50.4

Interprocedural Optimizations for Improving Data Cache

Performance of Array-Intensive

W. Zhang, G. Chen, M. Kandemir
CSE Department
The Pennsylvania State University
University Park, PA 16802, USA

{wzhang,gchen,kandemirjcse.psu.edu

ABSTRACT

As datasets processed by embedded processors increase in size al
complexity, the management of higher levels of memory hierarchy
(e.g., caches) is becoming an important issue. A major limitation
of most of the cache locality optimization techniques proposed by
previous research is that they handle a single procedure at a time.
This prevents compilers from capturing the data access interac-
tions between procedures and may result in poor performance. In
this paper, we look at loop and data transformations from a differ-
ent angle and use them in an interprocedural optimization frame-
work. Employing the call graph representation of a given appli-
cation, the proposed technique visits each node of this graph twice
and uses loop and data transformations in a systematic way for op-
timizing array layouts whole program wide. Our experimental re-
sults show that this interprocedural locality optimization strategy
is much more effective than the previous locality-based techniques
that handle each procedure in isolation.

Categories and Subject Descriptors

B.3.2 Hardware]: Design Styles—€ache memorie®.m [Software]:
MISCELLANEOUS

General Terms
Algorithms, Performance

Keywords
Cache, Locality, Embedded System

1. INTRODUCTION

Many previously-proposed compiler-based techniques to data lo-

Embedded Applications

M. Karakoy
Department of Computing,
Imperial College,
London, SW7 2AZ, UK
m.karakoy@ic.ac.uk

As a result, important optimization opportunities might be missed.
hile it is possible to partly capture the impact of interprocedural
ata sharings by making conservative assumptions across proce-
dure boundaries, in most cases such assumptions are not accurate
enough to handle powerful optimizations (especially, those target-
ing loop-level parallelism and data locality).

To demonstrate how an interprocedural optimization can help to
improve performance, we consider the program fragment shown in
Figure 1. In this fragment, the main proceduneafn()) updates
an array and then passes it to a subroutine nafred() . Sup-
pose that we want to determine the most suitable memory layout
for arrayX. If one considers only the main procedure, a row-major
memory layout seems to be the best alternative (as the array is ac-
cessed in a row-by-row fashion). However, if we also consider the
access pattern iRroc() , we can see that a column-major mem-
ory layout is better alternative as there are four column-by-column
accesses to the formal parameYefwhich corresponds to the ac-
tual paramete). This small example shows that interprocedural
analysis can help the compiler select better optimization strategy
(in this case, a better memory layout) than a pure intraprocedural
analysis. Note that if an (alternative) approach analyzes both the
main procedure an&roc() separately (i.e., without seeing the
other procedure), it can select a column-major layouriiac()
and a row-major layout in the main procedure. Consequently, a
(dynamic) layout transformation might be required between these
two procedures. An interprocedural optimization strategy can, on
the other hand, see the big picture and select the most suitable
(program-wide) memory layout without resorting to dynamic lay-
out transformation.

In optimizing data cache behavior of array-intensive applica-
tions, two different techniques have emerged. The first technique,
called loop transformations, focus on loop nests and restructures
them for data locality (e.g., [10, 8, 2]). The second technique,
called data transformations, focus on memory space (instead of it-

cality focus on a single procedure at a time. While this makes im- eration space) and determines the most suitable memory layouts for
plementation of these techniques simple to manage, it also entailsmyti-dimensional arrays (e.g., [7, 2]). There also exist integrated
a performance penalty when arrays are shared between proceduregechniques (e.g., [9, 5]) that combine loop and data transformations

Since thesantraprocedural techniques optimize each procedure
in isolation, data sharing between procedures cannot be captured

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2003,June 2—6, 2003, Anaheim, California, USA.

Copyright 2003 ACM 1-58113-688-9/03/0006$5.00.

887

in a unified setting. Howevenone of these previous studies has
focused on inter-procedural locality optimization problem.this
paper, we look at loop and data transformations from a different
angle and use them in amterprocedural optimization framework.
Employing the call graph representation [11] of a given applica-
tion, the proposed technique visits each node of this graph twice
and uses loop and data transformations in a systematic way for opti-
mizing array layouts whole program wide. Our application domain
is array intensive benchmarks that are used frequently in embedded
imagel/video applications.

