
Temporal Floorplanning Using 3D-subTCG ∗

Ping-Hung Yuh1, Chia-Lin Yang1, Yao-Wen Chang2, Hsin-Lung Chen3

1Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
{r91089, yangc}@csie.ntu.edu.tw

2Graduate Institute of Electronics Engineering & Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
ywchang@cc.ee.ntu.edu.tw

Etron Technology Inc., Hsin-Chu, Taiwan
gis89536@cis.nctu.edu.tw

Abstract
Improving logic capacity by time-sharing, dynamically reconfigurable FP-
GAs are employed to handle designs of high complexity and functionality.
In this paper, we use a novel topological floorplan representation, named3D-
subTCG (3-Dimensional sub-Transitive Closure Graph) to deal with the 3-
dimensional (temporal) floorplanning/placement problem, arising from dy-
namically reconfigurable FPGAs. The 3D-subTCG uses three transitive clo-
sure graphs to model the temporal and spatial relations between modules.
We derive the feasibility conditions for the precedence constraints induced
by the execution of the dynamically reconfigurable FPGAs. Because the
geometric relationship is transparent to 3D-subTCG and its induced opera-
tions, we can easily detect any violation of temporal precedence constraints
on 3D-subTCG. We also derive important properties of the 3D-subTCG to
reduce the solution space and shorten the running time for 3D (temporal)
foorplanning/placement. Experimental results show that our 3D-subTCG
based algorithm is very effective and efficient.

1 Introduction
A Field Programmable Gate Arrays (FPGA) is a (re)programmable logic
device that implements multilevel logic. Traditionally, an FPGA needs to
be reconfigured as a whole. Recently, several vendors have proposed ar-
chitectures that allow partially dynamic reconfiguration, such as the Xilinx
XC4000E FPGAs [18], the Atmel AT6000 Series FPGAs [2], the Xilinx
XC6200 Series FPGAs [11], and Xilinx Virtex Series FPGAs [20].

FFy

FFx

FFy

FFx

Slice 1 Slice 0

FFy

FFx

FFy

FFx

Slice 1 Slice 0

CLB row 0

CLB row n

(a) (b)

IOBsDLL DLLPad 1

CLBs

IOBs DLLDLL

L
e
ft
 I
O

B
S

L
e
ft
 B

lo
c
k
 S

e
le

c
tR

A
M

R
ig

h
t IO

B
S

R
ig

h
t B

lo
c
k
 S

e
le

c
tR

A
M

Figure 1:(a) The Virtex architecture. (b) One-column of a 2-slice Virtex CLB.

Figure 1(a) shows the Xilinx Virtex model [20]. The Virtex configuration
memory can be considered as an array of bits. The bits of one-bit width that
extend from the top to the bottom of the array constitute a verticalframe,
which is the smallest portion of the configuration memory (i.e., the atomic
unit that can be written to or read from in this device). Several frames are
grouped together into larger units calledcolumns. Figure 1(b) shows one
column ofconfigurable logic blocks (CLBs for short). In such a device, we
have to specify a full column of a chip for reconfiguration and read-in/out of
flip-flop of contents.

Because of the partial reconfiguration capability in an FPGA, studies
have shown that an FPGA-based reconfigurable hardware system can im-
prove performance for many applications [10]. A reconfigurable system is
usually composed of a host processor and an FPGA coprocessor, called are-
configurable functional unit (RFU) [3]. An RFU, which can be reconfigured
during program execution, may have various configurations at different time.
Figure 2(a) shows a program with four parts of codes mapped into RFU op-
erations (calledRFUOPs or modules). Because of the place constraint, we
may not load all the modules into the device at the same time. Therefore,

∗Yao-Wen Chang’s work was partially supported by the National Science Council
of Taiwan under Grant No. NSC 91-2215-E-002-038.

RFUOP 1

RFUOP 2

RFUOP 3

RFUOP 4

(a) (b)

Figure 2:(a) A running program. (b) A 3D-placement of the running program.

how to place these modules into the RFU becomes a 3-D placement prob-
lem as shown in Figure 2(b). We may denote each module as a 3-D box
with spatial dimensionsx andy and the temporal dimensiont. There exists
temporal relation among scheduled modules since the result of one module
may be needed by another one. The objective of temporal floorplanning is to
allocate modules in the RFU to optimize the area and execution time without
violating the temporal constraints.

1.1 Previous Work
Teich et al. in [17], first usedcomponent graphs to deal with such a problem
assuming no dependence among scheduled modules. They derived neces-
sary and sufficient conditions for a feasible placement and proposed an enu-
meration scheme by using a branch-and-bound tree search algorithm to find
a feasible solution. In practice, however, there often exist temporal prece-
dence constraints among scheduled modules since the output of one module
may be needed as the input of another module. Therefore, Fekete et al. in
[7] later extended their work to solve the placement problem with temporal
precedence constraints by using an additional dependency graph. Bazargan
et al. in their pioneering works [3], [4] and [5] considered both offline place-
ment (3D template placement) and online placement. In the offline place-
ment, they modeled each RFUOP as a 3D box and fixed the width and height
of the RFU. They proposed a 3D-floorplanner which implements four effec-
tive methods, including one greedy method called KAMER-BF (Keep All
Maximal Empty Rectangle with Best Fit). In the online placement, they al-
located the free space of RFU to an RFUOP dynamically based on different
greedy methods (e.g. best-fit and first-fit).

1.2 Our Contribution
In this paper, we solve the 3-dimensional floorplanning/placement problems
of the general reconfigurable architecture by using a novel topological floor-
plan representation, called3D-subTCG (3-Dimensional sub-Transitive Clo-
sure Graph). To the best knowledge of the authors, this is the first work
that uses a topological representation to handle the 3-dimensional placement
problem of a dynamically reconfigurable device.

