
Exploiting Program Hotspots and Code Sequentiality for
Instruction Cache Leakage Management

J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin, M. Kandemir
Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802, USA

mdl@cse.psu.edu

ABSTRACT
Leakage energy optimization for caches has been the target
of much recent effort. In this work, we focus on instruc-
tion caches and tailor two techniques that exploit the two
major factors that shape the instruction access behavior,
namely, hotspot execution and sequentiality. First, we adopt
a hotspot detection mechanism by profiling the branch be-
havior at runtime and utilize this to implement a HotSpot
based Leakage Management (HSLM) mechanism. Second,
we exploit code sequentiality in implementing a Just-In-
Time Activation (JITA) that transitions cache lines to active
mode just before they are accessed. We utilize the recently
proposed drowsy cache that dynamically scales voltages for
leakage reduction and implement various schemes that use
different combinations of HSLM and JITA. Our experimen-
tal evaluation using the SPEC2000 benchmark suite shows
that instruction cache leakage energy consumption can be
reduced by 63%, 49% and 29%, on the average, as compared
to an unoptimized cache, a recently proposed hardware opti-
mized cache, and a cache optimized using compiler, respec-
tively. Further, we observe that these energy savings can be
obtained without a significant impact on performance.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache Mem-
ories

General Terms
Design, Performance, Measurement

Keywords
Leakage power, Cache design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

1. INTRODUCTION
Static energy consumption due to leakage current is an

important concern in future technologies [3]. As the thresh-
old voltage continues to scale and the number of transistors
on the chip continues to increase, managing leakage current
will become more and more important. As on-chip caches
constitute a major portion of the processor’s transistor bud-
get, they account for a significant share of the leakage power
consumption. Leakage is projected to account for 70% of the
cache power budget in 70nm technology [9].
Since the leakage current is a function of the supply volt-

age and the threshold voltage, it can be controlled by either
reducing the supply voltage or by increasing the threshold
voltage [12, 8, 6, 7, 1]. In this work, we utilize a drowsy
cache [6] based on a multiplexed supply voltage as our cir-
cuit primitive for controlling leakage. In this circuit, in order
to reduce leakage current, the supply voltage to the cache
line is switched to the lowest level that can still retain the
data. However, a cache line cannot be accessed when the
supply voltage is lowered and the voltage must be switched
back to normal value before the cache line access.
Here, we focus on reducing leakage energy in the instruc-

tion cache. A good leakage management scheme needs to
balance appropriately the energy penalty of leakage incurred
in keeping a cache line turned on after its current use with
that of turning the line off (we use turn-off here to refer to a
transition to the drowsy state, and turn-on to refer to waking
up to normal active state.) and incurring the transition en-
ergy (for turning on a cache line) and performance loss that
will be incurred if and when that cache line is accessed again.
Our leakage management premise exploits two main charac-
teristics of instruction access patterns to strike this balance:
program execution is mainly confined in program hotspots
and instructions exhibit a sequential pattern. A significant
part of an application execution is spent in specific program
hotspots (identification of hotspots is explained Section 3).
We find this percentage of execution in hotspots to be 82%
on the average for the SPEC2000 benchmark suite. In or-
der to exploit this behavior, we propose a HotSpot based
Leakage Management (HSLM) approach that is used in two
different ways. First, it is used for detecting and protecting
cache lines containing program hotspots from inadvertent
turn-off. Second, HSLM can be used to detect a shift in
program hotspot and to turn off cache lines closer to their
last use. Next, we present a Just-in-Time Activation (JITA)
scheme that exploits sequential access patterns for instruc-
tion caches by predictively activating the next cache line

402

when the current cache line is accessed. Employing both
HSLM and JITA in conjunction with previous approaches,
our experimental evaluation using SPEC2000 benchmarks
shows that it provides 49% and 29% more leakage energy
savings in the instruction cache as compared to schemes in
[9] and [13].
The rest of this paper is organized as follows. Section 2

provides a more detailed view of factors influencing leakage
reduction and how our approach relates to existing schemes.
Section 3 details the implementation of our HSLM and JITA
strategies. Section 4 explores different leakage management
approaches that combine HSLM and JITA. An experimental
evaluation of the different schemes is performed in Section 5.
Finally, we provide conclusions in Section 6.

