Dynamic Voltage Scaling of Periodic and Aperiodic Tasks
in Priority-Driven Systems*

Dongkun Shin

School of CSE
Seoul National University
Seoul, Korea 151-742
Tel: +82-2-880-1861
e-mail: sdk@davinci.snu.ac.kr

Abstract— We describe dynamic voltage scaling (DVS) algo-
rithms for real-time systems with both periodic and aperiodic
tasks. Although many DVS algorithms have been developed for
real-time systems with periodic tasks, none of them can be used
for the system with both periodic and aperiodic tasks because of
arbitrary temporal behaviors of aperiodic tasks. We propose an
off-line DVS algorithm and on-line DVS algorithms that are based
on existing DVS algorithms. The proposed algorithms utilize the
execution behaviors of scheduling server for aperiodic tasks. Ex-
perimental results show that the proposed algorithms reduce the
energy consumption by 12% and 32% under the RM scheduling
policy and the EDF scheduling policy, respectively.

|. INTRODUCTION

Dynamic voltage scaling (DVS) [3] is one of the most ef-
fective approachesin reducing the power consumption of real-
time systems. When the required performance of the target
system is lower than the maximum performance, supply volt-
age can be dynamically reduced to the lowest possible extent
that ensures a proper operation of the system. Recently, many
voltage scheduling algorithms have been proposed for hard
real-time systems [9, 2, 8, 5]. All of these algorithms assume
that the system consists of periodic hard real-time tasks only
and the task release times are known a priori. For periodic
tasks, these algorithms assign the proper speed to each task
dynamically while guaranteeing all their deadlines.

However, many practical real-time applications require ape-
riodic tasks as well as periodic tasks. While periodic tasks
aretime-driven with hard deadlines, aperiodic tasks are usually
event-driven (i.e., activated at arbitrary times) with soft dead-
lines. An aperiodictask set is specified by the mean arrival rate
A and the mean service rate . In this paper, we call a system
with periodic and aperiodic tasks as a mixed task system.

In mixed task systems, there are two design objectives. The
first objectiveis to guarantee the schedul ability of al periodic
tasks under worst-case execution scenarios. That is, aperiodic
tasks should not prevent periodic tasks from compl eting before
their deadlines. The second objective is that aperiodic tasks
should have “good” average response times. To satisfy these

*This work was supported in part by the Ministry of Information &
Communications, Korea, under the Information Technology Research Center
(ITRC) Support Program.

Jihong Kim

School of CSE
Seoul National University
Seoul, Korea 151-742
Tel: +82-2-880-8792
e-mail: jihong@davinci.snu.ac.kr

objectives, many scheduling algorithms based on the “ server”
concept had been proposed [12, 10, 11, 1].

In this paper, we introduce the third design objective for the
energy consumption in the mixed task system. That is, the
third objective is to minimize the total energy consumption
due to both periodic tasks and aperiodic tasks. Although the
existing DV'S agorithms can be effective for optimizing the
energy consumption of periodic tasks, they cannot be used for
mixed task systems. The arbitrary behaviors of aperiodic tasks
prevent the DV S agorithms from identifying the slack times.
Therefore, it is necessary to modify the existing DVS algo-
rithms to be applicable to mixed task systems with aperiodic
tasks.

In this paper, we propose DV S algorithmsthat guaranteethe
first objective (i.e., timing constraints of periodic tasks) while
making the best effort of satisfying thethird objective(i.e., low
energy) with a reasonable performance bound on the second
objective (i.e., good average responsetime). First, we describe
an off-line static voltage scaling algorithm which considersthe
expected workload of aperiodic tasks. Second, we present on-
line dynamic voltage scaling algorithms by modifying existing
on-line voltage scaling algorithms for a periodic task set.

The modified DV'S algorithms utilize the execution behav-
iors of each scheduling server for aperiodic tasks to apply the
key ideas of the existing DV S algorithms such as [9, 2]. The
task schedules generated by the proposed DV S a gorithms can
reduce the energy consumption by 12%-~32% over the task
scheduleswhich execute all tasks at full speed and power down
a idle intervals (i.e., the power-down mode). To the best of
our knowledge, our work is the first attempt to develop on-line
DV S agorithmsfor the mixed task set.