Transitive closure graphs were previously proposed to handle classical
2D floorplanning/placement problems [15]. The main challenge to solve the
3D floorplanning problems is that there exists additionaltemporal prece-
dence constraints, for which some tasks must be executed before other
tasks start. We use the 3D-subTCG which consists of three transitive clo-
sure graphs to model the temporal as well as the spatial relations between
tasks/modules. We derive the feasibility conditions for the temporal prece-
dence and the spatial constraints induced by the execution of the dynami-
cally reconfigurable FPGAs. Because the geometric relationship is trans-
parent to the 3D-subTCG and its induced operations, we can easily de-
tect any violation of temporal precedence and spatial constraints in the 3D-
subTCG. Therefore, we can guarantee a feasible solution without resorting

to time-consuming post-processing to remove infeasible ones. We also de-
rive important properties of the 3D-subTCG to reduce the solution space and
shorten the running time for 3D (temporal) foorplanning/placement. Ex-
perimental results show that our 3D-subTCG based algorithm can obtain
significantly better floorplans than the Sequence Triplet (ST) representation
(35.18% deadspace in ST v.s. 14.86% in 3D-subTCG). The running-time
requirement of 3D-subTCG is also significantly smaller than ST (312.18 sec
as ST v.s. 166.46 sec as 3D-subTCG).

The remainder of this paper is organized as follows. Section 2 formulates
the temporal floorplanning problem. Section 3 reviews the TCG represen-
tation and presents the 3D-subTCG for temporal floorplanning. Section 4
introduces our temporal floorplanning algorithm. Section 5 reports the ex-
perimental results. Finally, conclusions are given at Section 6.

2 Formulation
In the reconfigurable architecture, atask v is loaded into the device for a
period of time for execution. LetV = {v1, v2, ..., vm} be a set ofm tasks
whose widths, heights, and durations are denoted byWi, Hi, andTi, 1 ≤
i ≤ m. Let (xi, yi) ((x′

i, y
′
i)) denote the coordinate of the bottom-left (top-

right) corner of a taskvi and ,1 ≤ i ≤ m, on the chip. We useti (t′i) to
represrent the starting (ending) time ofvi, 1 ≤ i ≤ m, scheduled in the
reconfigurable device.

To guarantee the correctness of the functions in the reconfigurable archi-
tecture, we must satisfy temporal precedence requirements, which describe
the temporal ordering among tasks. We refer to the temporal precedence re-
quirements asprecedence constraints. LetD = {(vi, vj)|1 ≤ i, j ≤ m, i �=
j} denote the precedence constraints for the tasksvi andvj . The precedence
constraints should not be violated during floorplanning/placement.

In order to measure the quality of a floorplan, we consider the following
objective functions:

• Volume (the minimum bounding box of a placement): In a tem-
poral floorplanning, we need to consider the area of a device and the
total execution time tradeoff. If we use a larger device, the total ex-
ecution time could be shorten. In contrast, it takes longer time if a
smaller one is used. Therefore, we shall minimize the product of the
area of the device and the total execution time.

• Wirelength (the summation of half bounding box of intercon-
nections): Due to the special architecture of the reconfigurable de-
vice, the method to estimate the wirelength in the temporal floorplan-
ning is different from the traditional floorplanning/placement prob-
lem. Given a net, those nodes in the net may be executed at the same
time or at different times. If they are executed at the same time, we
can estimate the wirelength according to their geometric distance di-
rectly. However, we have to project all nodes into the same time frame
before computing their wirelength in the other condition.

• Communication overhead: We quantify the communication over-
head based on the Xilinx Virtex XCV1000 described in Section 1.
Similar to the work by Fekete et al. [7], we assume that a task com-
municates with another task (data-dependence) in the following way:
the results of a CLB, which are read by the successor task, are first
written to external memory through a bus interface. The dependent
task, which has been loaded at the specified position, then perform a
read-in of the results. Recall that aframe is the atomic unit that can
be written to or read from. Each frame contains 1248 bits and the bus
width is only 8 bit. Thus, it takes approximately1248/8 + 24 = 180
clock cycles in each read-in or read-out, where the 24 cycles are the
configuration overhead of the bus interface as described on the Xil-
inx FPGA data book [20]. Therefore, the communication overhead of
each reconfiguration takes360× f clock cycles time (we should first
write the data to the external memory and then read back the data) if
data inf columns need to be transferred.

• Reconfiguration overhead: As described in Section 1, Xilinx Virtex
XCV1000 is column-oriented (i.e., all bits in one column should be
updated in each read-in or read-out). Suppose that a taskvi occupies
Wi ×Hi CLBs. We have to reconfigureHi columns of CLBs in each
reconfiguration. As an example, each CLB column in a Virtex FPGA
consists of 48 frames, which takes(1248/8)×48+24 = 7512 clock
cycles to configure per CLB column. This means we needWi×7512
clock cycles in total if the addresses in the column are incrementally
updated.

In this paper, we treat a taskvi as a three-dimensional box. A placement
P is an assignment of(xi, yi, ti) for eachvi, 1 ≤ i ≤ m, such that no
two boxes overlap and all precedence constraints are satisfied. The goal of
temporal floorplanning is to optimize a predefined cost metric (defined in the
above)induced by a placement.

