
Disjoint-Support Boolean Decomposition
Combining Functional and Structural Methods

Andrés Martinelli René Krenz Elena Dubrova
andres@imit.kth.se rene@imit.kth.se elena@imit.kth.se

Royal Institute of Technology, IMIT/KTH, Stockholm, Sweden

Abstract— This paper presents an algorithm for disjoint-
support decomposition of Boolean functions which combines
functional and structural approaches. First, a set of proper cut
points is identified in the circuit by using dominator relations
(structural method). Then, the circuit is partitioned along these
cut points and a BDD-based decomposition is applied to the re-
sulting smaller functions (functional method). Previous work on
Boolean decomposition used only single methods and did not in-
tegrate a combined strategy. The experimental results show that
the presented technique is more robust than a pure BDD-based
approach and produces better-quality decompositions.

I. INTRODUCTION

Boolean decomposition is a technique used in many appli-
cations, including multi-level logic synthesis, testing, formal
verification, combinatorial optimization problems over graphs
and networks.

In general terms, the problem of decomposition of functions
can be formulated as follows: Given a function f , express it as
a composite function of some set of new functions. Often, a
composite expression can be found in which the new functions
are significantly simpler than f .

The basic type of decomposition is the simple disjoint de-
composition where a function f(X) is expressed as a compos-
ite function of two functions g and h, namely

f(X) = h(g(Y), Z) (1)

where Y and Z are sets of variables forming a partition of the
set of variables X = {x1, x2, . . . , xn} of f . Every set of vari-
ables X for which a decomposition like (1) exists is called a
bound set for f .

The fraction of all Boolean functions of n variables pos-
sessing simple disjoint decompositions of type (1) approaches
zero as n approaches infinity [1, p. 90]. Therefore, a more
general type of decomposition, known as disjoint-support (or
Roth-Karp [2]) decomposition is usually considered. Disjoint-
support decomposition has the form

f(X) = h(g(Y), Z)

with f : {0, 1}n → {0, 1}, g : {0, 1}|Y | → {0, 1, ..., m − 1}
and h : {0, 1, ..., m− 1} × {0, 1}|Z| → {0, 1}. The m-valued
function h can be encoded by k = dlog

2
me Boolean functions

g1, g2, . . . , gk, giving a representation of the form

f(X) = h(g1(Y), g2(Y), . . . , gk(Y), Z) (2)

with all functions being Boolean. Disjoint-support decom-
position includes as a special case non-disjoint decomposi-
tion. For example, if V is the set of overlapping variables
of h and g1, then the non-disjoint decomposition f(X) =
h(g1(Y, V), V, Z) can be treated as a disjoint-support decom-
position f(X) = h(g1(Y, V), g2(V), Z), with g2 being the
identity function.

It is possible to extend algorithms for simple disjoint de-
composition to the disjoint-support case. For example, [3]
presents such an extension of the algorithm proposed in [4]. It
is a BDD-based heuristic algorithm which quickly finds many
disjoint-support decompositions and can handle large func-
tions. One problem with this approach is that the decompo-
sitions found in this way do not necessarily simplify the func-
tion. For example, a circuit implemented as the two cofactors
of a Shannon decomposition joined by a multiplexor is usually
not optimal. Shannon decomposition is a special case of the
decomposition (2), with Z = x1, g1(Y) = f(0, x2, . . . , xn),
g2(Y) = f(1, x2, . . . , xn), and h = x′

1
g1(Y) + x1g2(Y).

Another problem is that, in contrast to the case of simple
disjoint decompositions, that are “too few”, disjoint-support
decompositions are “too many”. So, an algorithm which first
generates all disjoint-support decompositions and then checks
which of them simplify the function is not feasible.

Our approach to overcome these problems is the following.
First, a set of proper cut points is identified in a circuit repre-
sentation of the function by applying a structural decomposi-
tion method. The circuit is partitioned along these cut points
into a set of smaller sub-circuits which are treated indepen-
dently. This allows us to reduce the search space for disjoint-
support decompositions at the next stage, since all bound sets
which overlap proper cut partitions are pruned. Finally, the
overall decomposition is determined by combining the inter-
mediate results.