Therest of this paper is organized as follows. In Section I,
we summarize the related works on aperiodic task scheduling
and the recent efforts to integrate dynamic voltage schedul-
ing into aperiodic task scheduling. The proposed static DVS
algorithm is described in Section |11 while the dynamic DVS
algorithms are presented in Section IV. In Section V, the ex-
perimental results are discussed. Section VI concludes with a
summary and future works.

Il. RELATED WORKS

In this section, we review the main approaches for schedul-
ing a mixture of aperiodic tasks and periodic hard real-time

tasks.

The easiest way to prevent aperiodic tasks from interfering
with periodic hard real-time tasks is to schedule them as back-
ground tasks. In this approach, aperiodic tasks are scheduled
and executed only at times when thereis no periodic task ready
for execution. Though this method guarantees the schedul abil -
ity of periodic task, the execution of aperiodic tasks may be
delayed and their response times are prolonged unnecessarily.

Another approach isto use a dedicated server which handles
aperiodic tasks. The server is characterized by an ordered pair
(Ts,Cs), where T is the period of the server and C is the
maximum budget. The simplest server is the Polling Server
(PS). PS is ready for execution periodically at integer multi-
plies of Ts and is scheduled together with periodic tasks in
the system according to the given priority-driven algorithm.
Once PS is activated, it executes any pending aperiodic re-
quests within the limit of its budget Cs. If no aperiodic re-
quests are pending, PS immediately suspends its execution un-
til the start of its next period. Since PS is exactly same to a
periodic task which has the period 7'; and the worst case exe-
cution time (WCET) C, we can test the schedul ability of the
system using the traditional RM or EDF schedul ability test.

The Deferrable Server (DS) [12] was introduced to solve
the poor performance of background scheduling and PS. Un-
like PS, DS can service an aperiodic request at any time as
long as the budget is not exhausted. Though this feature of
DS provides better performance than that of PS, alower prior-
ity task could miss its deadline even if the task set seemed to
be schedulable by the schedulability test because DS can de-
fer its execution. To solve this problem, the Sporadic Server
(SS) [10] was proposed. SS ensures that each SS with period
T, and budget C'; never demands more processor time than the
periodic task (T's, Cs) in any time interval. Consequently, we
cantreat a SS exactly likely the periodictask (T's, Cs) when we
check for the schedulability of the system.

Though there are the modified DS and SS algorithms for
EDF scheduling, DS and SS are mainly used for RM schedul-
ing dueto the complexity of the modified algorithms. For EDF
scheduling, the Total Bandwidth Server (TBS) [11] is more
suitable. TBS is characterized by U, which is the utilization
of TBS. When an aperiodic task arrives, TBS assigns a dead-
line to the task such that the utilization of the aperiodic task is
equal to U,. Since TBS assigns the deadline using the WCET
of the aperiodic task, there can be overrun when the real execu-
tion timeislonger than the WCET. (This situation could occur
for aperiodic tasks.) Recently, the Constant Bandwidth Server
(CBS) [1] was proposed to solve the overrun problem of TBS.

A different approach for scheduling aperiodic tasks is the
Sack Sealing technique [7]. It steals al available slack from
periodic tasks and gives it to aperiodic tasks. Though it pro-
vides better performance than the server approaches, i.e., min-
imizes response times of aperiodic requests, its complexity is
very high. In addition, since the main idea of the slack stealing
isto give as much as possible time to aperiodic tasks executing
periodic tasks at full speed, the dack stealing is improper to
be integrated with DV S algorithms. So, we concentrate on the
server techniquesin this paper.

Despite of many researches on aperiodic task scheduling,
there have been few studies to adapt the DV'S technique to

aperiodic task scheduling. A recent work by W. Yuan and K.
Nahrstedt [13] proposed a DV'S algorithm for soft real-time
multimedia and best-effort applications. They handled only
the constant bandwidth server. The target of their algorithmis
aperiodic task systems, not mixed task systems.