2. RELATED WORK
Previous approaches for leakage energy management uti-

lize runtime information to make leakage control decisions.
DRI I-Cache [12] dynamically resizes the instruction cache
and puts the disabled portion of the cache into leakage-
control mode by monitoring the cache miss rate. This scheme
is coarse-grain in managing leakage as it turns off large por-
tions (by halfing) of the cache depending on a performance
feedback that does not specifically capture cache line usage
patterns.
Drowsy cache proposed in [6] periodically turns off cache

lines independent of the instruction access pattern. The
success of this strategy depends on how well the selected
period reflects the rate at which the instruction working set
changes. On the plus side, this approach is simple and has
very little implementation overhead. Technique proposed
in [9] adopts a bank based strategy, where as execution
moves from one bank to another, the hardware turns off
the former and turns on the latter. Two severe problems
associated with this scheme, namely, unnecessarily turning
on cache lines that will never be touched and keeping these
cache lines in active mode until the next bank transition re-
sult in poor energy behavior. Frequent bank transitions due
to a small loop mapping across two banks can also lead to
inferior energy and performance behavior.
The cache decay mechanism proposed by Kaxiras et al.

in [8] shuts down cache lines if they are not accessed for
some certain number of cycles (decay interval). In fact, the
problems associated with selecting a good decay interval are
similar to those associated with selecting a suitable turn-
off period in [6]. The adaptive version of the cache decay
scheme [8] tailors the decay interval for the cache lines based
on cache line access patterns. The approach in [14] also uses
tag information to adapt leakage management.
In [13], an optimizing compiler is used to analyze the pro-

gram to insert explicit cache line turn-off instructions. This
scheme demands sophisticated program analysis and mod-
ifications in the ISA to implement cache line turn-on/off
instructions. In addition, this approach is only applicable
when the source code of the application being optimized is
available.
Another important limitation of existing leakage control

schemes is that most of the techniques only focus on a turn-
off mechanism and activate turned-off cache lines (or banks)
only when accessed, which can lead to performance penal-
ties. A notable exception to this is the predictive bank turn-
on scheme employed in [9].

3. USING HOTSPOTS AND SEQUENTIAL-
ITY IN MANAGING LEAKAGE

Having analyzed the shortcomings of directly applying ex-
isting approaches to instruction cache leakage management,
our goal is to support a turn-off scheme that is sensitive to
program behavior changes and that captures both tempo-
ral and spatial locality variances. Further, we would like a
predictive turn-on mechanism to support the sequentiality
of instruction cache accesses. However, we want to keep the
granularity of predictive turn-on as small as possible so that
the cache lines are turned on if and only if they are needed.
In this paper, we propose two mechanisms to support

leakage management of instruction caches. First, we pro-
pose a HotSpot based Leakage Management scheme (HSLM)
that tracks program behavior. Second, we propose a Just-
in-Time Activation (JITA) scheme for turning on the next
cache line to exploit the sequentiality of code accesses.

3.1 HSLM: HotSpot Based Leakage Manage-
ment

Previous research shows that a program execution typi-
cally occurs in phases [11]. Each phase can be identified
by a set of instructions that exhibit high temporal locality
during the course of execution of the phase. Two important
observations made by previous research are that phases can
share instructions and that the instructions in a given phase
do not need to be tightly clustered together in one portion
of the address space. In fact, they can be scattered all over
the address space as pointed out in [11]. Typically, when
execution enters a new phase, it spends a certain number
of cycles in it. When this number is high, one can refer to
that phase as a hotspot. Since branch behavior is an impor-
tant factor in shaping the instruction access behavior, we
track the hotspots using a branch predictor. While the use
of branch predictors for optimizing programs has been used
in the past (e.g., see [11]), to our knowledge, this is the first
study that employs branch predictors for improving cache
leakage consumption.
Detecting program hotspots can bring two main advan-

tages. First, we can know which cache lines are going to be
the most active ones and prevent them from being turned
off. Second, we can turn off the cache lines that hold in-
structions that do not belong to a newly detected hotspot.

