therefore, we shall minimize the product of the
area of the device and the total execution time. c

e Wirelength (the summation of half bounding box of intercon-
nections): Due to the special architecture of the reconfigurable de-
vice, the method to estimate the wirelength in the temporal floorplan-
ning is different from the traditional floorplanning/placement prob- @ ®
lem. Given a net, those nodes in the net may be executed at the same
time or at different times. If they are executed at the same time, we 5

can estimate the wirelength according to their geometric distance di-
rectly. However, we have to project all nodes into the same time frame A
ng,

before computing their wirelength in the other condition.

S
e Communication overhead: We quantify the communication over- v

head based on the Xilinx Virtex XCV1000 described in Section 1.

Similar to the work by Fekete et al. [7], we assume that a task com- Na "
municates with another task (data-dependence) in the following way:

the results of a CLB, which are read by the successor task, are first Avgmented Ch
written to external memory through a bus interface. The dependent Augmented Cy

task, which has been loaded at the specified position, then perform a ©

read-in of the results. Recall thaframe is the atomic unit that can

be written to or read from. Each frame contains 1248 bits and the b@$gure 3:(a) A placement. (b) TCG. (c) Augmented TCG (augmergigcandC,).
width is only 8 bit. Thus, it takes approximatelg48/8 + 24 = 180

clock cycles in each read-in or read-out, where the 24 cycles are the . .
configuration overhead of the bus interface as described on the Xil- The first property ensures that a modajecannot be both left and right
inx FPGA data book [20]. Therefore, the communication overhead & (below and above) another moduigin a placement. The second prop-
each reconfiguration tak&s0 x f clock cycles time (we should first erty guarantees that no two modules overlap since each pair of modules he

write the data to the external memory and then read back the dataﬁ?fac'[ly one of the horizontal or vertical relation. The third property elimi-
data inf columns need to be transferred. ates redundant solutions. Figure 4 illustrates the third property. As show

in Figure 4 (a) , since there is a path from nedeo noden. in Cy, the edge
ne, ne) Must be inC,. If we place the edgén., n.) into Cj,, as shown in
igure 4 (c), the resulting area of placement must be larger or equal to tt
onfiguration of Figure 4 (a). Figure 4 (b) and (d) shows the two placemen

e Reconfiguration overhead: As described in Section 1, Xilinx Virtex (
XCV1000 is column-oriented (i.e., all bits in one column should b
updated in each read-in or read-out). Suppose that atastcupies : P : ;
I/IF/)i x H; CLBs. We have to reconfigarHi c%?umns of CIst in gach The t.h'rd property eliminates this redunda_nt so_lut|20n._ .
reconfiguration. As an example, each CLB column in a Virtex FPGA Given a TCG, a placement can be obtained{m:”) time by performing
consists of 48 frames, which takek248/8) x 48+ 24 = 7512 clock & Well-knownlongest path algorithm [14] on TCG, wheren is the number
cycles to configure pér CLB column. This means we ridéd 7512 of modules. To facilitate the implementation of the longest path algorithm

clock cycles in total if the addresses in the column are incrementalf)¢ two closure graphs can be augmented as follows. For each closure gra
updated. e introduce two special nodes with zero wights, the soutcand the sink

nt, and construct an edge from to each node with in-degree equal to zero
In this paper, we treat a task as a three-dimensional box. A placementand also from each node with out-degree equal to zera toFigure 3(c)

P is an assignment ofx;, y:, t;) for eachv;, 1 < i < m, such that no shows the augmented TCG for the TCG shown in Figure 3(b).

two boxes overlap and all precedence constraints are satisfied. The goal of

temporal floorplanning is to optimize a predefined cost metric (defined in the 1 The transitive closure of a directed acyclic gra@hs defined as the graph’ =
above)induced by a placement. (V, E’), whereE’ ={(n;, n;): there is a path from node; to noden; in G}.

3 Ne 1 relation ofv; andwv;. In Figure 6, since task. (v,) is left to (below)wy
Ne (vy), there exists an edge., ny) ((ne,nyf)) in Cr (Cy). Similarly, since
! - taskv, must be executed before task there exists an edde., nq) in C.
"d P a To obtain the coordinate of each task, we apply the longest path algorithm |
. the three graphs in a 3D-subTCG. (See Section 3.1 for the details.)
';C . , ¢ 3D-subTCG has the following thrdeasibility properties:
na b Na N L 1. C, C, andC} are acyclic.

