
Interprocedural Optimizations for Improving Data Cache
Performance of Array-Intensive Embedded Applications

W. Zhang, G. Chen, M. Kandemir
CSE Department

The Pennsylvania State University
University Park, PA 16802, USA

fwzhang,gchen,kandemirgcse.psu.edu

M. Karakoy
Department of Computing,

Imperial College,
London, SW7 2AZ, UK

m.karakoy@ic.ac.uk

ABSTRACT
As datasets processed by embedded processors increase in size and
complexity, the management of higher levels of memory hierarchy
(e.g., caches) is becoming an important issue. A major limitation
of most of the cache locality optimization techniques proposed by
previous research is that they handle a single procedure at a time.
This prevents compilers from capturing the data access interac-
tions between procedures and may result in poor performance. In
this paper, we look at loop and data transformations from a differ-
ent angle and use them in an interprocedural optimization frame-
work. Employing the call graph representation of a given appli-
cation, the proposed technique visits each node of this graph twice
and uses loop and data transformations in a systematic way for op-
timizing array layouts whole program wide. Our experimental re-
sults show that this interprocedural locality optimization strategy
is much more effective than the previous locality-based techniques
that handle each procedure in isolation.

Categories and Subject Descriptors
B.3.2 [Hardware]: Design Styles—Cache memories; D.m [Software]:
MISCELLANEOUS

General Terms
Algorithms, Performance

Keywords
Cache, Locality, Embedded System

1. INTRODUCTION
Many previously-proposed compiler-based techniques to data lo-

cality focus on a single procedure at a time. While this makes im-
plementation of these techniques simple to manage, it also entails
a performance penalty when arrays are shared between procedures.
Since theseintraprocedural techniques optimize each procedure
in isolation, data sharing between procedures cannot be captured.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003,June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

As a result, important optimization opportunities might be missed.
While it is possible to partly capture the impact of interprocedural
data sharings by making conservative assumptions across proce-
dure boundaries, in most cases such assumptions are not accurate
enough to handle powerful optimizations (especially, those target-
ing loop-level parallelism and data locality).

To demonstrate how an interprocedural optimization can help to
improve performance, we consider the program fragment shown in
Figure 1. In this fragment, the main procedure (main()) updates
an array and then passes it to a subroutine namedProc() . Sup-
pose that we want to determine the most suitable memory layout
for arrayX. If one considers only the main procedure, a row-major
memory layout seems to be the best alternative (as the array is ac-
cessed in a row-by-row fashion). However, if we also consider the
access pattern inProc() , we can see that a column-major mem-
ory layout is better alternative as there are four column-by-column
accesses to the formal parameterY (which corresponds to the ac-
tual parameterX). This small example shows that interprocedural
analysis can help the compiler select better optimization strategy
(in this case, a better memory layout) than a pure intraprocedural
analysis. Note that if an (alternative) approach analyzes both the
main procedure andProc() separately (i.e., without seeing the
other procedure), it can select a column-major layout inProc()
and a row-major layout in the main procedure. Consequently, a
(dynamic) layout transformation might be required between these
two procedures. An interprocedural optimization strategy can, on
the other hand, see the big picture and select the most suitable
(program-wide) memory layout without resorting to dynamic lay-
out transformation.

In optimizing data cache behavior of array-intensive applica-
tions, two different techniques have emerged. The first technique,
called loop transformations, focus on loop nests and restructures
them for data locality (e.g., [10, 8, 2]). The second technique,
called data transformations, focus on memory space (instead of it-
eration space) and determines the most suitable memory layouts for
multi-dimensional arrays (e.g., [7, 2]). There also exist integrated
techniques (e.g., [9, 5]) that combine loop and data transformations
in a unified setting. However,none of these previous studies has
focused on inter-procedural locality optimization problem.In this
paper, we look at loop and data transformations from a different
angle and use them in aninterprocedural optimization framework.
Employing the call graph representation [11] of a given applica-
tion, the proposed technique visits each node of this graph twice
and uses loop and data transformations in a systematic way for opti-
mizing array layouts whole program wide. Our application domain
is array intensive benchmarks that are used frequently in embedded
image/video applications.