3.1.1 Protecting Program Hotspots
Our leakage management approach builds on the drowsy

cache technique [6] that periodically transitions all cache
lines to drowsy mode by issuing a global turn-off signal
which sets register Q of leakage control circuitry in Figure
1. A global (modulo-N) counter is used to control the pe-
riodic turn-off. In order to protect the cache lines contain-
ing the program hotspots from inadvertent turn-off, we aug-
ment each drowsy cache circuit with a local voltage control
mask bit (VCM). If this mask bit is set, the corresponding
cache line will mask the influence of the global turn-off signal
and prevent turn-off. In order to identify execution within
hotspots, we augment and utilize the information from the
branch target buffer (BTB) as explained in detail in the next
paragraph. Once the program is identified to be within a
program hotspot (or not), the global mask bit (GM) (Figure
2) is set (reset). When this global mask bit is set, the volt-
age control mask bit of all cache lines accessed is set to one
to indicate that these cache lines form the program hotspot.

403

Q!Q

reset

Word line

Word line (Drowsy Mode)

(Active Mode)

R
ow

 D
ecoder

Preactivate

Preactivate

0.3V

1V

Cache Line

Word line Gate

Power line

Global
Turn-off

set

VCM

Figure 1: Leakage control circuitry supporting Just-
in-Time Activation (JITA).

In a set-associative cache, the voltage control mask bit is
set based on the tag match results of the cache access and
is performed only for the way that actually services the re-
quest. The voltage control mask bits are reset on cache line
replacements.
Our hotspot detection mechanism tracks the branch be-

havior information using the BTB. The BTB entries are aug-
mented to collect the execution frequencies of basic blocks.
Compared to the conventional BTB entry, the augmented
structure includes three additional fields: the valid bit (vbit)
for target address, an access counter for the target basic
block (tgt cnt), and an access counter for the fall-through
basic block (fth cnt). This new structure is shown in Fig-
ure 2. The valid bit indicates whether the current value of
target address is valid or not. The valid bit is needed as
a new entry can be added to the augmented BTB by both
taken and non-taken branches. If the new entry is intro-
duced when the branch is taken (not taken), the valid bit
is set to one (zero). The access counter for the target (fall-
through) basic block records how many times the branch is
predicted as taken (not-taken). These counters are accessed
and updated during each branch prediction according to the
outcome of the prediction.
The value of the target/fall-through counter shows the fre-

quency of the target/fall-through basic block fetched within
a given sampling window and is compared with a predefined
threshold Tacc to determine the hotness of the correspond-
ing basic block. Each counter in the BTB has log(Tacc) + 1
bits. The counters are initially set to zero when a new BTB
entry is created. During a branch prediction, if the BTB
hits, the corresponding counter is read out according to the
outcome of the prediction and then incremented. Next, the
most significant bit of the corresponding counter is checked
to determine the hotness of the basic block starting at the
target/fall-through address. If this bit is set, it means that
the next (target or fall-through) basic block has exceeded the
threshold Tacc number of accesses and subsequent fetches
are part of a program hotspot. We set the global mask bit
to capture this detection of a program hotspot. The global
mask bit is reset when the most significant bit of the access
counter for a subsequent BTB lookup is not set or when a
BTB miss happens.
When a sampling window expires (determined by zeroing

of the global counter), several initialization operations take

place. First, a global turn-off signal is issued to turn off all
cache lines except those with their voltage control mask bit
set. Second, a global reset signal resets all voltage control
mask bits. This is performed to track variances in program
behavior hotness. Third, all the access counters in the BTB
are shifted right by one bit to reduce their access count by
half. This is performed to reduce the weight for accesses
performed in an earlier period when determining hotness.
Subsequently, a new sampling window begins and the oper-
ations repeat.

1 0

�����������
�����������
�����������
����������������������
�����������
�����������
����������������������
�����������
�����������
����������������������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

1

1

target_addr

target_addr

0

0

0

0

1

1

1

1

1

tgt_cnt

1 0000 0 0111

0 1 00001000

fth_cnt

PC

Word line

vbit

ICache

 Circuitry
Leakage Control

Mask Bit
Global

Branch Target Buff

Branch Taken

BTB Hit

Way Select

GM

Global Reset

Bit
VCM

Figure 2: Microarchitecture for HotSpot based
Leakage Management (HSLM) scheme. Note that
O/P from AND gates go to the set I/P of the mask
latches.