Ch & 2. Each pair of nodes must have exactly one edge eithét,inC,, or

(a) (b) Cy.

3 Ne
m . 3. There must exist an edge., n;) if there is a path from; to n; in
1 one graph and there exists no closure edge betwgandn; in other
d [e] graphs.
. : The first two properties, which are the same as TCG, guarantee that
’;“ .. , ¢ solution is feasible. The third property is to eliminate the redundant solu
— s A v tions. An edge;,n;) is said to be alosure edge if there exists a path
fa G o 2 G a | P from noden; to noden; except the edgeng, n;) itself. For example, the

edges(ny, na), (Ne; Na), (Ne, ne), and(ne, ny) in Cy of Figure 6 are clo-
sure edges. If there exists a path from nedeo noden; in one graph,
Figure 4:(a) A feasible TCG that the edde., n.) lies inC,. (b) The correspond- the closure edgent, n;) should appear in the same graph instead of other:
ing placement of Figure 4 (a). (c) A non-feasible TCG that the dadgen.) liesin 0 eliminate the redundant solutions as explained in section 3.1. Howeve
C,. (d) The corresponding placement of Figure 4 (c). before adding a new closure edge (n;) after each operation, we need to
make sure that there exists no closure edges betweemdn; in other
graphs. Figure 7 illustrates this scenario. Figure 7 (a) shows a 3D-subTC
that noden, andn; have a closure edge ifi,. Figure 7 (b) shows the re-
sulting graph after deleting edde., ns) in C; and adding edgén,, n.) to

Ch. Now there is a path from;, to n, in C. However, in order to maintain
the second property, we cannot add the closure edgen() in C}, since

f (na,ns) has already existed i@,

©) (d)

Let L (ns) (L»(ns:)) denote the weight of the longest path from to

n; in the augmented’, (C,). L (n;) (L, (n;)) can be determined by per-
forming the single source longest path algorithm on the augment€d’,)
in O(m?) time, wherem is number of modules. The coordinat&(Y;)
of a moduleb; is given by €1 (n;), L,(n;)). Further, the coordinates o
all modules are determined in the topological orde€in (C,). Since the
respective width and height of the placement for the given TCQ.afe.)
andL,(n.), the area of the placement is given by(n;) x L,(n¢). Since
each module has a unique coordinate after packing, there exists a unique
TCG corresponding to any placement.

Ne 4 3
3.2 3D-subTCG ne g one
Ct
5
4. Nng 2
£ 3 2 meo
Ea. 5 .
s 1. 3 .na ” 2 " nd
o nd. 2 nd
I Ne 1 4
¢ 3 3/ 2 2 ne 4 3 m
. « e
fle [i Na Ne Na Ne
Helght Ch CV Ct

(©

Figure 7: (a) A 3D-subTCG with only one path between node andny, in C.
(b) A 3D-subTCG contains two paths @}, andC’, between node:, andny.

4 Temporal Floorplanning Algorithm

Our algorithm is based on simulated annealing [12]. Given an initial 3D-
subTCG, we perturb the 3D-subTCG to obtain a new 3D-subTCG. The co
function® used in our algorithm is given by

® = aV + W + 0, 1)

whereV is the volume of the placement is the total wirelength(Q is

the reconfiguration and communication overheads,camt] and~ are user-

specified constants. In this section, we first describe how to identify a redus
As shown in the previous section, TCG describes the geometric relatiotisn edge, and then show the perturbation operations in simulated annealir

among modules based on two grapfis,andC,. For a dynamically recon- Finally, we introduce the feasibility condition that a 3D-subTCG must satisfy

figurable device, there exists temporal ordering among tasks. For two tasksging each perturbation in order to maintain the correct temporal orderin

v; andv;, v; is said to beemporally related to v;, denoted by; < vj, if v; among tasks.