3 3D-subTCG for Temporal Floorplanning
3.1 Review of TCG
We first review the TCG representation presented in [15]. TCG uses two
graphs,a horizontal transitive closure graph Ch and a vertical transitive
closure graph Cv, to describe the geometric relations among modules. For
two non-overlap modulesbi andbj , bi is said to behorizontally (vertically)
related to bj , denoted bybi � bj (bi⊥bj), if bi is on the left (bottom) side of
bj and their projections ony (x) axis overlap. For two non-overlap modules
bi andbj , bi is said to bediagonally related to bj if bi is on the left side
of bj , and their projections on thex axis andy axis do not overlap. To
simplify the operations on geometric relations, we treat a diagonal relation
as a horizontal one, unless there exists a chain of vertical relations frombi

(bj), followed by the modules enclosed with the rectangle defined by the
two closest corners ofbi andbj , and finally tobj (bi), for which we make
bi⊥bj(bj⊥bi). For each modulebi, we introduce one nodeni both inCh

andCv. If bi � bj , a directed edge (ni, nj) is constructed inCh. Similarly,
we construct a directed edge (ni, nj) in Cv if bi⊥bj . Figure 3(a) shows a
placement with five modulesa, b, c, d, ande whose widths and heights are
(2, 1), (2, 2), (3, 2), (1, 2), and (3, 1), respectively. Figure 3(b) shows the
TCG corresponding to the placement of Figure 3(a). The weight of each
node inCh (Cv) represents the width (height) of the corresponding module
bi. Sinceba � bb, we construct a directed edge(na, nb) in Ch. Similarly,
sinceba⊥bc, a directed edge (na, nc) is constructed inCv.

TCG has the following threefeasibility properties [15]:

1. Ch andCv are acyclic.
2. Each pair of nodes must be connected by exactly one edge either in

Ch or in Cv.
3. The transitive closure ofCh (Cv) is equal toCh (Cv) itself.1

a b

(a)

2 1

1

2

2

(b)

d

e

2

c

na nb

nc

nd

ne

ne

nd

nc

na nb

Ch Cv

2

0 0

2

1

2
2

na

0

0

1

nb

ns

nc

nd

ne

nt

nbna

nc

nd

ne

ns nt

(c)

ChAugmented
Augmented Cv

3

1 1

3

1

3

3

1

Figure 3:(a) A placement. (b) TCG. (c) Augmented TCG (augmentedCh andCv).

The first property ensures that a modulebi cannot be both left and right
to (below and above) another modulebj in a placement. The second prop-
erty guarantees that no two modules overlap since each pair of modules have
exactly one of the horizontal or vertical relation. The third property elimi-
nates redundant solutions. Figure 4 illustrates the third property. As shown
in Figure 4 (a) , since there is a path from nodenc to nodene in Cv, the edge
(nc, ne) must be inCv. If we place the edge(nc, ne) into Ch, as shown in
Figure 4 (c), the resulting area of placement must be larger or equal to the
configuration of Figure 4 (a). Figure 4 (b) and (d) shows the two placement.
The third property eliminates this redundant solution.

Given a TCG, a placement can be obtained inO(m2) time by performing
a well-knownlongest path algorithm [14] on TCG, wherem is the number
of modules. To facilitate the implementation of the longest path algorithm,
the two closure graphs can be augmented as follows. For each closure graph,
we introduce two special nodes with zero wights, the sourcens and the sink
nt, and construct an edge fromns to each node with in-degree equal to zero
and also from each node with out-degree equal to zero tont. Figure 3(c)
shows the augmented TCG for the TCG shown in Figure 3(b).

1The transitive closure of a directed acyclic graphG is defined as the graphG′ =
(V, E′), whereE′ ={(ni, nj): there is a path from nodeni to nodenj in G}.

a
b

(a)

2 1

1

2

2

(b)

d

e

2

c

na nb

nc

nd

ne

ne

nd

nc

na nb

Ch Cv

3

1 1

3

2 1

1

2

2

2

na nb

nc

nd

ne

ne

nd

nc

na nb

Ch Cv

3

1 1

3

a
b

d

e

c

(C) (d)

Figure 4:(a) A feasible TCG that the edge(nc, ne) lies inCv . (b) The correspond-
ing placement of Figure 4 (a). (c) A non-feasible TCG that the edge(nc, ne) lies in
Ch. (d) The corresponding placement of Figure 4 (c).

Let Lh(ni) (Lv(ni)) denote the weight of the longest path fromns to
ni in the augmentedCh (Cv). Lh(ni) (Lv(ni)) can be determined by per-
forming the single source longest path algorithm on the augmentedCh (Cv)
in O(m2) time, wherem is number of modules. The coordinate (Xi, Yi)
of a modulebi is given by (Lh(ni), Lv(ni)). Further, the coordinates of
all modules are determined in the topological order inCh (Cv). Since the
respective width and height of the placement for the given TCG areLh(nt)
andLv(nt), the area of the placement is given byLh(nt) × Lv(nt). Since
each module has a unique coordinate after packing, there exists a unique
TCG corresponding to any placement.

3.2 3D-subTCG

Figure 5:A placement.

Ch Cv

na

nc

3

nb

ne
nd

3

2

nf

2

nand

2
ne

2

nf

2

nc 2

Ct

ne
na

nd

bn

nf

nc

4 34
1

1
35

1
3

bn
5

Figure 6:The corresponding 3D-subTCG of Figure 5.

As shown in the previous section, TCG describes the geometric relations
among modules based on two graphs,Ch andCv. For a dynamically recon-
figurable device, there exists temporal ordering among tasks. For two tasks
vi andvj , vi is said to betemporally related to vj , denoted byvi ≺ vj , if vi

must be executed beforevj starts. To solve the 3D floorplanning/placement
problems, we need to consider the temporal and spatial relations at the same
time. Therefore, we introduce a new graph to model the temporal relations
among tasks, namely atemporal transitive closure graph Ct. This new rep-
resentation is called 3D-subTCG, which contains three transitive graphs,Ch,
Cv andCt. For each taskvi, we construct one nodeni in each graph. If
vi � vj (vi⊥nj), we construct one edge (ni, nj) in Ch (Cv). If vi must be
executed beforevj , we construct an edge (ni, nj) in Ct.