3.1.2 Detecting New Program Hotspots
One of the drawbacks of periodic approaches is that cache

lines can be turned off only when a preset period expires.
It would be more beneficial if older (not recently accessed)
cache lines can be turned off immediately when a shift in
hotspot is detected. Our approach is specifically targeted
at identifying a shift of the program hotspot to a new loop.
Specifically, if the target counter in the BTB entry of a pre-
dicted taken branch indicates that the target basic block is
in a hotspot (the most significant bit of the counter is “1”)
and if the target address is lower than the current program
counter value, we assume that the program is in a hotspot
executing a loop. At this point, the global turn-off signal
is issued and all cache lines except those corresponding to
hotspots are switched to drowsy mode. In the schemes eval-
uated in this paper, we always use a periodic turn-off issued
when the global counter expires in addition to the dynamic
loop-based turnoff to account for the cases where the execu-
tion remains within the same loop for a long time or when
there are few loop constructs.

3.2 JITA: Just-In-Time Activation
In many applications, sequentiality is the norm in the code

execution. In addition, optimizations such as loop unrolling,
superblock and hyperblock formation increase the sequen-

404

Schemes Turn-off Mechanism Turn-on Mechanism Turn-on Gran. Turn-off Gran.

Base - When accessed Cache line -
Drowsy-Bank Switch banks Bank prediction Bank Bank
Loop Instruction When accessed Cache line Entire cache
DHS Periodic+Hot backward branch+Not Hot When accessed Cache line Entire cache
DHS-PA Periodic+Hot backward branch+Not Hot When previous line is accessed Cache line Entire cache
DHS-Bank-PA Periodic+Hot backward branch+Switch banks+Not Hot When previous line is accessed Cache line Entire cache

Table 1: Leakage control schemes evaluated.

tiality of the code [4, 5, 10]. The sequential nature of code
can be exploited to predict the next cache line that will be
accessed and mask the penalty for transitioning a cache line
from drowsy to active mode just-in-time for access. Specifi-
cally, we propose a scheme that preactivates the next cache
line, JITA.
The leakage control circuitry augmented to support JITA

for a direct-mapped cache is illustrated in Figure 1. When
the current cache line is being accessed, the voltage control
bit for the next cache line (next index) is reset, thereby tran-
sitioning it to the active state. Thus, when the next fetch cy-
cle occurs and there is code sequentiality, the next required
cache line is already in the active mode and ready for access.
However, the JITA scheme is not successful when a taken
branch occurs and the target is beyond the next cache line
or when the next address falls in a different memory bank.
While the same circuit can be employed for a set-associative
cache, it would lead to activating the cache lines in all the
ways of the same set. In order to avoid this, we utilize way
prediction information associated with the next cache line to
activate only the cache line of a selected way. This scheme
is found to work well as programs expend a major part of
their time in their hotspots.

4. DESIGN SPACE EXPLORATION
Table 1 shows the different cache leakage savings approaches

that we evaluated. In all cases, we assume a cache line is in
drowsy mode before its first access.
The Drowsy-Bank scheme [9] employs a turn-off policy

that is based on the assumption that bank access changes in-
dicate a shift in locality. The Loop scheme (the most aggres-
sive scheme in [13]) turns off all cache lines after executing
each loop. These two schemes are used for comparison.
In the DHS (Dynamic HSLM) scheme, the global turn-off

signal is issued when a new loop-based hotspot is detected.
Thus this scheme can turn off unused cache lines before the
fixed period is reached by detecting that execution will re-
main in the new loop based hotspot. This scheme also em-
ploys the hotspot detection for protecting cache lines con-
taining program hotspots. The DHS scheme also incurs a
penalty due to the masking that can delay the turn-off of
cache lines that belonged to an older hotspot until the iden-
tification of a new hotspot or the expiration of an additional
period as compared to a periodic scheme that employs no
masking. The DHS-PA scheme employs the JITA strategy on
top of the DHS scheme.
Our final approach, DHS-Bank-PA issues the global turn-off

signal at fixed periods, when the execution shifts to a new
bank, or when a new loop hotspot is detected. It attempts
to identify both spatial and temporal locality changes. Fur-
ther, it employs the mask bits set using hotspot detection to
protect active cache lines and the JITA scheme for predictive
cache line turn-on.