must be executed befotg starts. To solve the 3D floorplanning/placement . L

problems, we need to consider the temporal and spatial relations at the s#kde Reduction Edge | dentification

time. Therefore, we introduce a new graph to model the temporal relatioRsst we illustrate the concept oéduction edge. An edge ., n;) is called

among tasks, namelytamporal transitive closure graph C;. This new rep- reduction edge if there does not exist another path from nedeo noden;

resentation is called 3D-subTCG, which contains three transitive gr@hs, except the edgen(, n;) itself. For example, the edg€s,, ny), (ny, ne)

C, andC;. For each tasl;, we construct one node; in each graph. If and(ne,n.) in Cj, of Figure 6 are reduction edges. Recall that 3D-subTCG

v; F v; (v Lnj), we construct one edge, n;) in Cr (Cy). If v; must be is formed by directed acyclic transitive closure graphs. Given an arbitrar

executed before;, we construct an edge.(, n;) in C;. noden; in one transitive closure graph, there exists at least one reductio
Figure 5 shows a placement with six tasksb, ¢, d, e, and f whose edge(ni, n;), wheren; € F,.:(n;). Here we define the fan-in (fan-out)

widths, heights and durations are (5, 1, 4), (3, 5, 4), (3, 2, 3), (3, 2, 1), (2, @ a noden;, denoted byF;, (n;)(Fout(n:)), as the nodes;’s with edges

1), and (2, 2, 3), respectively. Figure 6 shows the 3D-subTCG correspondifig;, n;) ((ni,n;)). For nodesuy,n; € Foui(n;), the edge(n;, ny) can-

to the placement of Figure 5. The value associated with a no@g (€', or not be a reduction edgeifi, € F,.:(n;). Hence, we remove those nodes

C}) gives the width (height or duration) of the corresponding task, and the F,..(n;) that are fan-outs of others. The edges betweeand the re-

edge(n;, n;) in Cr (Cy or Ct) denotes the horizontal (vertical or temporal)maining nodes inf,.:(n;) are reduction edges. In th@, of Figure 6,

Figure 6:The corresponding 3D-subTCG of Figure 5.

Fout(ne) = {na,np,ne,ny}. Sinceng, ne, andn; belong toF,.:(ns),

ne 2
edgeqn., n,) and(n.,ny) are closure edges while:.., ny) is a reduction 1 n: %nf ms
one. The reason for identifying reduction edges is that the operations de- 3 2/ Na 2 *n
fined below are only applied to reduction edges. The time complexity of Ma Ne nd
finding such a reduction edged(m?), wherem is the number of modules A L2 nel 4 4 3
Ny Ne
C

(tasks) [15]. N Mo N e ol

Ch v G
a) Initial configuration of 3D-subsTCG

4.2 Solution Perturbation
We define the following five operations to perturb a 3D-subTCG: (

¢ Rotation: Rotate a task. . e ,
e Swap: Swap two nodes if', C,, and Cy. , ?n e , AN s 1
e Reverse: Reverse aeduction edgein Cy,, C,, or Ct. nd 2{ ? ng / Nd
e Move: Move areduction edge from one graph @, C,, or C¢) to 3 é 5% 2 [R
another graph. ne M L na ne fle

Ch &

e Transpositional Move: Move areduction edge from one graph @,
C,, or Ct) to another graph, and then transpose the two nodes associ- (b) Rotate Ny
ated with the edge. Itis clear later that this operation is different from

performing Move followed by Reverse. S
Note that Rotation, Swap, Reverse, and Move are first introduced in [15], s H np) 5 iy A
which can be performed in respectivg(1), O(1),O0(m?), and O(m?) e 2/ M “ a,
times, wherem is the number of modules (tasks). Further, the resulting . Ne , . *b
graph after performing any of these operations on a 3D-subTCG is still a ne 5nb e (- ne /g
3D-subTCG. Rotation and Swap do not change the topology of 3D-subTCG, Ma e ne Na
while Revere, Move, and Transpositional Move do. Therefore, to maintain Ch S G

the properties of a 3D-subTCG, we may need to update the resulting graphs (6) Move (n¢ np)
after performing Reverse, Move and Transpositional Move. Further, in or- '
der to guarantee that the precedence constraints are not violated by t @qu .) _—

. i - . . re 8:Examples of perturbations. (a) The initial 3D-subTQG,(C.,, andC}).
operations, we S.ha” per]‘orm feas'b'.“ty d_etectlon, Wh'Ch are described B) The resulting 3D-subTCG after rotating the taskshown in(a). (c) The resulting
section 4.3. We first detail the operations in the following. 3D-subTCG after moving the reduction edge., ny,) from theC), of (b) to C;.