Figure 5 shows a placement with six tasksa, b, c, d, e, andf whose
widths, heights and durations are (5, 1, 4), (3, 5, 4), (3, 2, 3), (3, 2, 1), (2, 2,
1), and (2, 2, 3), respectively. Figure 6 shows the 3D-subTCG corresponding
to the placement of Figure 5. The value associated with a node inCh (Cv or
Ct) gives the width (height or duration) of the corresponding task, and the
edge(ni, nj) in Ch (Cv or Ct) denotes the horizontal (vertical or temporal)

relation ofvi andvj . In Figure 6, since taskvc (va) is left to (below)vb

(vf), there exists an edge(nc, nb) ((na, nf)) in Ch (Cv). Similarly, since
taskva must be executed before taskvd, there exists an edge(na, nd) in Ct.
To obtain the coordinate of each task, we apply the longest path algorithm to
the three graphs in a 3D-subTCG. (See Section 3.1 for the details.)

3D-subTCG has the following threefeasibility properties:

1. Ch, Cv andCt are acyclic.
2. Each pair of nodes must have exactly one edge either inCh, Cv or

Ct.
3. There must exist an edge(ni, nj) if there is a path fromni to nj in

one graph and there exists no closure edge betweenni andnj in other
graphs.

The first two properties, which are the same as TCG, guarantee that a
solution is feasible. The third property is to eliminate the redundant solu-
tions. An edge (ni, nj) is said to be aclosure edge if there exists a path
from nodeni to nodenj except the edge (ni, nj) itself. For example, the
edges(nb, na), (nc, na), (nc, ne), and(nc, nf) in Ch of Figure 6 are clo-
sure edges. If there exists a path from nodeni to nodenj in one graph,
the closure edge (ni, nj) should appear in the same graph instead of others
to eliminate the redundant solutions as explained in section 3.1. However,
before adding a new closure edge (ni, nj) after each operation, we need to
make sure that there exists no closure edges betweenni and nj in other
graphs. Figure 7 illustrates this scenario. Figure 7 (a) shows a 3D-subTCG
that nodena andnb have a closure edge inCv. Figure 7 (b) shows the re-
sulting graph after deleting edge(ne, nb) in Ct and adding edge(nb, ne) to
Ch. Now there is a path fromnb to na in Ch. However, in order to maintain
the second property, we cannot add the closure edge (nb, na) in Ch since
(na, nb) has already existed inCv.

(b)

(c)

Ch Cv

na

nc

3

nb

ne
nd

3

2

nf

2

na ne

nf

nc

bn

nd

2

2

2

2

Ct

5

1
3

5

ne

nd

nf

bn
4

nc

3

na

4

1

1
3

Ch Cv

na

nc

3

nb

ne
nd

3

2

nf

2

na ne

nf

nc

bn

nd

2

2

2

2

Ct

5

1
3

5

ne

nf

bn

4

nc

3

na

4

1

nd

1
3

Figure 7: (a) A 3D-subTCG with only one path between nodena andnb in Cv .
(b) A 3D-subTCG contains two paths inCh andCv between nodena andnb.

4 Temporal Floorplanning Algorithm
Our algorithm is based on simulated annealing [12]. Given an initial 3D-
subTCG, we perturb the 3D-subTCG to obtain a new 3D-subTCG. The cost
functionΦ used in our algorithm is given by

Φ = αV + βW + γO, (1)

whereV is the volume of the placement,W is the total wirelength,O is
the reconfiguration and communication overheads, andα, β, andγ are user-
specified constants. In this section, we first describe how to identify a reduc-
tion edge, and then show the perturbation operations in simulated annealing.
Finally, we introduce the feasibility condition that a 3D-subTCG must satisfy
during each perturbation in order to maintain the correct temporal ordering
among tasks.

4.1 Reduction Edge Identification
First we illustrate the concept ofreduction edge. An edge (ni, nj) is called
reduction edge if there does not exist another path from nodeni to nodenj

except the edge (ni, nj) itself. For example, the edges(nb, nf), (nb, ne)
and(ne, na) in Ch of Figure 6 are reduction edges. Recall that 3D-subTCG
is formed by directed acyclic transitive closure graphs. Given an arbitrary
nodeni in one transitive closure graph, there exists at least one reduction
edge(ni, nj), wherenj ∈ Fout(ni). Here we define the fan-in (fan-out)
of a nodeni, denoted byFin(ni)(Fout(ni)), as the nodesnj ’s with edges
(nj , ni) ((ni, nj)). For nodesnk, nl ∈ Fout(ni), the edge(ni, nk) can-
not be a reduction edge ifnk ∈ Fout(nl). Hence, we remove those nodes
in Fout(ni) that are fan-outs of others. The edges betweenni and the re-
maining nodes inFout(ni) are reduction edges. In theCh of Figure 6,

Fout(nc) = {na, nb, ne, nf}. Sincena, ne, andnf belong toFout(nb),
edges(nc, na) and(nc, nf) are closure edges while(nc, nb) is a reduction
one. The reason for identifying reduction edges is that the operations de-
fined below are only applied to reduction edges. The time complexity of
finding such a reduction edge isO(m2), wherem is the number of modules
(tasks) [15].

4.2 Solution Perturbation
We define the following five operations to perturb a 3D-subTCG:

• Rotation: Rotate a task.

• Swap: Swap two nodes inCh, Cv, and Ct.

• Reverse: Reverse areduction edge in Ch, Cv, or Ct.

• Move: Move a reduction edge from one graph (Ch, Cv, or Ct) to
another graph.

• Transpositional Move: Move areduction edge from one graph (Ch,
Cv, or Ct) to another graph, and then transpose the two nodes associ-
ated with the edge. It is clear later that this operation is different from
performing Move followed by Reverse.