To test the effectiveness of our approach, we implemented it in
a source-to-source translator and applied it to six array-intensive

50.4

887

main()
{

for i = 1, N
for j = 1, N

X[i][j] = ...
...
call Proc(X,...)
...

}

Proc(Y,...)
{

...
for j = 2, N-1

for i = 2, N-1
k += (Y[i][j-1]+Y[i][j+1]

+Y[i-1][j]+Y[i+1][j])/4.0
...

}

Figure 1: A program fragment that can benefit from interpro-
cedural locality optimization.

embedded applications. The experimental results presented in this
paper indicate that our interprocedural locality optimization strat-
egy improves the performance of array-intensive applications sig-
nificantly. The results also show that the interprocedural optimiza-
tion is much more effective than the previous locality-based tech-
niques that handle each procedure in isolation. Based on these re-
sults, we strongly encourage compiler writers for embedded sys-
tems to incorporate interprocedural transformations to their suite
of optimizations. While a previous study [6] has also considered
inter-procedural transformations for optimizing locality, there are
several important differences between our approach and that work.
First, the problem formulations are different. The mentioned paper
adopts a graph-based approach based on ”maximum-branching”
(even working within a procedure), whereas our approach does not
use a graph representation. Second, the approach used in [6] is en-
tirely static; while the approach presented in this work can make
use of a dynamic strategy as well (where the data layouts are trans-
formed between the procedures during the course of execution).
Third, these two techniques have been evaluated in different do-
mains. The work in [6] targets scientific codes while our approach
focuses on embedded applications. While the inter-procedural code
analysis and optimization problem, itself, is not novel (e.g., see
[11] and the references therein), its application to cache locality
optimization of array-intensive applications has not taken much at-
tention from the previous research.

The rest of this paper is organized as follows. Section 2 revises
the call graph representation and gives a summary of our overall
optimization strategy. It also gives background on representation
of affine programs. Section 3 explains how locality constraints are
computed. Section 4 presents the bottom-up phase of our call graph
analysis. Section 5 explains how program-wide locality constraints
are solved. Section 6 presents the top-down phase, focusing in par-
ticular on how loop transformations can be exploited for satisfying
the inherited memory layouts. Section 7 discusses how our ap-
proach can be extended to accommodate dynamic layout transfor-
mations. Section 8 gives details of our implementation and presents
experimental data. Finally, Section 9 summarizes our major con-
clusions.

2. PROGRAM REPRESENTATION AND
OVERALL STRATEGY

A call graph is a directed graph,G = (V;E). The finite set
of nodes,V , consists of the procedures that may be called in the

program. For any two procedures (nodes)f andg in V if there is
a potential call tog by f then the (directed) edge(f; g) appears on
the graph. The complete collection of directed edges is denoted by
E. The root node of a call graphG = (V;E) is a procedure which
is not called by any other procedure. This node corresponds to the
main procedure in a given C program. While, if desired, the edges
of the call graph can be marked using information about parameters
passed/results returned, in this study, it is sufficient to work with a
plane (unmarked) call graph.

Our overall approach to interprocedural analysis for data local-
ity works as follows. First, we build locality constraints for each
procedure in the application. These locality constraints capture a
set of equations such that solving these equations gives us suitable
memory layouts for the arrays referenced in the procedure. How-
ever, while an intraprocedural optimization strategy would solve
these constraints and determine memory layouts, our interprocedu-
ral strategy propagates these constraints to the parent procedures
in the call graph. In this way, the constraints are propagated up
in the call graph until they reach the root node (which represents
the main procedure in the application). This constraint propagation
step is referred to as the bottom-up phase in the rest of this paper.
The locality constraints are then solved at the root and the arrays
are assigned memory layouts. After this step, a top-down phase
starts and the memory layouts found are propagated down to the
children nodes. In receiving the memory layouts from its parents,
a node (procedure) is optimized using loop transformations. The
following sections give details of this interprocedural strategy and
presents experimental data.