421 Rotation

To rotate aask v;, we only need to exchange the weights of the correspond- N _ _ _

ing nodesn; in Cy, C,, andC;. Figure 8 (b) shows the result after rotatingIn one case, Transpositional Move switches the geometric relation of th
the module a in Figure 8. two tasksv; andwv; between a horizontal relation and a vertical one and
422 Move changes the ordering of the two tasksandv; in their geometric relation.

. . . For two tasksv; andv;, v; = v; (v; L v;) if there exists a reduction edge
The Move operation movesraduction edge(n;, n;) in one graph to one of & v, vi - 05 (Vi L vy) 9

. ! . i, nj) in Cy (C,); after transpositionally moving the edge;, n;) to C,,
the others in a 3D-subTCG. Move could switch the relations of the two tas h)nde haCe(the) new geomgtric relatigp 1 v %vj - vigelnnt%)e other
v; andv; between a horizontal relation and a vertical one. For two tasks,se Transpositional Move changes the temporal relation of the two tas
vi andv;, vi - v; (v; L v;) if there exists a reduction edgei(;) in Ch , “and 4. For two tasksy; andvj, v; < v; if there exists a reduction
(C.); after moving the edgen,, n;) to €', (Cr), we have the new geometric gyqe ¢,) in C; after transpositionally moving the edge; (7, to C',
relationv; L v; (vi I~ v;). Move could also change the temporal refation) 'we change the temporal relation into the new geometric relation
of the two tasks; andv;. For two tasksy; andv;, v; < v; if there exists

. . : . vi (v; L v;). If there exists a reduction edge;(n;) in C, (Cy); after
a reduction edger;, n;) in Cy; after moving the edgen, 1) 10 Cn (C), transpositionally moving the eddge., ;) to C, we have the new temporal
we change the temporal relation into the new geometric relatior v;

) . . ; . relationv; < v;.
(ﬁi L v;). If there exists a Leduct;]on edge:(;) mIChI (C.); after moving To trajnspositionally move a reduction edge, (n;) from one graplG to
the edge(ni, n;) to C:, we have the new temporal relation < v;. another grapl@’, we first delete the edge.(, n,) from G and add ¢, n.)
) To move a reduction edgex{, n;) from one graph; to another/graph to G. Similar to the Move operation, for each nodg € Fiy, (n;) U {n; }
G, \éve f'erSt dele}? t?e)egg{a(,}nj) Lrom GFand(thtirLa{dd?, n;) tﬁcﬁ : rfork andn; € F,u:(n;) U {n;}, we shall check whether the edge,, n;) exists
each nodey, € Fy,(n;) U {n;} andn; € Fou(n;) U {n;}, we shallcheck . -~ / - g :
whether the edgény, n1) exists inG. If G/ ontains tha edge, we do noth- in G'. If G’ contains the edge, we do nothing; otherwise, we need to add th

; - 1" edge toG’ and delete the corresponding e ,n) or (ng,ng) in G or
ing; otherwise, we need to add the edgetoand delete the corresponding G”? if any, to maintain the proper‘t)ies of %e%ggfsukl))'l'cé. Il:iglljr)e 9 (c) show:
edge(ny, ni) or (ni, n) in G or G, if any, to maintain the properties of {he'resylt of transpositionally moving the edge.,) from C; of Figure 9

the 3D-subTCG. Figure 8 (c) shows the result of moving the edgert,) (b) to C',. Note we delete the edde., n.) in C, and add it taC,.

in C}, of Figure 8 (b) toC:. ’

423 Swap 4.3 Feasbility Detection

To swap nodes; andn; of two tasksv; andv;, we only need to exchange To maintain the temporal ordering among tasks, the 3D-subTCG must guz
the nodesw; andn; in Cy, C,, andC,. Figure 9 (a) shows the result of antee that all precedence constraints are satisfied. Among the five operatic

swapping nodes,;, andng shown in Figure 8 (c). mentioned above, Move, Swap, Reverse, and Transpositional Move cou
violate the constraints. We now show how to detect a violation during per