Note that Rotation, Swap, Reverse, and Move are first introduced in [15],
which can be performed in respectiveO(1), O(1), O(m2), and O(m2)
times, wherem is the number of modules (tasks). Further, the resulting
graph after performing any of these operations on a 3D-subTCG is still a
3D-subTCG. Rotation and Swap do not change the topology of 3D-subTCG,
while Revere, Move, and Transpositional Move do. Therefore, to maintain
the properties of a 3D-subTCG, we may need to update the resulting graphs
after performing Reverse, Move and Transpositional Move. Further, in or-
der to guarantee that the precedence constraints are not violated by these
operations, we shall perform feasibility detection, which are described in
section 4.3. We first detail the operations in the following.

4.2.1 Rotation
To rotate atask vi, we only need to exchange the weights of the correspond-
ing nodesni in Ch, Cv, andCt. Figure 8 (b) shows the result after rotating
the module a in Figure 8.

4.2.2 Move
The Move operation moves areduction edge(ni, nj) in one graph to one of
the others in a 3D-subTCG. Move could switch the relations of the two tasks
vi andvj between a horizontal relation and a vertical one. For two tasks
vi andvj , vi � vj (vi ⊥ vj) if there exists a reduction edge (ni, nj) in Ch

(Cv); after moving the edge(ni, nj) to Cv (Ch), we have the new geometric
relationvi ⊥ vj (vi � vj). Move could also change the temporal relation
of the two tasksvi andvj . For two tasksvi andvj , vi ≺ vj if there exists
a reduction edge (ni, nj) in Ct; after moving the edge (ni, nj) to Ch (Cv),
we change the temporal relation into the new geometric relationvi � vj

(vi ⊥ vj). If there exists a reduction edge (ni, nj) in Ch (Cv); after moving
the edge(ni, nj) to Ct, we have the new temporal relationvi ≺ vj .

To move a reduction edge (ni, nj) from one graphG to another graph
G′, we first delete the edge (ni, nj) from G and then add (ni, nj) to G′. For
each nodenk ∈ Fin(ni)∪{ni} andnl ∈ Fout(nj)∪{nj}, we shall check
whether the edge(nk, nl) exists inG′. If G′ contains the edge, we do noth-
ing; otherwise, we need to add the edge toG′ and delete the corresponding
edge(nk, nl) or (nl, nk) in G or G′′, if any, to maintain the properties of
the 3D-subTCG. Figure 8 (c) shows the result of moving the edge (nc, nb)
in Ch of Figure 8 (b) toCt.

4.2.3 Swap
To swap nodesni andnj of two tasksvi andvj , we only need to exchange
the nodesni andnj in Ch, Cv, andCt. Figure 9 (a) shows the result of
swapping nodesnb andnd shown in Figure 8 (c).

4.2.4 Reverse
The Reverse operation reverses the direction of areduction edge (ni, nj) in
one graph. For two modulesvi andvj , vi � vj (vi ⊥ vj) if there exists
a reduction edge (ni, nj) in Ch (Cv); after reversing the edge(ni, nj), we
have the new geometric relationvj � vi (vj ⊥ vi). Similarly, vi ≺ vj if
there exists a reduction edge (ni, nj) in Ct; after reversing the edge(ni, nj),
we have the new temporal relationvj ≺ vi.

To reverse a reduction edge (ni, nj) in a graph, we first delete the
edge from the graph, and then add the edge (nj , ni) to the same graph.
Similar to the Move operation, for each nodenk ∈ Fin(nj) ∪ {nj} and
nl ∈ Fout(ni) ∪ {ni} in the new graph, we shall check whether the edge
(nk, nl) exists in the new graph. If the graph contains the edge, we do
nothing; otherwise, we need to add the edge to the graph and delete the cor-
responding edge(nk, nl) or (nl, nk) in the other transitive closure graphs,
if any, to maintain the properties of the 3D-subTCG. Figure 9 (b) shows the
result after reversing the edge (ne, na) in Ch of Figure 9 (a).

4.2.5 Transpositional Move
The Transpositional Move operation removes areduction edge(ni, nj) from
one graph, and add an edge(nj , ni) to one of the others in a 3D-subTCG.

(a) Initial configuration of 3D−subsTCG

Ch Cv

na

nc

3

nb

ne
nd

3 5

2

nf

2

1

na ne

nf

nc

bn

nd

2

25

3 2

2

Ct

ne
na

nd

bn

nf

nc

4 34
1

1
3

Ch Cv

na

nc

3

nb

ne
nd

3 5

2

nf

2
1

na ne

nf

nc

bn

nd

2

2

5
3 2

2

Ct

ne
na

nd

bn

nf

nc

4 34
1

1
3

(b) Rotate a n

Ch Cv

na

nc

3

nb

ne
nd

3 5

2

nf

2
1

na ne

nf

nc

bn

nd

2

2

5
3 2

2

(c) (Move ,) n b c n

Ct

ne

nd

bn

nf

nc

4

3
na

4
1

1
3

Figure 8:Examples of perturbations. (a) The initial 3D-subTCG (Ch, Cv , andCt).
(b) The resulting 3D-subTCG after rotating the taskna shown in(a). (c) The resulting
3D-subTCG after moving the reduction edge(nc, nb) from theCh of (b) toCt.

In one case, Transpositional Move switches the geometric relation of the
two tasksvi and vj between a horizontal relation and a vertical one and
changes the ordering of the two tasksvi andvj in their geometric relation.
For two tasksvi andvj , vi � vj (vi ⊥ vj) if there exists a reduction edge
(ni, nj) in Ch (Cv); after transpositionally moving the edge(ni, nj) to Cv

(Ch), we have the new geometric relationvj ⊥ vi (vj � vi). In the other
case, Transpositional Move changes the temporal relation of the two tasks
vi and vj . For two tasksvi and vj , vi ≺ vj if there exists a reduction
edge (ni, nj) in Ct; after transpositionally moving the edge (ni, nj) to Ch

(Cv), we change the temporal relation into the new geometric relationvj �
vi (vj ⊥ vi). If there exists a reduction edge (ni, nj) in Ch (Cv); after
transpositionally moving the edge(ni, nj) to Ct, we have the new temporal
relationvj ≺ vi.