To test the effectiveness of our approach, we implemented it in
a source-to-source translator and applied it to six array-intensive

program. For any two procedures (nod¢sandg in V' if there is
a potential call tgy by f then the (directed) eddd, g) appears on
for i =1, N the graph. The complete collection of directed edges is denoted by
j=1 N E. The root node of a call grapl = (V, E) is a procedure which
X = . is not called by any other procedure. This node corresponds to the
call Proc(X,...) main procedure in a given C program. While, if desired, the edges
of the call graph can be marked using information about parameters
} passed/results returned, in this study, it is sufficient to work with a
Proc(Y,..) plane (unmarked) call graph. '
Our overall approach to interprocedural analysis for data local-
. ity works as follows. First, we build locality constraints for each
forf ér:| 2 2’\"}\‘ 4 procedure in the application. These locality constraints capture a
K += (YOII-L+ Y] set of equations such that solving these equations gives us suitable
+Y[i-1][]+Y[i+1][j])/4.0 memory layouts for the arrays referenced in the procedure. How-
ever, while an intraprocedural optimization strategy would solve
} these constraints and determine memory layouts, our interprocedu-
ral strategy propagates these constraints to the parent procedures
in the call graph. In this way, the constraints are propagated up
in the call graph until they reach the root node (which represents
the main procedure in the application). This constraint propagation
step is referred to as the bottom-up phase in the rest of this paper.
o) ~_The locality constraints are then solved at the root and the arrays
embedded applications. The experimental results presented in thisyre assigned memory layouts. After this step, a top-down phase
paper indicate that our interprocedural locality optimization strat- starts and the memory layouts found are propagated down to the
egy improves the performance of array-intensive applications sig- children nodes. In receiving the memory layouts from its parents,
nificantly. The results also show that the interprocedural optimiza- 3 node (procedure) is optimized using loop transformations. The
tion is much more effective than the previous locality-based tech- fo|lowing sections give details of this interprocedural strategy and
niques that handle each procedure in isolation. Based on these represents experimental data.
sults, we strongly encourage compiler writers for embedded sys- e say a temporal reuse exists when two array references access
tems to incorporate interprocedural transformations to their suite the same data element. Spatial reuse, on the other hand, occurs
of optimizations. While a previous study [6] has also considered when two references access the same transfer unit such as a cache
inter-prqcedural tra_nsformations for optimizing locality, there are |ine [11]. When a loop nest exploits temporal (spatial) reuse, we
several important differences between our approach and that work.say that the associated references exhibit temporal (spatial) locality.
Flrst, the problem formu|atI0nS are dlﬁerent. The mentloned papel’ It should be noted that reuse doest necessar”y mean |Oca|ity
adopts a graph-based approach based on "maximum-branching”g]. To illustrate the concepts of reuse and locality, we consider the
(even working within a procedure), whereas our approach does notfg|lowing example.
use a graph representation. Second, the approach used in [6] is en-
tirely static; while the approach presented in this work can make forfi =LN
use of a dynamic strategy as well (where the data layouts are trans- O'Q[i]‘zlyg]‘ + Z[00 + T
formed between the procedures during the course of execution).
Third, these two techniques have been evaluated in different do- Assuming a column-major layout as the default, in this loop nest,
mains. The work in [6] targets scientific codes while our approach arrayX has temporal reuse in theloop, and spatial reuse in the
focuses on embedded applications. While the inter-procedural codeloop. ArrayY has temporal reuse in theloop, and spatial reuse
analysis and optimization problem, itself, is not novel (e.g., see inthej loop. ArraysZ andT, on the other hand, have only spatial
[11] and the references therein), its application to cache locality reuses in thé andj loops, respectively; they do not exhibit any
optimization of array-intensive applications has not taken much at- temporal reuse as each elemenZoéndT is accessed only once
tention from the previous research. (during the execution of the nest). Assuming th&is very large,
The rest of this paper is organized as follows. Section 2 revises only the reuses associated with thdoop exhibit locality [10].
the call graph representation and gives a summary of our overall As a result, the exploitable reuses (that is, the reuses that can be
optimization strategy. It also gives background on representation converted into locality) for this nest are the temporal reusexXfor
of affine programs. Section 3 explains how locality constraints are and the spatial reuses fgrandT.
computed. Section 4 presents the bottom-up phase of our call graph Note that if arrayZ is stored in row-major order instead of the
analysis. Section 5 explains how program-wide locality constraints default column-major order, then spatial reuse for it can also be ex-
are solved. Section 6 presents the top-down phase, focusing in parploited in the innermost loop. In this paper, we address the problem
ticular on how loop transformations can be exploited for satisfying of selecting appropriate memory layouts for multi-dimensional ar-
the inherited memory layouts. Section 7 discusses how our ap-rays as well as suitable iteration space transformations in a global
proach can be extended to accommodate dynamic layout transfor-(application-wide) manner. To do this, we employ an interprocedu-
mations. Section 8 gives details of our implementation and presentsral analysis framework.
experimental data. Finally, Section 9 summarizes our major con- The optimization strategy presented in this paper relies on results
clusions. from the loop transformation theory [8, 11, 10]. Specifically, we fo-
cus on loops where both array subscripts and loop bounds are affine
functions of enclosing loop indices and loop-invariant constants. A