424 Reverse _ o) . turbation.

The Reverse operation reverses the directionretiaction edge ., n;) in When we move an edgen{,n;) or reverse/transpositionally move

one graph. For two modules andv;, v; = v; (vi L v;) if there exists (,,, 1), the precedence constraint will be violateaife F,(n:) U {n:},
a reduction edgen, n;) in Cy, (C.); after reversing the edder;, n;), we 5" ¢ Fout(n;) U {n;}, and(n;,ng) & Cy since(ni,nx) € D. As men-
have the new geometric relation + v; (v; L v;). Similarly, v; < v; if tioned in Section 2D denotes the precedence constraints. When we swa
there exists a reduction edge;(n;) in C; after reversing the edde., 7;), two nodesn; andn;, three scenarios could happen:
we have the new temporal relation < v;. . .

To reverse a reduction edge;(n,;) in a graph, we first delete the 1. there exists a precedence constraint betweeamdn,;,
edge from the graph, and then add the edgg ;) to the same graph. 2. neither ofn; andn; has a precedence constraint, or
Similar to (the) M(?{ve}operﬁtion, for eatr:]h nod@i‘ e" Fﬁ-n(ﬁj)# {hn]-} r?ndd 3. eithern; orn; has precedence constraint.
n; € Fout(ni) U {n;} in the new graph, we shall check whether the edge ' o
(nx,m:) exists in the new graph. If the graph contains the edge, we Oltf)I?In the first case, it is clear that we cannot swap the two nodes. Howeve

0

il ; either of n; andn; has a precedence constraint, we can swapand
nothing; otherwise, we need to add the edge to the graph and delete the n; directly. Without loss of generality, we could assume that negdéas

responding edgén, n;) or (n;, nk) in the other transitive closure graphs, . . :
: e :) ; ecedence constraints to detail the third case. If nodbas precedence
if any, to maintain the properties of the 3D-subTCG. Figure 9 (b) shows tr‘P"'I(‘)nstraints, we can apply the same approach to check the feasibility. In tf

. . - C
result after reversing the edgec(n.) in C’. of Figure 9 (a). first condition,n; has a precedence-constrained edger;), we can swap

425 Transpositional Move n; andn; without any violation ifn, € F,u:(n;) in C¢. On the other hand,
The Transpositional Move operation removesauction edge(n;, n;) from if n; has a precedence-constrained edgg ;) andny € Fi,(n;) in Ct,
one graph, and add an edf@e;, n;) to one of the others in a 3D-subTCG. we can also swap; andn;.

5 Nc g ng 3
H o 2 *
: 2/ "a 3 ng lne
Ny e Ng
3 3 2 3 3/ W2 1
N ~nd “nr ne ~~_Ne ny 1 L
a Nc Na Np
Ch Ch S G
@ Swap (np ng) (@ Swap (ng ne)
. 2 nd.Z 2. Ne
ny 2 : nd A ™3
§/r-ne nb5 zne zn
Na . d
n;
i, L e
ne ~d nt 1 e ¥ 44
c, Ma e na np
(b) Reverse (ng Nng) Ch CV cl
. (b) Reverse the edgéng i Ne)in Ch
2 nC-Z 2- ne
N4 ® .
3 ¢ n n 3 Figure 11: (a) The resulting 3D-subTCG after swapping the nodgsand n.
Ny 2
5 e i shown in Figure 9(c). (b) The resulting 3D-subTCG after reversing the reduction edg
e :‘ /”d (ng,ne) intheCy, shown in Figure 9(c).
3 3 2 1,
. 3 4 4
ne ~~_nd n 1 Ne ¢ ¢
Na ne ng np
Ch S G Based on simulated annealing [12], we implemented the temporal flool
(¢) Transpositional Move the edge np) from G 10 G, planning algorithm in the C++ programming language on a 433 MHz SUN

] Ultra-60 workstation with 1 GB memory. We compared 3D-subTCG with
Figure 9: Examples of perturbations (continued from Figure 8). (a) The resulSequence Triplet (ST). ST is extended from the well-known Sequence Pz

ing 3D-subTCG after swapping the nodes andng shown in Figure 8(c). (b) The (SP) [16], which is very popular for handling floorplanning/placement in

resulting 3D-subTCG after reversing the reduction eflgg n.) in the C, shown : . .
in (a). (c) The resulting 3D-subTCG after transpositional m%ving the reduction ed@@th industry and academfaA sequence triplet consists of three module