We say a temporal reuse exists when two array references access
the same data element. Spatial reuse, on the other hand, occurs
when two references access the same transfer unit such as a cache
line [11]. When a loop nest exploits temporal (spatial) reuse, we
say that the associated references exhibit temporal (spatial) locality.
It should be noted that reuse doesnot necessarily mean locality
[8]. To illustrate the concepts of reuse and locality, we consider the
following example.

for i = 1, N
for j = 1, N

X[i] = Y[j] + Z[i][j] + T[j][i]

Assuming a column-major layout as the default, in this loop nest,
arrayX has temporal reuse in thej loop, and spatial reuse in thei
loop. ArrayY has temporal reuse in thei loop, and spatial reuse
in the j loop. ArraysZ andT, on the other hand, have only spatial
reuses in thei and j loops, respectively; they do not exhibit any
temporal reuse as each element ofZ andT is accessed only once
(during the execution of the nest). Assuming thatN is very large,
only the reuses associated with thej loop exhibit locality [10].
As a result, the exploitable reuses (that is, the reuses that can be
converted into locality) for this nest are the temporal reuse forX,
and the spatial reuses forY andT.

Note that if arrayZ is stored in row-major order instead of the
default column-major order, then spatial reuse for it can also be ex-
ploited in the innermost loop. In this paper, we address the problem
of selecting appropriate memory layouts for multi-dimensional ar-
rays as well as suitable iteration space transformations in a global
(application-wide) manner. To do this, we employ an interprocedu-
ral analysis framework.

The optimization strategy presented in this paper relies on results
from the loop transformation theory [8, 11, 10]. Specifically, we fo-
cus on loops where both array subscripts and loop bounds are affine
functions of enclosing loop indices and loop-invariant constants. A
reference to an arrayX is represented byRx

~I + ~rx; whereRx is
a linear transformation matrix called the array reference (access)
matrix, ~rx is the offset (constant) vector [10];~I is a column vector,
called the iteration vector, whose elements written left to right rep-

888

resent the loop indicesi1, i2, � � � , in, starting from the outermost
loop to the innermost loop in the nest. For the rest of the paper, a
reference to arrayX will be denoted by a pair(Rx; ~rx). To clarify
these concepts, we consider the following loop nest.

for i = 1, N
for j = 2, N/2

for k = 1, N/2
X[i][j] = Y[j+k][i][j-1] + 2

The reference matrices and offset vectors are as follows:

Rx =

�
1 0 0
0 1 0

�
~rx =

�
0
0

�

and

Ry =

0
@ 0 1 1

1 0 0
0 1 0

1
A ~ry =

0
@ 0

0
�1

1
A :

Linear mappings between iteration spaces of loop nests can be
modeled by square, non-singular (loop transformation) matrices [8,
11]. If ~I is the original iteration vector, after applying linear trans-
formation (represented by matrixT), the new iteration vector is
~I 0 = T ~I. Similarly if ~d is the distance (resp. direction) vector, on
applyingT , T ~d is the new distance (resp. direction) vector [11].
Since~I = T�1~I 0, after the transformationT , RxT

�1 is the new
(transformed) array reference matrix [11].

Similarly, a data transformation for an arrayX is expressed us-
ing a data transformation matrixMx. Applying a data transforma-
tion transforms a reference(Rx; ~rx) to (MxRx;Mx ~rx). It also
modifies the corresponding array declaration. More details on data
transformations and low-level code generation issues can be found
elsewhere [7]. In this work, we assume that the memory layout for
anh-dimensional array can be in one ofh! forms, each correspond-
ing to the linear layout of data in memory by a nested traversal
of the (dimension) axes in some predetermined order. The inner-
most axis is called thefastest-changing dimension. As an exam-
ple, for a row-major memory layout of a two-dimensional array,
the second dimension is the fastest changing dimension. Since in
many array-intensive embedded computations, the arrays are very
large, it might be difficult to exploit data locality beyond the fastest
changing dimension. Even though the order of other dimensions
may impact the performance, their effect is of secondary impor-
tance.