2. PROGRAM REPRESENTATION AND reference to an arra¥ is represented bﬁzf+ rz, WhereR, is

OVERALL STRATEGY a linear transformation matrix called the array reference (access)

A call graph is a directed grapl; = (V, E). The finite set matrix, 73 is the offset (constant) vector [1Q[is a column vector,
of nodes,V, consists of the procedures that may be called in the called the iteration vector, whose elements written left to right rep-

Figure 1: A program fragment that can benefit from interpro-
cedural locality optimization.

888

resent the loop indices, is, - - -, in, Starting from the outermost main() main()

loop to the innermost loop in the nest. For the rest of the paper, a
reference to arra)X will be denoted by a paifR., r;). To clarify
these concepts, we consider the following loop nest.

XG0 = YG+KIEG + 2 @) (b)

The reference matrices and offset vectors are as follows:

sz(é 0 g) r;=(8> b o
and \/ \ /

01 1 0 p P P
R,=| 10 0 m=| 0 |.
0 10 -1 (c) (d)

Linear mappings between iteration spaces of loop nests can be
modeled by square, non-singular (loop transformation) matrices [8,
11]. If Tisthe original iteration vector, after applying linear trans-
formation (represented by matrik), the new iteration vector is

I' = TT. Similarly if d is the distance (resp. direction) vector, on

applyingT', T'd is the new distance (resp. direction) vector [11]. whereu denotes alon't careentry andc is a small value (prefer-

Sincel = T~'I7, after the transformatio’, R, T~ is the new ably 1)} Note that it may or may not be possible to find such an

(transformed) array reference matrix [11]. M, matrix. Note also that such a constraint can be written for each
Similarly, a data transformation for an arrXyis expressed us- array reference occurring in each nest in the procedure. Each such

ing a data transformation matrid/,,. Applying a data transforma- constraint is referred to as thecality constraintas it imposes a

tion transforms a referendeR., rz) to (M. R., M.rz). It also condition that needs to be satisfied by the data transformation ma-

modifies the corresponding array declaration. More details on datatrix M, if we are to optimize the locality behavior of the corre-

transformations and low-level code generation issues can be foundsponding reference.

elsewhere [7]. In this work, we assume that the memory layout for Let LC; ; «,, denote the locality constraint due to théh ref-

anh-dimensional array can be in onefdfforms, each correspond- erence to arrayX; in nesti of procedurep. The set of locality

ing to the linear layout of data in memory by a nested traversal constraints of procedungis denoted by

of the (dimension) axes in some predetermined order. The inner-

most axis is called théastest-changing dimensiorAs an exam- o) = | JUUL k-

ple, for a row-major memory layout of a two-dimensional array, g ok

the second dimension is the fastest changing dimension. Since inThg; s, it contains all constraints due to all arrays, all references,

many array-intensive embedded computations, the arrays are veryynq ai loop nests.