(ne,np) from theCy of (b) to Cy. equencesl{,, I'y, I'.). The relation between two modules is defined as
follows: (1) if the sequence of two modules b is the same (from left to
right) in (T, T2), i.e., Tz, T'y, T'z) = (.a..b..,, ..a..b..), it means that
moduleq is on theZ™ direction of module; (2) if the sequence of the two
modulesa, b is not the same inI{;,I'.), the (s, I'y, I'.) is identical to
Sequence Paifl’;,I'y). For example, the ST representation of Figure 5 is
(debfea, cbeafd, dafebc). Based on the same simulated annealing schem
as that for 3D-subTCG, ST employs the following three perturbation oper
ations: (1) M1: randomly swap two modules in one of the, 'y, andI",
sequences; (2) M2: randomly swap two module§'jp, T'y, andI", simul-
taneously; (3) M3: randomly choose one module and change its height wi
width, width with length, or length with height (i.e., 3D rotation). We imple-
mented the ST algorithm with the same simulated annealing engine as that
3D-subTCG with the limiting that rotation can only change width and height
2 4 (i.e., duration remains the same), and added precedence constraints, rec
Height iy |) figuration overheads and communication overheads for comparative studie
S To verify our algorithm, we first tested 3D-subTCG on five synthetic cir-
cuits that can be packed without deadspace. Table 1 shows the results. N
Figure 10:The resulting placement of 3D-subTCG in Figure 9(c). that the volume of a placement is the minimum bounding box enclosing th
placement. We can see that 3D-subTCG obtains the optimal placements 1
the first three test cases and near optimal solutions for the last two larg

Figure 11(a) shows the resulti,, C,,, andC, after swapping the nodes glfrfcwts, all in reasonable time. The results show that our approach is vel

nq andn. in Figure 9(c). Assume that there exists a precedence-constrainecl’ecwe for cost optimization.
edge (., ny). The precedence constraint will be violated if we swap the two
nodesng andn. sinceny ¢ F,u:(na) in the C;. Figure 11(b) shows’;,

i i i i i Circuit #of #of #of # # of precedence|

C., andC; after reversing the edgeua, n.) in the Cy, in Figure 9(c). Since | || o s H hads || ot || oS | of preceder
{ne} N Fin(ne)={nc, ne} and{na} N Fous(na)={na, ns} in C, we shall 3D-apte 9 73 [97 || 214 3
check(n.,ny) for the precedence constraint. If there exists a precedence- 3D-xerox 10 107 || 203 || 696 3
constrained edge, n), the precedence constraint will be violated. L 3 22 e 3

By doing the feasibility detection during the Move, Reverse, Transposi- 3D-ami49 49 24 || 408 || 931 11
tional Move, or Swap operations, we can guarantee that the resulting 3D- - - —
subTCG still satisfies all the precedence constraints. We thus have the fol- Table 3:The five 3D-MCNC benchmark circuits.

lowing theorem.

To compare 3D-subTCG with ST, we performed two experiments. In
each experiment, we set= (v = 1. In the first experiment, our objective
is to minimize the volume with reconfiguration and communication over-
heads. For this experiment, we adopted the benchmark circuits used in |
. and added the reconfiguration and communication overheads. As shown
5 Experimental Results Table 2, the 3D-subTCG based method outperforms the ST-based one by
large margin. For example, 3D-subTCG achieved an average deadspace
only 19.38% while ST resulted in an average deadspace 32.01%.

The second experiment is intended to test the 3D placement wit

Theorem 1 The precedence constraints of a 3D-TCG are not violated by the
Move, Svap, Reverse, or Transpositional Move operation with the feasibility
detection.

| Cireut H LA || Sum of H Volume H De?&jpacen (Sec) || the considerations of precedence constraints, wirelength, and reconfigus
Circuit L || 10 517 517 0.0 83 tion/communication overheads. For this experiment, we used the MCN
g!fcu!gg %8 f(?go 14(%30 8-8 5-3 benchmarks. Since the MCNC benchmarks do not have execution times a
Circuit || 20 3840 || 2032 a7 25 precedence constraints, we assigned their execution times and precede
Circuit5 || 30 4096 4608 111 127.8 constraints by ourselves. The new benchmark suite is called the 3D-MCN

. : : 2
Table 1:Results of volume optimation (volumerrm? x clock cycles). 2The work [16] has been selected as one of the 40 best papers published at ICC/

during the past 20 years [13].