3. LOCALITY CONSTRAINT GENERATION
In this section, we discuss how we generate locality constraints

for each procedure in the program. Each local constraint has two
components: aweightand anequation. The weight indicates how
important to satisfy the corresponding equation. The equation com-
ponent, on the other hand, is obtained using the data access pat-
tern (in the nested loop) and the data transformation required. Let
(Rx; ~rx) be a reference to an arrayX in a given nest whose itera-
tion vector is~I. In order to improve the cache behavior of accesses
through this reference, we need to select a data transformation ma-
trix Mx such that the last column ofMxRx

~I +Mx ~rx should con-
tain the index of the innermost loop with a small coefficient and this
loop index should not appear in any other column. In other words,
the following constraint should be satisfied:

MxRx =

0
BBB@

u u u ::: u 0
u u u ::: u 0
u u u ::: u 0
::: ::: ::: ::: ::: :::
u u u ::: u c

1
CCCA ; (1)

main()

p

p’

(a)

main()

(b)

p’ p’’

p* p**

(d)

p

p’ p’’

(c)

Figure 2: (a) Bottom-up phase. (b) Top-down phase. (c) A call
graph fragment that contains a node with multiple parents. (d)
Applying procedure cloning to the fragment in (c).

whereu denotes adon’t careentry andc is a small value (prefer-
ably 1).1 Note that it may or may not be possible to find such an
Mx matrix. Note also that such a constraint can be written for each
array reference occurring in each nest in the procedure. Each such
constraint is referred to as thelocality constraintas it imposes a
condition that needs to be satisfied by the data transformation ma-
trix Mx if we are to optimize the locality behavior of the corre-
sponding reference.

Let LCi;j;k;p denote the locality constraint due to thekth ref-
erence to arrayXj in nesti of procedurep. The set of locality
constraints of procedurep is denoted by

LC(p) =
[
i

[
j

[
k

LCi;j;k;p:

That is, it contains all constraints due to all arrays, all references,
and all loop nests.

4. BOTTOM-UP PHASE:
CONSTRAINT PROPAGATION

In this section, we explain how locality constraints are propa-
gated up in the call graph. Letp be a procedure andp0 be its par-
ent. In processing the procedurep (i.e., in optimizing it), we build
LC(p) and propagate asubsetof it to p0. This subset excludes the
constraintsLCi;j;k;p such thatXj is a local array ofp. There is
no need to propagate these constraints as the corresponding layouts
(i.e., the layouts of the local arrays) are important only forp. In
this way, for each node in the call graph, a subset of the local con-
straints built for the corresponding procedure is propagated up to
its parent(s). This process is depicted in Figure 2(a) for an example
call graph that contains five procedures. At the end of this process,
at the root (that is, the main procedure), we have all constraints that
involve non-local arrays coming from all procedures in the appli-
cation. We add to this set all locality constraints of the root itself,

1It is known from data transformation theory [7] that if a reference orig-
inally does not exhibit temporal reuse, it is not possible to transform it to
obtain temporal reuse using data transformations alone. Therefore, if the
original matrix entry in place ofc (that is, the last row-last column element)
is not 0 (i.e., it does not exhibit temporal reuse), we cannot select aMx

such thatc becomes 0.

889

and obtain a (potentially) large set of constraints.
An important issue in propagating constraints is to re-map the

locality constraints in procedurep to constraints that can be used in
conjunction with the constraints inp0 (the parent ofp). For exam-
ple, suppose that the procedurep has two references,Y [i][j] and
Z[j][i], in a nest with loopsi (the outer) andj (the inner). So, the
locality constraints for this procedure (which has only two formal
parameters:Y andZ) are:

My

�
1 0
0 1

�
=

�
u 0
u 1

�
and Mz

�
0 1
1 0

�
=

�
u 0
u 1

�
:

Note that if these constraints are considered as they are, it is easy
to find suitable data transformation matricesMy andMz. How-
ever, in interprocedural optimization, as discussed earlier, we do
not solve these constraints directly; instead, we propagate them up
in the call graph. Assume now that a procedurep0 calls p using
call p(X,X) . As a result, the locality constraints above should
be re-written in terms ofX (i.e., they need to be re-mapped). That
is, after the propagation, we re-write the constraints as:

Mx

�
1 0
0 1

�
=

�
u 0
u 1

�
and Mx

�
0 1
1 0

�
=

�
u 0
u 1

�
:

Now, solvingMx from these constraints is more difficult asMx

is involved in both the equalities. Intuitively, this is because the
aliasing betweenY and Z (introduced by the call top) imposes
more conditions on the data transformation to be found. This small
example demonstrates how the locality constraints are propagated
up in the call graph, and how the parameter arrays are translated
after the propagation.

5. DETERMINING MEMORY LAYOUTS
It should be stressed that the locality constraints collected at the

root should be solved for our unknowns; that is, the data transfor-
mation matrices. Obviously, it is possible that we may not have a
solution for this large set of equalities. If this is the case, in order
to find a solution, we need to sacrifice some constraints. In other
words, we need to drop some constraints from further considera-
tion, and try to solve the resulting (reduced) system of constraints
again. This constraint elimination continues until we find a solu-
tion (i.e., determine all data transformation matrices).2 To deter-
mine which constraints to drop, we use the weight components of
the constraints. More specifically, we order the locality constraints
according to their weights, and at each step we eliminate the con-
straint with the minimum weight (until the resulting system has a
solution).

It should be noted that solving this set of constraints has addi-
tional complexities. Maybe the most challenging of these is the
fact that the data transformation matrices should be non-singular.
Therefore, in building a data transformation matrix, we should be
careful. Note that each locality constraint can be expressed in terms
of rows of the data transformation matrix. For example, Equation
(1) can be re-written (for at-dimensional array in ann-deep nest)
as ~m1x

T ~rnx = 0, ~m2x
T ~rnx = 0, ..., ~m(t�1)x

T ~rnx = 0, and
~mtx

T ~rnx = c, where ~mix
T is theith row ofMx and ~rnx is the

last column ofRx. To ensure non-singularity, we should be careful
in selecting the rows ~m1x

T , ~m2x
T , ..., ~mtx

T . More specifically,
these rows should be selected in such a way that they are linearly
independent. To achieve this, in determining each row, we check
whether this row is independent of the rows that have already been

2Note, however, that we only determine the transformation matrices for the
arrays whose constraints are propagated to the root. The remaining data
transformations (those that come from local arrays) are determined during
the top-down phase when the associated procedures are visited.

determined. Since data transformations do not affect data depen-
dences, we do not need to check data dependences. Once the data
transformation matrices have been determined, the output code can
be generated using the approach proposed by Leung and Zahorjan
[7].

6. TOP-DOWN PHASE: APPLYING LOOP
TRANSFORMATIONS

After determining the memory layouts for the arrays, the next
step (called the top-down phase) involves propagating down these
layouts to the children nodes (see Figure 2(b) for an example case
that consists of five procedures includingmain()). Let us as-
sume for now that each procedure has a single parent (we will relax
this requirement shortly). In receiving (inheriting) memory layouts
from the parent of a procedure, we perform the following two steps
(for the procedure in question):

� Apply loop transformations to satisfy these (inherited) lay-
outs as much as possible.

� Determine memory layouts of the local arrays in the proce-
dure.

Satisfying memory layouts through loop transformations means se-
lecting a suitable loop transformation for each nest such that the
nest exhibits good locality with the inherited layouts. Recall that
a loop transformationT (whose inverse isT�1) transforms the
reference(Rx; ~rx) to (RxT

�1; ~rx). If, however, the reference in
question is first transformed using the data transformation matrix
Mx, then, after the loop transformation, the reference becomes
(MxRxT

�1;Mx ~rx). Since, at this point,Mx, Rx, and ~rx are
known (recall thatMx represents the data transformation that gives
the inherited layout), we can determineT�1 for the best locality.