Y. Doh et al. [4] also investigated the problem of allocat-
ing both energy and utilization for mixed task sets. They used
the total bandwidth server and considered the static scheduling
problem only. Given the energy budget, their algorithm finds
voltage settings for both periodic and aperiodic tasks such that
all periodic tasks are completed before their deadlines and all
aperiodic tasks can attain the minimal response times. While
their algorithm is an off-line static speed assignment algorithm
under the EDF scheduling policy, our work in this paper con-
siders both static and dynamic algorithms under both RM and
EDF scheduling policies. Ancther difference is that we con-
centrate on minimizing the energy consumption under the con-
straint on the average response time.

I1l. STATIC SCHEDULING FOR MIXED TASK SETS

Pillai and Shin [8] proposed the static voltage scheduling al-
gorithms using the RM and EDF schedulability tests. Their
static scheduling algorithm finds a clock speed of periodic
tasks for a hard real-time system. The clock speed is set stat-
ically, and is not changed unless the task set is changed. For
the mixed task set using a scheduling server such as DS or
TBS, Pillai’s static scheduling algorithms can al so be used with
the utilization of the scheduling server. For example, in EDF
scheduling using TBS, if the worst case utilization of periodic
tasksis 0.3 and the utilization of TBSis 0.4 at 100 MHz clock
speed, the static scheduling algorithm determines the clock
speed as 70 MHz (= 100 MHz - (0.3 + 0.4)).

However, the scheduling server for aperiodic tasks gener-
aly occupies a large utilization compared with the workload
of aperiodic tasks to provide a good responsiveness. If the real
utilization of aperiodic tasks is 0.2 rather than 0.4, it is better
to use alower clock speed for periodic tasks and a higher clock
speed for aperiodic tasks than 70 MHz. Thisis because TBS
has many idle intervals. However, we cannot use the clock
speed 50 MHz (= 100 MHz - (0.3 + 0.2)) becauseit can pro-
duce deadline misses when thereal utilization of aperiodic task
islarger than 0.2.

Therefore, in static voltage scheduling, we should consider
both the expected workload and the schedulability condition.
Our static voltage scheduling algorithm selects the operat-
ing speed S, of periodic tasks and the operating speed S, of
scheduling server for aperiodic tasks, respectively. S, and S
should allow areal-time scheduler to meet all the deadlinesfor
agiven periodic task set minimizing the total energy consump-
tion. Consequently, the problem of the static scheduling can
be formulated as follows:

Static Speed Assignment Problem
Given U, Us,w, and p,
find S, and S, such that
E=U, w-S;+p-S;isminimized

subject to Yo + v <U"and0<S,,S <1.
S, 'S,

Us Energy consumption (mJ) Response time (msec)
UNI OPT | Reduction(%) [| UNI | OPT | Reduction(%o)
0.15 || 52.02 | 50.35 3 165 | 1.38 16
0.20 || 60.73 | 54.50 10 101 | 0.75 26
0.25 || 65.81 | 58.81 11 094 | 0.75 20
0.30 || 71.19 | 6341 11 0.89 | 0.75 16
035 || 76.66 | 72.32 6 084 | 0.75 11
0.40 || 87.28 | 77.86 11 079 | 0.75 5

Up = 0.4, = 0.75, p = 0.15

TABLEI
STATIC SPEED ASSIGNMENT FOR TOTAL BANDWIDTH SERVER.

, where U, isthe worst case utilization of periodic task set, U,
isthe server utilization, w is the average workload ratio of pe-
riodic tasks, and p is the average workload ratio of aperiodic
tasks(p = \/u). E isametric reflecting energy consumption®.
U*, which is the least upper bound of schedulable utilization,
is 1 at the EDF scheduling and In(2) at the RM scheduling?,
respectively. Using the Lagrange transform, we can get afol-
lowing optimal solution for S, and S.

1 p) 1 3/Us -w
Sp=— (Up+Us3/—L—), S5=— (v, i/ 2L u
P U*(p""s U s U*<p » + Us

Under the assumption that we can know the exact w and p
values, we can get the optimal static speeds for periodic and
aperiodic tasks. Table | shows the experimental results of the
optimal static speed assignment. The results show the reduc-
tion of energy consumption and responsetime varying U s with
fixed values of U, w and p. Aperiodic tasks are assumed to
be serviced by the total bandwidth server. We assumed that
if the system isidle it enters into the power-down mode. We
compared our optimal speed assignment method (OPT) with
Pillai’s uniform speed assignment method (UNI) which as-
signs the same speed to both periodic tasks and aperiodic tasks
making the total utilization as U*. The optimal speed assign-
ment method reduced the energy consumption and the aver-
age response time up to 11% and 26%, respectively. Since the
scheduling server gets a higher speed than the speed for peri-
odic tasks when w > p, the optimal speed assignment reduces
the average response time as well as the energy consumption.