To transpositionally move a reduction edge (ni, nj) from one graphG to
another graphG′, we first delete the edge (ni, nj) from G and add (nj , ni)
to G′. Similar to the Move operation, for each nodenk ∈ Fin(nj) ∪ {nj}
andnl ∈ Fout(ni) ∪ {ni}, we shall check whether the edge(nk, nl) exists
in G′. If G′ contains the edge, we do nothing; otherwise, we need to add the
edge toG′ and delete the corresponding edge(nk, nl) or (nl, nk) in G or
G′′, if any, to maintain the properties of the 3D-subTCG. Figure 9 (c) shows
the result of transpositionally moving the edge(ne, nb) from Ct of Figure 9
(b) toCv. Note we delete the edge(na, ne) in Ch and add it toCv.

4.3 Feasibility Detection
To maintain the temporal ordering among tasks, the 3D-subTCG must guar-
antee that all precedence constraints are satisfied. Among the five operations
mentioned above, Move, Swap, Reverse, and Transpositional Move could
violate the constraints. We now show how to detect a violation during per-
turbation.

When we move an edge (ni, nj) or reverse/transpositionally move
(nj , ni), the precedence constraint will be violated ifnl ∈ Fin(ni) ∪ {ni},
nk ∈ Fout(nj) ∪ {nj}, and(nl, nk) �∈ Ct since(nl, nk) ∈ D. As men-
tioned in Section 2,D denotes the precedence constraints. When we swap
two nodesni andnj , three scenarios could happen:

1. there exists a precedence constraint betweenni andnj ,
2. neither ofni andnj has a precedence constraint, or
3. eitherni or nj has precedence constraint.

In the first case, it is clear that we cannot swap the two nodes. However,
if neither of ni andnj has a precedence constraint, we can swapni and
nj directly. Without loss of generality, we could assume that nodeni has
precedence constraints to detail the third case. If nodenj has precedence
constraints, we can apply the same approach to check the feasibility. In the
first condition,ni has a precedence-constrained edge (ni, nk), we can swap
ni andnj without any violation ifnk ∈ Fout(nj) in Ct. On the other hand,
if ni has a precedence-constrained edge (nk, ni) andnk ∈ Fin(nj) in Ct,
we can also swapni andnj .

(,)

Ch Cv

na

nc

3

nb ne

nd

3

5
2

nf

2
1

na ne

nf

nc

bn

nd
2

2

5
3

2

2

Ct

ne

nd

bn

nf

nc

4

3
na

4
1

1

3

(a) Swap n b n d

() (b) Reverse a n , n e

Ch Cv

nc

3

ne

nd

3

nb

5

nf

2
1

na ne

nf

nc

bn

nd2

2

na

5
3

2

2

Ct

ne

nd

bn

nf

nc

4

3
na

4
1

1

3
2

Ch Cv

nc

3

ne

nd

3

nb

5

nf

2

1na

nenc

bn

nd
2

2

na

5 3

nf

2
2

Ct

ne

nd

nf

nc bn
43

na

4
1

1

3
2

(c)) , (n e b n Transpositional Move the edge from Ct to Cv

Figure 9: Examples of perturbations (continued from Figure 8). (a) The result-
ing 3D-subTCG after swapping the nodesnb andnd shown in Figure 8(c). (b) The
resulting 3D-subTCG after reversing the reduction edge(ne, na) in the Ch shown
in (a). (c) The resulting 3D-subTCG after transpositional moving the reduction edge
(ne, nb) from theCt of (b) toCv .

Figure 10:The resulting placement of 3D-subTCG in Figure 9(c).

Figure 11(a) shows the resultingCh, Cv, andCt after swapping the nodes
nd andne in Figure 9(c). Assume that there exists a precedence-constrained
edge (ne, nf). The precedence constraint will be violated if we swap the two
nodesnd andne sincenf �∈ Fout(nd) in theCt. Figure 11(b) showsCh,
Cv, andCt after reversing the edge(nd, ne) in theCh in Figure 9(c). Since
{ne} ∩ Fin(ne)={nc, ne} and{nd} ∩ Fout(nd)={nd, nf} in Ch, we shall
check(ne, nf) for the precedence constraint. If there exists a precedence-
constrained edge (ne, nf), the precedence constraint will be violated.

By doing the feasibility detection during the Move, Reverse, Transposi-
tional Move, or Swap operations, we can guarantee that the resulting 3D-
subTCG still satisfies all the precedence constraints. We thus have the fol-
lowing theorem.

Theorem 1 The precedence constraints of a 3D-TCG are not violated by the
Move, Swap, Reverse, or Transpositional Move operation with the feasibility
detection.

5 Experimental Results

Circuit # of Sum of Volume Dead space time
tasks volume (%) (Sec.)

Circuit 1 10 512 512 0.0 8.3
Circuit 2 10 480 480 0.0 1.9
Circuit 3 10 1000 1000 0.0 9.7
Circuit 4 20 3840 4032 4.7 25.2
Circuit 5 30 4096 4608 11.1 127.8

Table 1:Results of volume optimation (volume =mm2 x clock cycles).