Circuit (#of tasks) [Sum of Volume 3D-subTCG
Volume Dead Space Time volume Dead Space Time
(mm? x clockcycles) (%) (sec.) | (mm? x colckcycles) (%) (sec.)
beasleyl 10 6218 8710 28.6 7.7 7504 17.1 85
beasley? 17 11497 14664 215 457 12402 72 785
beasley3 21 10362 16016 35.3 441 12640 18.0 2.4
beasley4 7 10205 13800 26.0 3.0 13064 218 2.0
beasleys 17 16734 22750 26.4 18.2 18917 115 16.0
beasley6 15 11040 14994 26.3 27.9 13200 16.3 248
beasley7 g 17168 24570 30.1 3.3 20574 16.5 2.3
beasleys 13 83044 132275 37.2 15.4 98280 155 19.4
beasley9d 18 133204 174496 236 30.6 167751 205 17.2
beasley10 13 493746 660480 25.2 13.0 575685 14.2 10.8
beasleyll 15 383391 486381 248 175 438702 12.6 9.8
beasley12 22 646158 922080 29.9 100.0 823816 215 585
okpl 50 1.24 x 10° 2.16 x 10° 42.6 1607.2 1.73 x 10 28.4 387.3
okp2 30 8.54 x 107 1.28 x 10°% 33.2 285.3 1.10 x 10 22.3 73.8
okp3 30 1.23 x 10°% 1.85 x 10°% 33.1 280.7 1.60 x 10 23.0 70.6
okp4 61 2.38 x 10 4.17 x 10 42.8 791.3 3.28 x 10° 27.3 501.9
okp5 97 1.89 x 10 4.48 x 10 57.7 607.8 2.95 x 10 35.8 565.9
Average 32.01 19.38
Table 2: Results for volume optimization with reconfiguration overhead and communication overhead.
Circuit Total ST 3D-subTCG
volume Volume Wirelength Dead space Time Volume Wirelength Dead space time
(mm? x clockcycles) (mm) H (%) H (sec.) (mm? x clockcycles) (mm) H (%) H (sec.)
3D-apte || 9.88 x 107 1.18 x 10 495.0 16.2 7.7 1.05 x 10% 335,3 5.9 3.9
3D-xerox || 4.05 x 107 5.27 x 107 613.2 23.1 19.5 4.42 x 107 602.0 8.4 8.9
3D-hp 1.29 x 107 2.06 x 107 387.3 37.2 20.6 1.50 x 107 158.3 13.7 11.2
3D-ami33 || 2.32 x 10° 4.18 x 106 84.7 44.5 446.4 3.08 x 10° 77.7 24.7 128.1
3D-ami49 || 1.32 x 108 2.93 x 108 1040.8 54.9 1066.7 1.68 x 108 807.1 21.6 680.2
Average 35.18 312.18 14.86 166.46

Table 4:Results of volume and wirelength optimization for the five 3D-MCNC benchmark circuits.

benchmark. Table 3 lists the statistics of the five 3D-MCNC benchmarké cknowledgements

For this experiment, we simultaneously optimized volume and wirelengtfhis work is supported in part by the National Science Council under Gran
with precedence constraints, and reconfiguration/communication overhegdsC 92-2213-E-002-014- and NSC 92-215-E-002-043-. We would als
Table 4 shows the results. As shown in Table 4, 3D-subTCG achieved betigank to anonymous reviewers.

volume utilization (15% deadspace v.s. 35% deadspace) and shorter wite-
length compared to ST. 3D-subTCG also needed less CPU time than I
Figure 12 shows the resulting placement of 3D-xerox.]
Although it is hard to quantify, a key insight to the different performance !
between 3D-subTCG and Sequence Triplet (ST) lies in the effects of their[
perturbations: swapping two modules in an ST may lead to a dramati
change from the original placement while the change for the 3D-subTCG
perturbation is smaller, which makes simulated annealing easier to convergg,
to an optimal solution. (Here is an analogy: Like the gradient search for the
optimization of nonlinear programming, the step size plays an important role
in determining whether a search scheme can converge to the global optiméil
solution—a huge step size may fail to converge to an optimal solution.)