From the result, we can see if ahigher U is used, the aver-
age response time of aperiodic tasks decreases and total energy
consumption increases. Since two objectives of the response
time and the energy consumption conflict with each other, itis
recommended to use the constraint on the response time. We
can determine the minimum value of U, which satisfies the
constraint minimizing the energy consumption. For example,
if we have the constraint that the average response time should
be lower than 1 msec, then we can select 0.2 for the server
utilization from the resultsin Table I.

IV. DYNAMIC SCHEDULING FOR MIXED TASK SETS

There are some problems using existing on-line DVS algo-
rithms such as [9, 2, 8, 5] for mixed task sets. They use three

1 Assuming the supply voltage and clock speed are proportional in DV'S,
the energy consumption isrepresented to be proportional to the square of clock
speed.
2When a deferrable server is used, the utilization bound is 0.6518 [12].

kinds of slack estimation methods [6]: (1) stretching-to-NTA,
(2) priority-based slack-stealing, and (3) utilization updating.
The stretching-to-NTA technique stretches the execution time
of the periodic task ready for execution to the next arrival time
of a periodic task when there is no another periodic task in
ready queue. To use the stretching-to-NTA technique in a
mixed task set, we should know the next arrival time of an ape-
riodic task aswell as a periodic task. Though the arrival times
of periodic tasks can be easily computed using their periods,
we cannot know the arrival times of aperiodic tasks since they
arrive at arbitrary times. If we ignore the arrival of aperiodic
tasks, there will be a deadline miss of periodic hard real-time
task when an aperiodic task arrives before the next arrival time
of aperiodic task. Therefore, we cannot use the stretching-to-
NTA method directly for mixed task sets.

To use the priority-based slack-stealing method or the uti-
lization updating method, we should be ableto identify aslack
time due to aperiodic tasks aswell as periodic tasks. The slack
time of a periodic task can easily be defined as the difference
between the WCET and the real execution time of the task.
However, for the slack time from aperiodic tasks, we should
be concerned about the scheduling server rather than aperiodic
tasks because the scheduling server is related with the schedu-
lability condition.

Therefore, we need to modify on-line DVS agorithms to
utilize the characteristics of scheduling servers. In this paper,
we handle only DS and TBS because they are simple and rep-
resentative algorithms for the RM scheduling policy and the
EDF scheduling policy, respectivly.

A. Deferrable Server

Figure 1(a) showsthe task schedule with adeferrable server.
There are two periodic tasks, 73 = (5,1) and » = (8,2), and
one DS = (4, 1). Each periodic task and the DS is scheduled
by the RM scheduler. The utilization of DSis 0.25 (= 2= =
). We assumethat periodic tasks have relative deadlines equal
to their periods. DS preserves its budget if no reguests are
pending when released. An aperiodic request can be serviced
at any time (at server’s priority) as long as the budget of DS
is not exhausted (e.g., task a1). If the budget is exhausted,
aperiodic tasks should wait until the next replenishment time.
For example, though the task a4 arrived at the time of 19, it is
serviced at the time of 20.

Although we have no clairvoyant power to know the arrival
times of aperiodic tasks, the stretching-to-NTA method can be
used if we utilize the execution behavior of DS. There are two
cases the current ready task can be stretched:

¢ Rule for aperiodic task: If thereisno periodictask inthe
ready queue, stretch an aperiodic task to min(next arrival
time of a periodic task, next replenishment time).

e Rule for periodic task: If thereis only one periodic task
in the ready queue and the budget of DSis 0, stretch ape-
riodic task to min(next arrival time of a periodic task, next
replenishment time). This is because the arriving aperi-
odic task is delayed until the next replenishment time if
the budget is 0. If budget > 0, we cannot scale down the

speed of the periodic task even though there is only one
periodic task in the ready queue.