(,) (a) Swap

(b)) , (Reverse the edge n d n e in Ch

Ch Cv

nc

3

ne

nd

3

nb

5

nf

2

1na

ne

nc

bn

nd2
2

na

5 3

nf

2
2

Ct

ne

nd

nf

nc bn
43

na

4
1

1

3
2

n d n e

Ch Cv

nc

3
ne

nd

3

nb

5

nf

2

1na

ne

nc

bn

nd2
2

na

5 3

nf

2
2

Ct

ne

nd

nf

nc bn
43

na

4
1

1

3
2

Figure 11: (a) The resulting 3D-subTCG after swapping the nodesnd and ne
shown in Figure 9(c). (b) The resulting 3D-subTCG after reversing the reduction edge
(nd, ne) in theCh shown in Figure 9(c).

Based on simulated annealing [12], we implemented the temporal floor-
planning algorithm in the C++ programming language on a 433 MHz SUN
Ultra-60 workstation with 1 GB memory. We compared 3D-subTCG with
Sequence Triplet (ST). ST is extended from the well-known Sequence Pair
(SP) [16], which is very popular for handling floorplanning/placement in
both industry and academia2 A sequence triplet consists of three module
sequences (Γx, Γy, Γz). The relation between two modules is defined as
follows: (1) if the sequence of two modulesa, b is the same (from left to
right) in (Γx, Γz), i.e., (Γx, Γy, Γz) = (..a..b..,, ..a..b..), it means that
modulea is on theZ+ direction of moduleb; (2) if the sequence of the two
modulesa, b is not the same in (Γx, Γz), the (Γx, Γy, Γz) is identical to
Sequence Pair(Γx, Γy). For example, the ST representation of Figure 5 is
(dcbfea, cbeafd, dafebc). Based on the same simulated annealing scheme
as that for 3D-subTCG, ST employs the following three perturbation oper-
ations: (1) M1: randomly swap two modules in one of theΓX , Γy, andΓz

sequences; (2) M2: randomly swap two modules inΓX , Γy, andΓz simul-
taneously; (3) M3: randomly choose one module and change its height with
width, width with length, or length with height (i.e., 3D rotation). We imple-
mented the ST algorithm with the same simulated annealing engine as that of
3D-subTCG with the limiting that rotation can only change width and height
(i.e., duration remains the same), and added precedence constraints, recon-
figuration overheads and communication overheads for comparative studies.

To verify our algorithm, we first tested 3D-subTCG on five synthetic cir-
cuits that can be packed without deadspace. Table 1 shows the results. Note
that the volume of a placement is the minimum bounding box enclosing the
placement. We can see that 3D-subTCG obtains the optimal placements for
the first three test cases and near optimal solutions for the last two larger
circuits, all in reasonable time. The results show that our approach is very
effective for cost optimization.

Circuit # of # of # of # # of precedence
modules pads nets pins constraints

3D-apte 9 73 97 214 3
3D-xerox 10 107 203 696 3

3D-hp 11 43 83 264 3
3D-ami33 33 42 123 480 7
3D-ami49 49 24 408 931 11

Table 3:The five 3D-MCNC benchmark circuits.

To compare 3D-subTCG with ST, we performed two experiments. In
each experiment, we setα = βγ = 1. In the first experiment, our objective
is to minimize the volume with reconfiguration and communication over-
heads. For this experiment, we adopted the benchmark circuits used in [8]
and added the reconfiguration and communication overheads. As shown in
Table 2, the 3D-subTCG based method outperforms the ST-based one by a
large margin. For example, 3D-subTCG achieved an average deadspace of
only 19.38% while ST resulted in an average deadspace 32.01%.

The second experiment is intended to test the 3D placement with
the considerations of precedence constraints, wirelength, and reconfigura-
tion/communication overheads. For this experiment, we used the MCNC
benchmarks. Since the MCNC benchmarks do not have execution times and
precedence constraints, we assigned their execution times and precedence
constraints by ourselves. The new benchmark suite is called the 3D-MCNC

2The work [16] has been selected as one of the 40 best papers published at ICCAD
during the past 20 years [13].

Circuit (# of tasks) Sum of Volume ST 3D-subTCG
Volume Dead Space Time Volume Dead Space Time

(mm2 x clockcycles) (%) (sec.) (mm2 x colckcycles) (%) (sec.)
beasley1 10 6218 8710 28.6 7.7 7504 17.1 8.5
beasley2 17 11497 14664 21.5 45.2 12402 7.2 28.5
beasley3 21 10362 16016 35.3 44.1 12640 18.0 22.4
beasley4 7 10205 13800 26.0 3.0 13064 21.8 2.0
beasley5 14 16734 22750 26.4 18.2 18912 11.5 16.0
beasley6 15 11040 14994 26.3 27.9 13200 16.3 24.8
beasley7 8 17168 24570 30.1 3.8 20574 16.5 2.3
beasley8 13 83044 132275 37.2 15.4 98280 15.5 19.4
beasley9 18 133204 174496 23.6 30.6 167751 20.5 17.2
beasley10 13 493746 660480 25.2 13.0 575685 14.2 10.8
beasley11 15 383391 486381 24.8 17.5 438702 12.6 9.8
beasley12 22 646158 922080 29.9 100.0 823816 21.5 58.5

okp1 50 1.24 × 108 2.16 × 108 42.6 1607.2 1.73 × 108 28.4 387.3
okp2 30 8.54 × 107 1.28 × 108 33.2 285.3 1.10 × 108 22.3 73.8
okp3 30 1.23 × 108 1.85 × 108 33.1 280.7 1.60 × 108 23.0 70.6
okp4 61 2.38 × 108 4.17 × 108 42.8 791.3 3.28 × 108 27.3 501.9
okp5 97 1.89 × 108 4.48 × 108 57.7 607.8 2.95 × 108 35.8 565.9

Average 32.01 19.38

Table 2: Results for volume optimization with reconfiguration overhead and communication overhead.

Circuit Total ST 3D-subTCG
volume Volume Wirelength Dead space Time Volume Wirelength Dead space time

(mm2 x clockcycles) (mm) (%) (sec.) (mm2 x clockcycles) (mm) (%) (sec.)