Predictive turn-on strategies are not without their draw-
backs. When a wrong prediction is made, they not only in-
cur a performance penalty to turn on the needed line (also
associated with techniques that have no prediction) but also
the energy cost incurred in activating the wrong cache line.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the leakage control schemes

described in the previous section. First, we describe our
simulation parameters. Next, we compare the energy, per-
formance and energy-delay results of the different schemes.

5.1 Experiment Setup
We extended SimpleScalar 3.0 [2] to implement the schemes

presented in Table 1. We simulate a contemporary micro-
processor similar to Alpha 21264. The base configuration
parameters of the processor and memory hierarchy are given
in Table 2. We use a set of ten integer and four floating point
applications from the SPEC2000 benchmark suite and use
their PISA binaries and reference inputs for execution. Each
benchmark is first fast-forwarded half a billion instructions,
and then simulated the next half a billion committed instruc-
tions. Table 3 gives the technology and energy parameters
used in this paper. The energy parameters are based on a
70nm/1.0V technology [6].

Processor Core

Instruction Window 64 RUU, 32 LSQ
Decode/Issue Width 4 instructions per cycle
Commit Width 4 instructions per cycle
Function Units 4 IALU, 1 IMULT/IDIV,

4 FALU, 1 FMULT/FDIV,
2 Memports

Branch Predictor Bimodal, 2048 entries, 512-set 4-way BTB,
8-entry RAS

Memory Hierarchy

L1 ICache 32KB, 1 way, 32B blocks, 1 cycle latency
L1 DCache 32KB, 4 ways, 32B blocks, 1 cycle latency
L2 UCache 256KB, 4 ways, 64B blocks, 8 cycle latency
Memory 80 cycles first chunk, 8 cycles rest
TLB 4 way, ITLB 64 entry, DTLB 128 entry,

30 cycle miss penalty

Table 2: Configuration parameters for the simulated
processor and its memory hierarchy.

Our energy model is as follows:

Eenergy = Edrowsy +Eactive +Edatapath+dcache +Eoverhead.

Eoverhead = Eturnon + Eextraturnon +Ebtbcounters +Emisc.

The total effective leakage energy Eenergy of the instruc-
tion cache with leakage management schemes is composed of
four parts: leakage energy Edrowsy consumed by the cache
lines in drowsy mode, leakage energy Eactive consumed by
cache lines in active mode, the increased leakage energy con-
sumption in datapath and data cache Edatapath+dcache due

405

Technology and Energy Parameters

Feature Size 70nm
Threshold Voltage 0.2V
Supply Voltage 1.0V
Clock Speed 1.0GHz
L1 cache line Leakage in Active 0.417pJ/cycle
L1 cache line Leakage in Drowsy 0.0663pJ/cycle
Transition (drowsy to active) Energy 25.6pJ
Transition (drowsy to active) latency 1 cycle
Dynamic Energy per BTB counter (5 bits) 0.96pJ/transaction

Simulation Parameters

Window Size 2048 cycles
Hotness Threshold (Tacc) 16
Subbank Size 4K Bytes

Table 3: Technology and energy parameters for the
simulated processor given in Table 2.

Figure 3: Leakage energy reduction w.r.t the Base

scheme.

to the increased cycles incurred by leakage control, and the
overhead energy Eoverhead for implementing the leakage con-
trol schemes. The overhead energy Eoverhead includes tran-
sition energy Eturnon for waking up a drowsy cache line, ex-
tra transition energy Eextraturnon due to unnecessary turn-
ons resulting from predictive cache line turn-on schemes, the
dynamic energy Ebtbcounters consumed in BTB counters in-
troduced for HSLM, and miscellaneous energy consumption
Emisc due to voltage control mask bits and a way predictor,
if used, in set-associative cache. Since the BTB counters
have a very high percentage of zero bits (an average of 95%,
due to saturation or not being touched), these counters are
implemented using asymmetric-Vt SRAM cells [1]. The op-
timized cells consume only 1/10th of the original leakage
when storing zeros. Thus, additional leakage due to BTB
counters is very small.