Figure 1(b) shows the task schedule using the modified 1pp-
sRM algorithm [9] which uses the stretching-to-NTA method.
The aperiodic task a, is stretched to the next arrival time of
periodic task (15) because there is no periodic task in ready
gueue. The aperiodic task a; is stretched to the next replenish-
ment time (4) becausethe replenishment timeisearlier than the
arrival time of a periodic task (5). Though thereis no deadline
miss even if a; is stretched to 5, we limit the stretching bound
by the replenishment time to bound the delay of responsetime
of aperiodic tasks. Using this policy, we can guarantee that the
maximum increase of the average response time is T's — Cs.
The tasks 71 5 and 7 3 are stretched to min(next arrival time,
next replenishment time) because the remaining budget of DS
is 0. We cannot stretch the tasks 7, » and 7, 3 because the re-
maining budget of DS is larger than 0.

aperiodic task arrival
a, ‘"z L fs i ay fas
budget,

B S B B §

2 20
8 IR 2
y i T: T
o] [H | e ' e
¢ 16 24
(& NoDVS
e e s
budget, |rve.s) J— @

7
=

[l

i PN A P
P

Zy

=
1

T2=(8. 2) ’—‘ ’—’d—b

N

(b) IppsrRM

Fig. 1. Task schedules with a deferrable server.

B. Total Bandwidth Server

Thetotal bandwidth server is proposed for the EDF schedul -
ing policy. Figure 2(a) shows the task schedule with a TBS.
There are two periodic tasks, 7, = (8,2) and » = (12,3),
and one TBS with U; = 0.5. U, is the utilization of TBS.
If U, + Us; < 1, the periodic tasks are schedulable. When
an aperiodic task aj arrives, TBS sets the deadline of a;, to
dp = mam(rk,dkfl) + Ck/US, where C}., ri, and d;, is the
WCET, the release time, and the deadline of a,, respectively.
For example, when an aperiodic task a» with C» = 2 arrivesat
6, TBS sets a,'sdeadlineto 11 (= maxz(6, 7) + 2/0.5). When
atask a3 arrives at 14, it preempts the task 72 » because as’s
deadlineis 18 and 1 »’s deadlineis 24.

With TBS, we cannot employ the stretching-to-NTA tech-
nique used for DS because it is not controlled by the budget.
Instead, we can make use of the fact that TBS sustains the
utilization of aperiodic tasks as U;. If we can endure alittle
degradation of aperiodic tasks, we can delay an aperiodic task
a; until d;_; whenr; < d; ;. Thisdelay does not affect the

utilization of TBS and does not cause the deadline miss of pe-
riodic task. Delaying an aperiodic task until d;_; isidentical
with assuming the earliest arrival time of the aperiodic task a ;
asd;_ 1. Figure 2(b) shows the task schedule using the modi-
fied 1ppsEDF agorithm[9] which usesthe stretching-to-NTA
method. For example, the remaining part of thetask 7 ; at the
time of 4 can be stretched to d; = 7. When an aperiodic task
ao arrives at the time of 6, it preempts 7, ; because its prior-
ity (i.e., deadling) is higher than 7> ; but produces no deadline
miss. If the priority of 75, is higher than a,, the start of a,
will be delayed until 7. In such cases, the maximum delay of
an aperiodictask a; isd;—1 — ;.

To use the priority-based slack-stealing method for TBS, we
should identify the slack times of TBS. There are two types of
slack times available when TBS is used:

e Inter-slack: If an interval [¢1,%-] in TBS is not over-
lapped with any activeinterval of aperiodic tasks[r ., dy],
thereis (t2 —t1)-U, amount of slack time. Thisis because
thetotal utilization does not exceed 1 even if an aperiodic
task with the execution time of (¢ — t1) - U, is executed
during theinterval [¢1, t-].

e Intra-slack: When an aperiodic task, whose WCET is
C'., consumesonly thetime of ¢, thereis (C'y, — ¢) amount
of dack time.