Specifically, we should select aT�1 such that

MxRxT
�1 =

0
BBB@

u u u ::: u 0
u u u ::: u 0
u u u ::: u 0
::: ::: ::: ::: ::: :::
u u u ::: u c

1
CCCA (2)

is satisfied. As before, here,u denotes adon’t careentry andc is a
small value. Note, however, that unlike Equation (1), here we have
two different choices forc. If we are able to select aT�1 such thatc
is 0, then this means we obtain temporal locality. On the other hand,
if we can only find aT�1 such thatc is a small non-zero constant
(preferably 1), we have spatial locality. Obviously, as in the case of
data transformations, it may or may not be possible to find such aT
(or T�1) matrix. Moreover, a suitable loop transformation matrix
should satisfy multiple (array) references in the nest (possibly to
different arrays).

Let us focus now on a given nest in a procedurep. Assume that
this nest accessess arrays,s0 of which have already-determined
memory layouts (i.e., non-local arrays). So, in the first step, we
select aT�1 such that all references to these arrays are optimized
(as explained above) either for temporal locality (c = 0) or spatial
locality (c = 1). Once such a loop transformation is found for each
nest, we build a second set of locality constraints to determine the
memory layouts of thes � s0 arrays local to procedurep. More
specifically, we need to find a data transformation matrixMx0 for
each such local arrayX 0 so thatMx0Rx0T�1 exhibits good local-
ity. Note that, here,Rx0 andT�1 are known, andMx0 needs to be
determined.

When a given procedure has two or more parents, the top-down
phase becomes more difficult to handle. This is because differ-
ent parents can require different memory layouts (at the end of the
bottom-up phase) for the same array. If this array is also accessed

890

in the current procedure being optimized, then we need to decide
which layout to consider in selecting loop transformations for the
said procedure. Figure 2(c) presents an example call graph frag-
ment depicting a procedure (p) with two parents (p0 andp00). If,
after the bottom-up phase,p0 andp00 demand, say, column-major
and row-major layouts, respectively, for the same array, we need to
resolve this conflict in optimizingp.

There are at least two ways of resolving such a conflict. The
first way exploits the weight components of the locality constraints
as follows. It first calculates anarray weight, which is simply
the sum of the weights of the all constraints that involve the ar-
ray in question. Then, in optimizing procedurep (during the top-
down phase), we consider the layout of the array (instance) with
the largest weight. In other words, depending on the weights (of
the same array) inp0 andp00, we select the memory layout to use in
determining the loop transformations inp.

The second way of resolving such a conflict is to employ a com-
piler technique calledprocedure cloning.Cloning generates a new
version of a procedure for specific interprocedural information (see
[3] for more information on cloning). In the context of this pa-
per, we can create different versions of a given procedure whenever
multiple memory layouts (for the same array)reachthe same pro-
cedure. For the call graph example in Figure 2(c), a typical cloning
(assumingp0 andp00 demand different layouts for the same array)
creates two versions ofp (denotedp� andp � � in Figure 2(d)), one
for each layout. That is, the loop transformations inp� are applied
assuming a column-major memory layout for the array while they
are applied inp � � under a row-major memory layout. It should be
stressed that procedure cloning increases the code space require-
ments (which is not desirable in embedded systems). So, in this
paper, we adopted the first alternative.

7. DYNAMIC LAYOUT OPTIMIZATIONS
So far, we have assumed that each array will be assigned a sin-

gle layout for its entire lifetime. In some cases, we might be able
to achieve better performance by relaxing this constraint. As an
example, consider the call graph in Figure 3. Let us focus on a
single array and assume that each procedure demands the layouts
(for that array) shown in the figure (RM means row-major and CM
means column-major). One alternative for optimizing for this array
is to select a row-major layout and then use loop transformations in
three procedures that demand column-major layout. Such an opti-
mization strategy may or may not be feasible depending on the data
dependences in these procedures. Recall that loop transformations
are bound by data dependences; that is, they must respect all data
dependences in the nest.