3D-apte 9.88 × 107 1.18 × 108 495.0 16.2 7.7 1.05 × 108 335,3 5.9 3.9
3D-xerox 4.05 × 107 5.27 × 107 613.2 23.1 19.5 4.42 × 107 602.0 8.4 8.9

3D-hp 1.29 × 107 2.06 × 107 387.3 37.2 20.6 1.50 × 107 158.3 13.7 11.2
3D-ami33 2.32 × 106 4.18 × 106 84.7 44.5 446.4 3.08 × 106 77.7 24.7 128.1
3D-ami49 1.32 × 108 2.93 × 108 1040.8 54.9 1066.7 1.68 × 108 807.1 21.6 680.2
Average 35.18 312.18 14.86 166.46

Table 4:Results of volume and wirelength optimization for the five 3D-MCNC benchmark circuits.

benchmark. Table 3 lists the statistics of the five 3D-MCNC benchmarks.
For this experiment, we simultaneously optimized volume and wirelength
with precedence constraints, and reconfiguration/communication overheads.
Table 4 shows the results. As shown in Table 4, 3D-subTCG achieved better
volume utilization (15% deadspace v.s. 35% deadspace) and shorter wire-
length compared to ST. 3D-subTCG also needed less CPU time than ST.
Figure 12 shows the resulting placement of 3D-xerox.

Although it is hard to quantify, a key insight to the different performance
between 3D-subTCG and Sequence Triplet (ST) lies in the effects of their
perturbations: swapping two modules in an ST may lead to a dramatic
change from the original placement while the change for the 3D-subTCG
perturbation is smaller, which makes simulated annealing easier to converge
to an optimal solution. (Here is an analogy: Like the gradient search for the
optimization of nonlinear programming, the step size plays an important role
in determining whether a search scheme can converge to the global optimal
solution—a huge step size may fail to converge to an optimal solution.)

Figure 12:The result of 3D-xerox with optimizing volume and wirelength simulta-
neous.

6 Conclusion
We have presented the 3D-subTCG representation to handle the temporal
floorplanning/placement problem for dynamically reconfigurable FPGAs.
We have explored the feasibility conditions for the temporal relations among
tasks/modules. Our algorithm can guarantee a feasible placement in each
perturbation. Experimental results have shown that our method is very ef-
fective and efficient for temporal floorplanning/placement.

Acknowledgements
This work is supported in part by the National Science Council under Grand
NSC 92-2213-E-002-014- and NSC 92-215-E-002-043-. We would also
thank to anonymous reviewers.

References
[1] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms, McGraw-Hill Book

Company, 1990.

[2] Atmel, “AT6000 FPGA Configuration Guide,” Atmel, Inc.

[3] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Template Placement for Reconfig-
urable Computing Systems,”IEEE Design & Test of Computers, vol.17, no. 1, pp. 68–83,
Mar. 2000.

[4] K. Bazargan and M. Sarrafzadeh, ”Fast Online Placement for Reconfigurable Computing
Systems,”IEEE Symposium on FPGAs for Custom Computing Machines, pp. 300-302,
1999.

[5] K. Bazargan, R. Kastner and M. Sarrafzadeh, ”3-D Floorplanning: Simulated Annealing
and Greedy Placement Methods for Reconfigurable Computing Systems,”Design Automa-
tion for Embedded Systems - RSP’99 Special Issue, Apr. 2000.

[6] J. E. Beasley, “An Exact Two-Dimensional Non-Guillotine Cutting Stock Tree Search Pro-
cedure,”Operations Research, vol.33, no. 1, pp. 49–64, 1985.

[7] S. P. Fekete, E. K̈ohler, and J. Teich, “Optimal FPGA Module Placement with Temporal
Precedence Constraints,”Proc. DATE, pp. 658-665, Mar. 2001.

[8] S. P. Fekete, and J. Schepers, “On more-dimensional packing III: Exact Algorithms,”ZPR
Technical Report 97-290 1997.

[9] M. Gokhale, B. Holmes, A. Kopster, D. Kunze, D. Lopresti, S. Lucas, R. Minnich, and
P. Olsen, “Splash: A Reconfigurable Linear Logic Array,”International Conference on
Parallel Processing, pp. 526–532, 1990.

[10] S. Hauck, “The Roles of FPGAs in Reprogrammable Systems,”Proc. of the IEEE, vol.86,
no. 4, pp. 615–639, Apr. 1998.

[11] S. Hauck, Z. Li, and E.J. Schwabe, “Configuration Compression for the Xilinx XC6200
FPGA,” Proc. of the IEEE Symposium on FPGAs for Custom Computing Machines, pp.
138–146, 1998.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, pp.671–680, May, 1983.

[13] A. Kuehlmann, Ed.,The Best of ICCAD—20 Years of Excellence in Computer-Aided De-
sign, Kluwer Academic Pub., 2003.

[14] E. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Win-
ston, 1976.

[15] J.-M. Lin and Y.-W Chang, “TCG: A Transitive Closure Graph-Based Representation for
Non-Slicing Floorplans,”Proc. DAC, pp. 764–769, June 2001.

[16] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-Packing Based Module
Placement,”Proc. ICCAD, pp. 472–479, 1995.

[17] J. Teich, S. P. Fekete, and J. Schepers, “Compile-Time Optimization of Dynamic Hardware
Reconfigurations,”Proc PDPTA, pp. 1097–1103, June 1999.

[18] S. Trimberger, “A Time-Multiplexed FPGA,”Proc. FCCM’97.

[19] Xilinx, “XC6200 Field Programmable Gate Arrays Data Sheet,” Xilinx, Inc., Oct. 1996.

[20] Xilinx, “XAPP151 Virtex Series Configuration Architecture User Guide v1.5,” Xilinx, Inc.,
Sep. 2000.

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