Figure 2(c) showsthetask schedule using the modified DRA al-
gorithm [2] which usesthe priority-based slack-stealing. Orig-
inally, in the DRA algorithm, when atask 7 is to be executed,
the dlack times due to the early completions of tasks which
have the higher priorities than the priority of r are computed
and the speed of 7 is determined using the slack times. The
modified DRA algorithm for TBS uses the same technique ex-
cept that it considers the inter-dlack as well as the intra-slack
of TBS.

For example, in Figure 2(c), when atask 7 ; is scheduled at
the time of 1, thereis a dlack time 1.5 (1 from the early com-
pletion of ; ; and 0.5 from the inter-slack of TBS during the
timeinterval [0,1]). Using the slack time, thetask 75 ; issched-
uled with the speed of 0.67 (=3/(3+1.5)). Theaperiodictask a ;
is also scheduled with the speed of 0.67 (=2/(2+1)) exploiting
the inter-slack of TBS, 1, during the time interval [2,3]. When
the task a; is completed consuming only the time of 1.5, the
remaining slack 1.5 is transferred to the remaining part of the
task 75,1 lowering its clock speed. Using the modified DRA
algorithm, we can get a better energy efficiency than that of
the modified 1 ppsEDF agorithm because DRA exploits more
slack times. But, the average response time of aperiodic tasks
islonger in DRA than 1ppsEDF.

V. EXPERIMENTAL RESULTS

We have evaluated the performance of our DV S algorithms
for DS and TBS using simulations. In each experiment, we
first assigned the static speed to periodic tasks and aperiodic
tasks using the static speed assignment algorithm described
in Section Ill. During run time, the operating speed is fur-
ther reduced by on-line DV'S agorithms exploiting the slack
times. The execution time of each periodic task instance was

speed Ty Ty r3 T4
F Ty T td
Ues =05 R, A, .
sl f 1 f f
- di Ao, dy ds 14 dy
weoat” e Iy S

speed N 8 16
T2)
w2 (e o i

(8 NoDVS
“"’“’1% Vo Y Vb
Urgs =05 7 Pﬁﬁ V0 Af
Spmdl - dy ﬂ d- ds . dy
T15(82) H T ’._. T L

earliest arrival time of
the next aperiodic task

earliest arrival time of
the next aperiodic task

(b) 1ppsEDF

e T2 T3 Ta

speed mlra‘ §

1| -inter-slack ‘ a1 gack 2
Ures=05 L7

3 6 % % 14 16 % ?
wj{ﬁu (I) ‘i‘T by, (I) T ds ,
7:=(82)
8
1 _

12 24

inter-gack | @3 as inter-slack
—

16

speed T2 1
T =(12,3)1T’ 1
<1T 5)

(15) p 1T.5)

(c) DRA

Fig. 2. Task schedules with atotal bandwidth server.

randomly drawn from a Gaussian distribution in the range of
[BCET, WCET] where BCET is the best case execution time.
In the experiments, BCET is assumed to be 10% of WCET.

The interarrival times and service times of aperiodic tasks
were generated from the exponential distribution using the pa-
rameters A and p where 1/ is the mean interarrival time and
1/p isthe mean service time. Then, the workload of aperiodic
tasks can be represented by p = A/u. If thereis no interfer-
ence between aperiodic tasks and periodic tasks, the average
response time of aperiodic tasks is given by (z — \) ~! from
the M/M/1 queueing model.

Varying the server utilization U, and the workload of ape-
riodic tasks p under a fixed utilization U, of periodic tasks,
we observed the interactions between the energy consumption
of the total system and the average response time of aperiodic
tasks. (Due to the limited space, we present the experimental
resultswhere U, is controlled by changing the value of 7' with
afixed Cs valueand p is controlled by avarying A with afixed
u value.)

Figure 3(a) compares the energy consumption of the mod-
ified I1ppsRM algorithm over that of the power-down method
when a deferrable server is used. In this experiment, U, was
fixedt00.3. AsU, and p increase, the energy consumption also
increases aswith theresults of the static speed assignment. The
energy saving from the modified 1 ppsRM agorithm increases
as p increases. Thisis because there are more chances for DS
to have the zero budget when the workload of aperiodic tasksis
large. When p is 0.25, 1ppsRM reduces the energy consump-
tion by 12% over the power-down method.