An alternative optimization strategy is to use dynamic layout
transformations; i.e., modifying the memory layout during the course
of execution. Since bothProc2() andProc3() demand column-
major layout, a good point for converting layout (of the array in
question) from row-major to column-major is at the beginning of
Proc2() . Then,Proc2() andProc3() can execute their codes
with the column-major layout, and just before returning toProc1() ,
we can transform the layout back to row-major. Obviously, there
are many issues involved in implementing dynamic layout trans-
formations. Maybe the most important issue is to decide whether
to use dynamic transformations at all. Note that dynamic layout
transformations are implemented by inserting extra code in the ap-
plication to convert layouts (to copy the transpose of the origi-
nal array into another). This entails extra code space, extra data
space, and execution cycles. Therefore, a careful cost/benefit anal-
ysis is required. An equally important issue is to determine (in the
call graph) the point at which to transform the layout. Yet a third
issue is to decide whether to transform multiple arrays together.
This might be useful if multiple arrays demand the same type of

Proc1()

Proc2()

Proc3()

main()
RM

RM RM

RM RMCM
CM

CM

Figure 3: An example call graph with nodes marked with the
layouts they demand.

transformation. Answering these questions is beyond the scope
of this paper; however, for comparison purposes, in the next sec-
tion, we also report experimental results obtained using dynamic
transformations. Our current approach does not handle recursive
procedures or procedures that are called indirectly (e.g., by passing
procedure-pointers); however, we plan to address these issues in a
future study.

8. EXPERIMENTS
To test the effectiveness of our approach, we used six array-

intensive embedded applications.Vcap is a video capture and pro-
cessing application. It generates video streams of different picture
sizes, color spaces, and frame rates.TMis an image conversion pro-
gram that converts images from TIFF to MODCA or vice versa.IA
is an image understanding code that performs target detection and
classification.H.263 is a key routine from a simple H.263 decoder
implementation.Segt is an image processing application that per-
forms segmentation.Face is a face recognition algorithm. The
input sets of these applications range from 211KB to 678KB. Their
original execution times range from 57.7 seconds to 231.3 seconds.
Our base cache architecture is 4KB, directed-mapped with a line
size of 32 bytes. We use Dinero [4] to collect cache hit/miss statis-
tics and then convert them to cycles. We assume a cache hit latency
of 1 cycle and a miss latency of 60 cycles. All results presented
below are percentage (execution time) improvements over the orig-
inal (unoptimized) codes.

Figure 4 shows the performance (execution time) improvements
over the original codes. The cache behavior trends (i.e., hit/miss
behavior) are very similar to execution time trends, and thus omit-
ted due to lack of space.Loop corresponds to a version that uses
aggressive loop transformations for optimizing locality. Specifi-
cally, it uses the technique explained in Li’s thesis [8]. This tech-
nique employs both linear transformations (e.g., loop permutation
and scaling) and nonlinear transformations such as iteration space
tiling. Data is an optimization strategy that employs only mem-
ory layout optimizations. It uses the approach proposed by Le-
ung and Zahorjan [7].Loop+Data is a technique that combines
both loop and data transformations in a unified framework. The
specific approach used in this paper is similar to that proposed in
[5]. Finally, Interprocedural is the optimization technique
discussed in this paper. Note that none of these versions employs
dynamic layout transformation. All of these versions have been
implemented using the SUIF compiler infrastructure from Stanford
University [1]. From the results in Figure 4, we observe that in-
terprocedural optimization is very successful and five of our six
applications benefit from it. The average improvements due to

891

Figure 4: Percentage improvements.

Figure 5: Impact of cache capacity.

Loop , Data , Loop+Data , and Interprocedural versions
are 15.8%, 18.2%, 24.9%, and 34.6%, respectively. We also see
from these results that neitherLoop norData dominates the other.
It should also be mentioned thatLoop+Data used in our experi-
ments represents the state-of-the-art in (intraprocedural) cache lo-
cality optimization for array intensive codes.