We have chosen to use at the first stage of our algorithm a
circuit-based technique rather than a BDD-based one, because
manipulating circuits is much faster. Therefore, for functions
with no proper cuts, the presented technique does not bring a
significant overhead. The running time of our algorithm is nor-
mally similar, or even faster, than the running time of a BDD-
based algorithm.

II. PREVIOUS WORK

The concept of proper cuts was first introduced in combina-
tional equivalence checking [5]. Later it was applied to test-

ing [6, 7] and design for low power [8]. A vertex v is a proper
cut if every path from any primary input in the cone of influ-
ence of v to the root contains v. The presented algorithm for
finding proper cuts is based on the concept of reduced domina-
tor tree constructed by using an extension of the Lengauer-
Tarjan algorithm [9] for finding dominators in a graph. A
proper cut is required to dominate all the primary inputs in
its cone of influence. This guarantees that all re-converging
paths are completely enclosed within the cone and, therefore,
that those primary inputs belong to a bound set.

Disjoint-support decomposition was introduced by Roth and
Karp [10]. They defined the notion of compatible classes de-
scribing the conditions for the existence of bound sets. Two
assignments x1, x2 ∈ B|Y | are said to be compatible with re-
spect to the reference function f(Y, Z) if, for all y ∈ B|Z| such
that f(x1, y) and f(x2, y) are defined, f(x1, y) = f(x2, y).
The set Y is a bound set if and only if B|Y | can be partitioned
into k ≤ 2 mutually compatible classes. If f(X) is completely
specified, then compatibility is an equivalence relation and k is
the number of equivalence classes.

A number of BDD-based decomposition algorithms have
been developed. Karplus [11] presented a technique for AND-
and OR-type decomposition based on dominators in BDDs. It
was extended by Yang et al [12] to XOR-type decompositions.
Stanion and Sechen [13] target quasi-algebraic decomposition
of the form f(X) = g(Y) � h(Z), where “�” is any binary
Boolean operation and |Y ∪ Z| = k for some k ≥ 0. This
type of decomposition is often referred to as bi-decomposition
Bengtsson [4] developed a fast heuristic for simple disjoint de-
composition which iteratively examines all linear intervals of
variables of a ROBDD, and for every interval checks whether
it is a bound set. This algorithm has been extended to disjoint-
support decompositions in [3]. Minato and De Micheli [14]
presented an algorithm which computes simple disjoint de-
compositions by generating irreducible sum-of-product for the
function from its BDD and applying factorization. The algo-
rithm of Bertacco and Damiani [15] makes a single traversal of
the BDD to identify the simple disjoint decomposition of the
co-factors and then combine them to obtain the decomposi-
tion for the entire function. The algorithm is impressively fast;
however, as Sasao has observed in [16], it fails to compute
some of the disjoint decompositions. This problem was cor-
rected by Matsunaga [17], who added the missing cases in [15]
allowing to treat the OR/XOR functions correctly. The algo-
rithm [17] appears to be the fastest of existing exact algorithms
for finding all simple disjoint decompositions.

III. EXPERIMENTAL RESULTS

All experiments were performed on a PC with a 2GHz Pen-
tium4 CPU and 1024MByte main memory, running Linux
Mandrake 8.2. We used a set of 188 combinational circuits
from IWLS’02 benchmark set which comprises a total of
17633 outputs.

Due to space restrictions, the reader is referred to [18] and
[3], for details on the algorithms used for the respective phases
of the combined strategy.

Fig.1 shows a comparison of the running times of the pure
BDD-based approach against the combined one. Each cross

Time in seconds

10 10 10 10 101010
10

10

10

10

10

10

10

−4 −3 −2 −1 1

−2

−1

0

1

2

−3

−4
0

Combined approach

B
D

D
−b

as
ed

 a
pp

ro
ac

h

2

Fig. 1. Runtime comparison for the combined versus BDD-based approaches.

in the figure represents a single output function. Those above
the line mark an improvement in the running time. As one can
see, in the majority of cases, the combined approach is faster.
Crosses below the line, representing cases where the running
time of the combined tool is slower, are primarily circuits with
no simple disjoint decomposition (i.e. no proper cuts), where
the time spent on circuit exploration simply adds up as an over-
head on the BDD-based algorithm.