Figure 3(b) shows how the average response times of ape-

Deteraie Sover
80
= 70
E o A .
c
S 5 2 Wl / /'//'/
g
£ o J A < el
P I S S
3 " p=005 p=0.10 p=0.15 p=0.20 p=025
o
w10
o
28888 2848848 28¥Y88 28gLIHY 2JALRY
ooooooooooooooooooooooooo
Server utilization
(a) Energy Consumption
Defetabe Srver
14
13
AlZ
é; 1
1= 10
3 \
£
8 . L \
c
B \ \
g .
T 3L p=005 a_P=010 =0.15 \g: 0.20 =0.25
2
B -
0
98888 BURLBH LYKY8B UYRLBB VLYY S
DDDDDDDDDDDDDDDDDDDDDDDDD
Server utilization

(b) Response Time

Fig. 3. Experimental results using a deferrable server.

riodic tasks change. As U increases, the response time de-
creases, converging on the average response time of M/M/1
because the number of interferences by periodic tasks is re-
duced. As shown in Figure 3(b), the modified 1ppskM ago-
rithm does not significantly increase the responsetime. Thisis
because there are few cases when tasks can be stretched (aswe
can see from Figure 3(a)) and the delay dueto the stretching is
smaller than Ty — C;.

For TBS, we observed the performance of the modified
1ppsEDF agorithm and the modified DRA agorithm with U,
set to 0.4. Figure 4(a) shows the energy consumption by each
algorithm. DRA consumes less energy than 1ppsEDF. AS p
increases, the energy reduction patterns of DRA and 1 ppsEDF
(over the power-down method) do not change significantly.
Since the number of cases when 1ppsEDF can stretch the ex-
ecution time of periodic task is determined by the workload of
periodic tasks rather than p, the relative energy savings from
lppsEDF are similar irrespective of p. However, the energy
savings from 1ppsEDF increase as U increases. Thisis be-
cause, in the static speed assignment, a higher speed is as-
signed to the aperiodic tasks when alarge U, is used, thus the
energy saving from aperiodic tasks increases.

The relative energy savings from DRA aso show little vari-
ations depending on p because DRA utilizes the inter-slack as
well as the intra-slack. Unlike 1ppsEDF, the energy savings
from DRA are not different depending on U ;. Since DRA iden-
tifies dack times more aggressively during run time, its energy
efficiency is less dependent on the static speed assignment.
When p is 0.25, 1ppsEDF and DRA reduce the energy con-
sumption by 16% and 32% on average over the power-down
method, respectively.

Figure 4(b) shows the average response times of aperiodic
tasks in TBS. Both 1ppsEDF and DRA have longer response

Total Bandwidth Server

‘ —+—Power Down—s—|ppsEDF ——DRA ‘

cccccccccccccccccc

Server utilization

oooooo

o A
£ w / i
gm » i Z o
. 2 4 T T L
e o =g
g
S w
5 . | — - [s
BT peom p=010 p=015 p=020 p=025

10

o

REB888Y RE8889 RE888% fS888BLY fS88BLY

oooooo

(a) Energy Consumption

Total Bandwidth Server

‘ —+—Power Down—s—IppsEDF ——DRA ‘

i 1 1
i \ \
£ | \
E®
g: \ 1
T o Ap=025
& sl p=005 p=0.10 A_p=015 '\‘\p: o

0

R98892 REBNIL RK8BIL RKBBIYL RL8BIY

Scccoco S©oooooo o©000o o

Server utilization

oooooooooooo

(b) Response Time

Fig. 4. Experimental results using atotal bandwidth server.

times than the power-down technique because their operating
speed is lower. As U, decreases and p increases, the response
times are further increased. Since the higher U, is, the nearer
the deadline to aperiodic tasks in TBS, the delay times of ape-
riodic tasks by 1ppsEDF areinversely proportional to U ;.