To see the impact of the cache capacity on performance improve-
ments, we performed another set of experiments where we changed
the cache size from 1KB to 64KB. The results given in Figure 5
represent the averages across all benchmarks and indicate that the
Inter procedural version outperforms the other versions in
all cache sizes. While, as expected, the savings due to our approach
diminish as we increase the cache size (this is because the original
code captures more locality with a larger cache size and performs
better), we observe that even with a 64KB cache we obtain more
than 15% improvement.

In our next set of experiments, we studied the impact of dynamic
layout transformations on performance. We conducted experiments

Figure 6: Percentage improvements.

with four different versions and present the improvements in ex-
ecution times in Figure 6.Inter procedural is the version
discussed in this paper.Dynamic is a dynamic layout optimiza-
tion strategy that does not perform any interprocedural analysis.
Dynamic- Inter procedural (I) is a version that com-
bines interprocedural optimization with dynamic layouts. It uses
dynamic layouts aggressively; that is, whenever two procedures
(neighboring in the call graph) demand different layouts for the
same array, a dynamic layout transformation is performed when
transitioning from the caller to the callee. Finally,Dynamic-
Inter procedural (II) is similar toDynamic- Inter
procedural (I) except that it uses dynamic layout transfor-
mations more carefully. Specifically, it does not use dynamic lay-
outs unless two successively activated procedures use the trans-
formed layout before it is transformed to back to its original form.
BothDynamic- Interprocedural (I) andDynamic-
Inter procedural (II) are hand optimizations. The per-
centage improvements (i.e., across all six benchmarks) forInter
procedural , Dynamic , Dynamic- Inter procedural
(I) , and Dynamic- Interprocedural (II) versions are
34.6%, 26.0%, 21.9%, and 40.4%, respectively. These results re-
veal that it is not a good idea to use dynamic layouts indiscrimi-
nately. They also show that employing dynamic layout optimiza-
tions without interprocedural analysis does not generate the best
results.

9. CONCLUDING REMARKS
One of the main problems in extracting maximum performance

out of current embedded architectures is poor data cache locality.
Due to cost and space concerns, increasing cache capacity arbitrar-
ily is not a long-term solution. So, software solutions are a promis-
ing alternative. This paper extends the state-of-the-art in cache
locality optimization by showing how locality can be optimized
interprocedurally. Our results show that the interprocedural opti-
mization is much more effective than the previous locality-based
techniques that handle each procedure in isolation, and that proper
use of dynamic optimization makes a difference.

10. REFERENCES
[1] S. P. Amarasinghe et al. The SUIF compiler for scalable parallel

machines. InProc. the Seventh SIAM Conf. on Parallel Proc. for
Scientific Computing,February, 1995.

[2] F. Catthoor et al.Custom Memory Management Methodology –
Exploration of Memory Organization for Embedded Multimedia
System Design.Kluwer Academic Publishers, 1998.

[3] K. D. Cooper et al. A methodology for procedure cloning.Computer
Languages,19(2), April 1993, pages 105–118.

[4] Dinero IV Trace-Driven Uniprocessor Cache Simulator.
http://www.cs.wisc.edu/�markhill/DineroIV/

[5] M. Kandemir et al. Improving locality using loop and data
transformations in an integrated framework. InProc. International
Symposium on Microarchitecture,Dallas, TX, December, 1998.

[6] M. Kandemir et al. A framework for interprocedural locality
optimization. InProc. Intl. Conference on Parallel Processing,Aizu,
Japan, 1999.

[7] S.-T. Leung and J. Zahorjan. Optimizing data locality by array
restructuring.Technical Report TR 95–09–01,Dept. of Computer
Science and Engineering, University of Washington, September
1995.

[8] W. Li. Compiling for NUMA Parallel Machines. Ph.D. Thesis,
Cornell University, Ithaca, New York, 1993.

[9] M. O’Boyle and P. Knijnenburg. Non-singular data transformations:
Definition, validity, applications. InProc. 6th Workshop on
Compilers for Parallel Computers, pages 287–297, Aachen,
Germany, 1996.

[10] M. Wolf and M. Lam. A data locality optimizing algorithm. InProc.
ACM Conf. Programming Language Design and Implementation,
June 1991.

[11] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Company, 1996.

892

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