Some representative results, aiming to show the number of
disjoint-support decompositions computed by the combined
approach, are given in Table III. The first three columns show
information about the benchmarks: their name, the number of
primary inputs and the number of primary outputs. Column 4
shows the number of proper cuts found in the first phase of the
algorithm. Columns 5 to 7 show the number of k-bound sets
found in the second phase, for different values of k, as the total
sum of the results for individual outputs.

Notice that although columns 4 and 5 both show simple dis-
joint decompositions, the results they report do not overlap
and should be considered separately. They respectively rep-
resent those decompositions found during the structural and
the BDD-based phases of the algorithm, respectively. Since
the heuristics used in each phase may not find all bound sets,
and since they are dependent on the structure of the circuit and
BDD ordering, the combination of the two can result in one
finding bound sets which cannot be found by the other.

Also notice the cases like cm42a, decod or parity: in
these, only zeroes are reported for the second phase of the al-
gorithm. This is because after the partitioning along the cut
points found in the first phase, the resulting functions only con-
tain trivial disjoint-support decompositions, so the BDD-based
algorithm is not invoked at all. This is one the reasons for the
running time improvement.

TABLE I
EXPERIMENTAL RESULTS. NOTICE THAT ‘PROPER CUTS’ AND

DISJOINT-SUPPORT CASE ‘k=1’ REPRESENT DIFFERENT SIMPLE
DISJOINT DECOMPOSITIONS, FOUND IN THE FIRST AND THE
SECOND PHASE RESPECTIVELY, AND SHOULD BE COUNTED

SEPARATELY.

bound sets
benchmarks classical Roth-Karp

name in out proper cuts k=1 k=2 k=3

9symml 9 1 0 0 10 17
alu2 10 6 1 3 55 89
alu4 14 8 0 2 141 263

apex2 39 3 0 9 57 119
apex6 135 99 229 9056 32520 36084
apex7 49 37 104 2814 8406 9435

b9 41 21 37 335 1320 1465
C1355 41 32 0 0 11624 21708
C1908 33 25 0 2758 5337 8279
C3540 50 22 18 79 676 1378
C432 36 7 16 0 97 259
C499 41 32 0 0 12404 22428
C880 60 26 57 204 1574 3150

cm150a 21 1 1 0 5 11
cm42a 4 10 20 0 0 0
cm85a 11 3 9 20 90 100

cmb 16 4 20 325 325 325
comp 32 3 7 108 520 696

cordic 25 2 0 18 71 95
count 35 16 136 136 544 544
decod 5 16 48 0 0 0

des 256 245 640 30527 202664 327911
e64 65 65 2016 0 0 0

f51m 8 8 0 26 85 123
frg2 143 139 1 14 29 31

lal 26 19 598 32927 142542 169797
misex2 25 18 50 237 1522 1550

mux 21 1 1 0 5 11
pair 173 137 889 28416 113431 173717

parity 16 1 14 0 0 0
rot 135 107 177 9159 45070 65873
seq 41 35 34 3951 15762 28193

term1 34 10 26 340 822 870
too large 38 3 0 7 43 109

ttt2 24 21 10 843 2583 2665
x3 135 99 129 11980 31663 36259
x4 94 71 66 11066 30591 34785

IV. CONCLUSION

We present a decomposition technique which integrates
circuit-based and BDD-based decompositions. The combina-
tion of the two approaches results in an algorithm which is
more robust than the pure BDD-based method, regarding both
quality of the result and running time.

Our experiments on benchmark circuits suggest that the de-
veloped algorithm has a significant potential for a large num-
ber of circuits. However, there are also limitations. The main
one is that our method depends on dominator relations of the
circuit. If the circuit under consideration has no internal dom-
inators, the presented technique reduces to a BDD-based de-
composition. We have found that the majority of practical cir-
cuit graphs contain a substantial number of internal domina-
tor vertices (between 5 and 0.5 per input) which warrants an
efficient performance of our algorithm. For circuits with no
internal dominators, in the future we plan to use complemen-
tary methods for structuring the decomposition process, such
as generalized dominators [19] and min-cut [20].