When Uy is high, the average response time of DRA is better
than that of 1ppsEDF because 1ppsEDF may delay the exe-
cution of the aperiodic task a; by d; ; when a; arrives before
d;_1 while DRA does not delay the start time of aperiodic task.
However, DRA increases the response times very quickly when
piscloseto U,. For example, when p = 0.2 and U = 0.25,
the response time increases to 13.5 msec. In this case, DRA
stretches each task to complete its execution near its deadline
because DRA can exploit most available slack times. As shown
in Figure 4(b), DrRA becomes unusablewhen p > U ; athough
its energy efficiency is high. When p = 0.25and U; = 0.2,
the response time is 44.8 msec.

From the resultsin Figure 4, we can observe that the on-line
DV'S agorithm and the server utilization should be carefully
selected to satisfy the response time requirement. For exam-
ple, assume that p is 0.2 and TBS is used for aperiodic task
scheduling. If the average response time should be less than
4 msec, DRA with the server utilization 0.25 is the best choice
because it minimizes the energy consumption while satisfying
the response time constraint.

V1. CONCLUSIONS

We have proposed DV S agorithms for mixed task systems,
which have both periodic and aperiodic tasks. For the static
voltage scheduling algorithm, we proposed the optimal speed
assignment algorithm considering the workload of aperiodic
tasks. For the dynamic voltage scheduling algorithms, we pre-

sented the slack identification methods for the servers dedi-
cated to aperiodic tasks. Existing on-line DVS agorithms,
which cannot be used for mixed task systems, were modified
to use the proposed dlack identification methods. The modified
DV S dgorithms reduced the energy consumption by 12% and
32% under the RM scheduling policy and the EDF scheduling

policy, respectively.

Our work in this paper can be extended in severa direc-
tions. For example, we plan to develop DV'S agorithms for
other scheduling servers such as Sporadic Server and Constant
Bandwidth Server. Furthermore, although we focused on the
slack identification based on the characteristics of server algo-
rithms, it will be an interesting future work to study the effect
of the slack distribution methods on the average response time.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In Proc. of IEEE Real-Time Systems Symp., pages
4-13, 1998.

[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic and Ag-
gressive Scheduling Techniques for Power-Aware Real-Time Systems. In
Proc. of IEEE Real-Time Systems Symp., pages 95-106, 2001.

[3] T.Burd, T. Pering, A. Stratakos, and R. Brodersen. A Dynamic Voltage
Scaled Microprocessor System. In Proc. of IEEE Int. Solid-Sate Circuits
Conf., pages 294-295, 2000.

[4] Y. Doh, D. Kim, Y.-H. Lee, and C. M. Krishna. Constrained Energy
Allocation for Mixed Hard and Soft Real-Time Tasks. In Proc. of Int.
Conf. on Real-Time and Embedded Computing Systems and Applications,
pages 533-550, 2003.

[5] W.Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling Algorithm
for Dynamic-Priority Hard Real-Time Systems Using Slack Time Anal-
ysis. In Proc. of Design Automation and Test in Europe, pages 788-794,
2002.

[6] W.Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance Com-
parison of Dynamic Voltage Scaling Algorithms for Hard Real-Time Sys-
tems. In Proc. of |EEE Real-Time and Embedded Technology and Appli-
cations Symp., pages 219-228, 2002.

[7] J.P.Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for Schedul-
ing Soft-Aperiodic Tasksin Fixed Priority Preemeptive Systems. In Proc.
of IEEE Real-Time Systems Symp., pages 110-123, 1992.

[8] P Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems. In Proc. of ACM Symp. on Oper-
ating Systems Principles, pages 89-102, 2001.

[9] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for
Hard Real-Time Systems. In Proc. of Design Automation Conf., pages
134-139, 1999.

[10] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for
Hard Real-Time Systems. Journal of Real-Time Systems, 1(1):27-60,
1989.

[11] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasksin Dynamic Pri-
ority Systems. Journal of Real-Time Systems, 10(2):179-210, 1996.

[12] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable Server Al-
gorithm for Enhanced Aperiodic Responsiveness in Hard Real-Time En-
vironments. |EEE Transactions on Computers, 44(1):73-91, 1995.

[13] W. Yuan and K. Nahrstedt. Integration of Dynamic Voltage Scaling and
Soft Real-Time Scheduling for Open Mobile systems. In Proc. of Int.
Workshop on Network and Operating Systems Support for Digital Audio
and Video, pages 105-114, 2002.

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