5.2 Experimental Results
Figure 3 presents the total leakage energy reduction of

all leakage control schemes compared to the Base scheme.
This evaluation depends on the overhead leakage incurred
in the rest of the chip excluding the instruction cache. In
order to capture different processor configurations and un-
derlying circuit styles, we vary the instruction cache leak-
age from 10-30% of overall on-chip leakage. We observed
that DHS-Bank-PA has the best energy behavior for all val-
ues experimented in this range as HSLM and JITA help to
reduce additional overhead energy for this scheme. Specif-
ically, it achieves an average energy reduction of 63% over
Base, 49% over Drowsy-Bank, and 29% over Loop when in-
struction cache accounts for 30% of on-chip leakage. When
this percentage is 10%, these energy reductions are 59%
over Base, 44% over Drowsy-Bank, and 50% over loop (Not

shown in figure for brevity). Focusing on an anomalous
trend in Figure 3, benchmark wupwise exhibits very differ-
ent energy behavior. Except for scheme Loop (0% reduc-
tion), all other schemes increase the energy consumption
with the Drowsy-Bank scheme increasing energy consump-
tion by 19%. This results from the small instruction foot-
print of this benchmark during simulation which touches
only 77 cache lines of the same bank (out of 128 lines for
our configuration).

Figure 4: The leakage energy breakdown (average
over fourteen SPEC2000 benchmarks..

In order to have a closer look at the energy behavior of the
different schemes, Figure 4 provides a more detailed break-
down (averaged over all benchmarks). For Base, the leak-
age energy is due to leakage energy consumed by drowsy
cache lines (before a cache line is accessed) and leakage en-
ergy consumed by active cache lines. Loop and DHS have a
noticeable portion of energy from additional datapath and
data cache leakage energy due to the performance degrada-
tion. In contrast, Drowsy-Bank has very little performance
overhead, because it predictively turns on banks. However,
turn-on energy for the Drowsy-Bank scheme is significant, as
it turns all lines in a bank in one cycle. Further, the extra
turn-on energy (i.e., due to activating the wrong subbank)
is around 20% of the overall turn-on overhead energy and
8% for the total leakage energy. Further, we notice that the
BTB counter overhead is very low since the saturated coun-
ters do not incur any additional dynamic activity as their
clocks are gated once the most significant bit turns to a one
(until it is reset). Only the most significant bit of these
saturated counters is used to identify hotspots.
We also measured a metric defined as the turn-on-hit ratio

to highlight the performance penalty for accessing drowsy
cache lines. This ratio provides the percentage of cache line
activations on cache access hits to the total number of ac-
tivations performed. A larger value indicates more perfor-
mance penalty. Activation on cache misses does not incur
any additional performance penalty. For Loop and DHS, this
value is 79.5% and 87%, on average respectively. The use
of JITA reduces this ratio to 11% and 12.4% for DHS-PA

and DHS-Bank-PA. While JITA is successful in reducing the
penalty of activation, it still incurs some penalty when it
fails due to taken branches or jumps to drowsy cache lines.
Figure 5, shows how this activation penalty translates into

actual performance values. The Base scheme (not shown)
performs the best as it incurs no performance penalties ex-
cept for initial activation of untouched cache lines. The
Drowsy-Bank scheme performs the best among other schemes
and incurs only a degradation of 0.56%. The Loop scheme
incurs the highest degradation of 15.4% degradation on the

406

Figure 5: Performance (IPC) degradation w.r.t the
Base scheme.

average because this scheme had the highest number of ac-
cesses to drowsy cache lines on average (due to the absence
of predictive activation or masking for hotspots). The best
performing energy scheme, DHS-Bank-PA suffers a degrada-
tion of 2.3% on the average.

Figure 6: Energy delay (J*s) product (EDP).

Finally, we present the energy delay products (EDP) of
each scheme in Figure 6. We have included the overhead
energy (see Figure 4). The results show that our scheme
DHS-Bank-PA performs best. It achieves the smallest EDP
value, which has an average reduction of 62.63% over Base,
and additionally 48.3% and 37.7% over Drowsy-Bank and
Loop respectively. Experiments with different cache config-
urations (in cache size, number of sets, associativity, and
cache line size) also show that DHS-Bank-PA performs best
(detailed results are not shown due to the space limitation).