REFERENCES

[1] C. E. Shannon, “The synthesis of two-terminal switching circuits,” Bell
Systems Technical J., no. 28, pp. 59–98, 1949.

[2] R. M. Karp, “Functional decomposition and switching circuit design,”
Journal of Soc. Indust. Appl. Math., vol. 11, pp. 291–335, June 1963.

[3] A. Martinelli, T. Bengtsson, and A. J. Sullivan, “Roth-Karp decomposi-
tion of large Boolean functions with application to logic design,” in Pro-
ceedings of NORCHIP’02, (Copenhagen, Denmark), November 2002.

[4] T. Bengtsson and A. Martinelli, “A BDD-based fast heuristic algorithm
for disjoint decomposition,” in Proceedings of Asia and South Pacific
Design Automation Conference, ASP-DAC03, (Kitakyushu, Japan), Jan-
uary 2003.

[5] W. Donath and H. Ofek, “Automatic identification of equivalence points
for boolean logic verification,” IBM Technical Disclosure Bulletin,
vol. 18, no. 8, pp. 2700–2703, 1976.

[6] S. C. Seth, L. Pan, and V. D. Agrawal, “PREDICT-probabilistic estima-
tion of digital circuit testability,” in Proceeding of International Sympo-
sium on Fault-Tolerant Computing, pp. 220–225, June 1985.

[7] B. B. Bhattacharya and S. C. Seth, “On the reconvergent structure of
combinational circuits with applications to compact testing,” in Proceed-
ing of International Symposium on Fault-Tolerant Computing, pp. 264–
269, 1987.

[8] D. Cheng, “Power estimation of digital CMOS circuits and the applica-
tion to logic synthesis for low power,” December 1995. Pd.D. Thesis,
University of California at Santa Barbara.

[9] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” Transactions of Programming Languages and Systems,
vol. 1, pp. 121–141, July 1979.

[10] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM
Journal, vol. 6, pp. 227–238, April 1962.

[11] K. Karplus, Using if-then-else DAGs for multi-level logic minimization.
University of California Santa Cruz: Technical Report UCSC-CRL-88-
29, 1988.

[12] C. Yang, V. Singhal, and M. Ciesielski, “Bdd decomposition for efficient
logic synthesis,” in Proceedings of International Conference on Com-
puter Design, pp. 626–631, 1999.

[13] T. Stanion and C. Sechen, “Quasi-algebraic decompositions of switch-
ing functions,” in Proceedings of Sixteenth Conference on Advanced Re-
search in VLSI, pp. 358–367, IEEE, 1995.

[14] S. Minato and G. D. Micheli, “Finding all simple disjunctive decom-
positions using irredundant sum-of-products forms,” in Proceedings
of IEEE/ACM International Conference on Computer-Aided Design,
pp. 111–117, 1998.

[15] V. Bertacco and M. Damiani, “The disjunctive decomposition of logic
functions,” in Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pp. 78–82, 1997.

[16] T. Sasao and M. Matsuura, “DECOMPOS: An integrated system for
functional decomposition,” in Proceedings of ACM/IEEE International
Workshop on Logic Synthesis, 1998.

[17] Y. Matsunaga, “An exact and efficient algorithm for disjunctive decom-
position,” in Proceedings of SASIMI’98, pp. 44–50, 1998.

[18] R. Krenz, “On-the-fly proper cut recognition based on circuit graph
analysis,” in Proceedings of NORCHIP’02, (Copenhagen, Denmark),
November 2002.

[19] R. Gupta, “Generalized dominators and post-dominators,” in Proceed-
ings of 19th Annual ACM Symposium on Principles of Programming
Languages, pp. 246–257, 1992.

[20] J. Cong, H. P. Li, S. K. Lim, T. Shibuya, and D. Xu, “Large scale circuit
partitioning with loose/stable net removal and signal flow based cluster-
ing,” in Inetrantional Conference on Computer-Aided Design, pp. 441–
446, 1997.

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