(6]
(7]
8]
[0

[10]

[11]

[12]

[13]

. 14
Figure 12:The result of 3D-xerox with optimizing volume and wirelength simulta- ol
neous. [15]

[16]
6 Conclusion

We have presented the 3D-subTCG representation to handle the tempo[rlgﬂ
floorplanning/placement problem for dynamically reconfigurable FPGAsyg)
We have explored the feasibility conditions for the temporal relations amon
tasks/modules. Our algorithm can guarantee a feasible placement in e cﬂ
perturbation. Experimental results have shown that our method is very eV
fective and efficient for temporal floorplanning/placement.

erences

T. Cormen, C. Leiserson, and R. Rivebtfroduction to Algorithms, McGraw-Hill Book
Company, 1990.

Atmel, “AT6000 FPGA Configuration Guide,” Atmel, Inc.

] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Template Placement for Reconfi

urable Computing SystemdEEE Design & Test of Computers, vol.17, no. 1, pp. 68-83,
Mar. 2000.

K. Bazargan and M. Sarrafzadeh, "Fast Online Placement for Reconfigurable Computin
Systems,”|EEE Symposium on FPGAs for Custom Computing Machines, pp. 300-302,
1999.

K. Bazargan, R. Kastner and M. Sarrafzadeh, "3-D Floorplanning: Simulated Annealing
and Greedy Placement Methods for Reconfigurable Computing Systessigh Automa-
tion for Embedded Systems - RSP'99 Special Issue, Apr. 2000.

J. E. Beasley, “An Exact Two-Dimensional Non-Guillotine Cutting Stock Tree Search Pro-
cedure,"Operations Research, vol.33, no. 1, pp. 49-64, 1985.

S. P. Fekete, E. #hler, and J. Teich, “Optimal FPGA Module Placement with Temporal
Precedence Constraint®foc. DATE, pp. 658-665, Mar. 2001.

S. P. Fekete, and J. Schepers, “On more-dimensional packing Ill: Exact AlgoritdRiR,”
Technical Report 97-290 1997.

M. Gokhale, B. Holmes, A. Kopster, D. Kunze, D. Lopresti, S. Lucas, R. Minnich, and
P. Olsen, “Splash: A Reconfigurable Linear Logic Arraljternational Conference on
Parallel Processing, pp. 526-532, 1990.

S. Hauck, “The Roles of FPGAs in Reprogrammable SysteRisg. of the |EEE, vol.86,
no. 4, pp. 615-639, Apr. 1998.

S. Hauck, Z. Li, and E.J. Schwabe, “Configuration Compression for the Xilinx XC6200
FPGA,” Proc. of the IEEE Symposium on FPGAs for Custom Computing Machines, pp.
138-146, 1998.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, pp.671-680, May, 1983.

A. Kuehlmann, Ed.The Best of ICCAD—20 Years of Excellence in Computer-Aided De-
sign, Kluwer Academic Pub., 2003.

E. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Win-
ston, 1976.

J.-M. Lin and Y.-W Chang, “TCG: A Transitive Closure Graph-Based Representation for
Non-Slicing Floorplans,Proc. DAC, pp. 764—769, June 2001.

H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-Packing Based Module
Placement,Proc. ICCAD, pp. 472-479, 1995.

J. Teich, S. P. Fekete, and J. Schepers, “Compile-Time Optimization of Dynamic Hardwar
Reconfigurations,Proc PDPTA, pp. 1097-1103, June 1999.

S. Trimberger, “A Time-Multiplexed FPGAProc. FCCM'’ 97.
Xilinx, “XC6200 Field Programmable Gate Arrays Data Sheet,” Xilinx, Inc., Oct. 1996.

Xilinx, “XAPP151 Virtex Series Configuration Architecture User Guide v1.5,” Xilinx, Inc.,
Sep. 2000.

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