6. CONCLUSIONS
This work focused on the leakage management of instruc-

tion caches. Our leakage management exploits two main
characteristics of instruction access patterns: that program
execution is mainly confined in program hotspots and that
instructions exhibit a sequential access pattern. We de-
vise two strategies: a HotSpot based Leakage Management
(HSLM) and Just-in-Time Activation (JITA) to exploit these
two main characteristics.
Specifically, we used HSLM to protect turning off cache

lines containing program hotspots and for dynamically iden-
tifying shifts in program hotspot. JITA was used to predic-
tively activate the next cache line to mitigate the perfor-
mance penalty incurred in waking up drowsy cache lines.
We find that using program behavior captured by HSLM
helps avoid some of the overheads of managing leakage in an
application agnostic fashion and also helps to detect shifts in
program hotspots dynamically. Further, we find that JITA

is a simple and effective scheme for masking the performance
penalties associated with waking up drowsy cache lines and
permits a fine-grain leakage management at the cache line
level. With the increasing focus on reducing leakage en-
ergy as technology scales and the incorporation of larger and
larger caches on-chip, such cache leakage control schemes
will be vital in future processor generations.

7. ACKNOWLEDGMENTS
This work was supported in part by a grant from MARCO

98-DF-600 GSRC, NSF CAREERAwards 0093082 and 0093085,
and NSF grants 0082064 and 0103583.

8. REFERENCES
[1] N. Azizi, A. Moshovos, and F. N. Najm. Low-leakage

asymmetric-cell sram. In Proc. the 2002 International
Symposium on Low Power Electronics and Design,
Monterey, CA, 2002.

[2] D. Burger, A. Kagi, and M. S. Hrishikesh. Memory
hierarchy extensions to simplescalar 3.0. Technical
Report TR99-25, Department of Computer Sciences,
The University of Texas at Austin, April 2000.

[3] J. A. Butts and G. Sohi. A static power model for
architects. In Proc. the 33th Annual International
Symposium on Microarchitecture, December 2000.

[4] S. Carr, C. Ding, and P. Sweany. Improving software
pipelining with unroll-and-jam. In Proc. the 29th
Annual Hawaii International Conference on System
Sciences, pages 183–192, Maui, HI, January 1996.

[5] P. P. Chang et al. Three superblock scheduling models
for superscalar and superpipelined processors.
Technical Report CRHC-91-29, Center for Reliable
and High-Performance Computing, University of
Illinois, Urbana, IL, 1991.

[6] K. Flautner et al. Drowsy caches: Simple techniques
for reducing leakage power. In Proc. the 29th
International Symposium on Computer Architecture,
Anchorage, AK, May 2002.

[7] S. Heo et al. Dynamic fine-grain leakage reduction
using leakage-biased bitlines. In Proc. the 29th
International Symposium on Computer Architecture,
Anchorage, AK, May 2002.

[8] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
exploiting generational behavior to reduce cache
leakage power. In Proc. the 28th International
Symposium on Computer Architecture, Sweden, 2001.

[9] N. Kim, K. Flautner, D. Blaauw, and T. Mudge.
Drowsy instruction caches: Leakage power reduction
using dynamic voltage scaling and cache sub-bank
prediction. In Proc. the 35th Annual International
Symposium on Microarchitecture, November 2002.

[10] S. A. Mahlke et al. Effective compiler support for
predicate execution using the hyperblock. In Proc. the
25th Annual International Symposium on
Microarchitecture, 1992.

[11] M. C. Merten et al. An architectural framework for
runtime optimization. IEEE Transactions on
Computers, 50(6):567–589, June 2001.

[12] M. D. Powell et al. Reducing leakage in a
high-performance deep-submicron instruction cache.
IEEE Transactions on VLSI, 9(1), February 2001.

[13] W. Zhang et al. Compiler-directed instruction cache
leakage optimization. In Proc. the 35th Annual
International Symposium on Microarchitecture,
November 2002.

[14] H. Zhou et al. Adaptive mode control: a static
power-efficient cache design. In Proc. the 2001
International Conference on Parallel Architectures and
Compilation Techniques, September 2001.

407

	Main Page
	ISLPED'03
	Front Matter
	Table of Contents
	Author Index