large, it might be difficult to exploit data locality beyond the fastest

changing dimension. Even though the order of other dimensions

may impact the performance, their effect is of secondary impor- 4. BOTTOM-UP PHASE:

tance. CONSTRAINT PROPAGATION

In this section, we explain how locality constraints are propa-

3. LOCALITY CONSTRAINT GENERATION gated up in the call graph. Letbe a procedure angd be its par-

In this section, we discuss how we generate locality constraints ent. In processing the procedyséi.e., in optimizing it), we build
for each procedure in the program. Each local constraint has two LC(p) and propagate subse®f it to p’. This subset excludes the
components: aveightand anequation The weight indicates how constraintsLC; ; k., Such thatX; is a local array ofp. There is
important to satisfy the corresponding equation. The equation com- no need to propagate these constraints as the corresponding layouts
ponent, on the other hand, is obtained using the data access patfi.e., the layouts of the local arrays) are important onlygorin
tern (in the nested loop) and the data transformation required. Letthis way, for each node in the call graph, a subset of the local con-
(Rs,73) be a reference to an arr3§/in a given nest whose itera- straints built for the corresponding procedure is propagated up to
tion vector isf. In order to improve the cache behavior of accesses ItS parent(s). This process is depicted in Figure 2(a) for an example
through this reference, we need to select a data transformation ma<call graph that contains five procedures. At the end of this process,
trix M, such that the last column o, R, T + M, = should con- at the root (that is, the main procedure), we have all constraints that

tain the index of the innermost loop with a small coefficient and this 'MVolve non-local arrays coming from all procedures in the appli-
loop index should not appear in any other column. In other words, cation. We add to this set all locality constraints of the root itself,

the following constraint should be satisfied:

Figure 2: (a) Bottom-up phase. (b) Top-down phase. (c) A call
graph fragment that contains a node with multiple parents. (d)
Applying procedure cloning to the fragment in (c).

v v u ... uw 0 LIt is known from data transformation theory [7] that if a reference orig-
v u u w 0 inally does not exhibit temporal reuse, it is not possible to transform it to
M,R, = v u u .. uw 0 (1) ob_ta_ln temp(_)ral reuse using data tr_ansformatlons alone. Therefore, if the
’ ’ original matrix entry in place of (that is, the last row-last column element)
is not O (i.e., it does not exhibit temporal reuse), we cannot selédt.a
vwououo.. uoC such that becomes 0.

889

and obtain a (potentially) large set of constraints. determined. Since data transformations do not affect data depen-
An important issue in propagating constraints is to re-map the dences, we do not need to check data dependences. Once the data

locality constraints in procedugeto constraints that can be used in transformation matrices have been determined, the output code can

conjunction with the constraints ji (the parent op). For exam- be generated using the approach proposed by Leung and Zahorjan

ple, suppose that the procedyrénas two referenced;[i][j] and [7].

Z[4][i], in a nest with loops (the outer) ang (the inner). So, the

locality constraints for this procedure (which has only two formal g TOP-DOWN PHASE: APPLYING LOOP
parametersY andZ) are:
TRANSFORMATIONS

M LOY_(uw O nd M 01y _(u 0) After determining the memory layouts for the arrays, the next
vio 1 1) @ L1 o0 1 : :
uw uw step (called the top-down phase) involves propagating down these

Note that if these constraints are considered as they are, it is easy@/0Uts to the children nodes (see Figure 2(b) for an example case
to find suitable data transformation matrick§, and M,. How- that consists of five procedures includingain()). Let us as-
ever, in interprocedural optimization, as discussed earlier, we do SUme for now that each procedure has a single parent (we will relax

not solve these constraints directly; instead, we propagate them upthis requirement shortly). In receiving (inheriting) memory layouts

in the call graph. Assume now that a procedtecalls p using from the parent ofa proced_ure, we perform the following two steps
call p(X,X) .As a result, the locality constraints above should (for the procedure in question):

be re-written in terms oK (i.e., they need to be re-mapped). That e Apply loop transformations to satisfy these (inherited) lay-

is, after the propagation, we re-write the constraints as: outs as much as possible.

M, Loy _(uw 0 and M, 0 1) _(uw0 . e Determine memory layouts of the local arrays in the proce-
0 1 u 1 10 uw 1 dure.

Now, solving M, from these constraints is more difficult a4,

is involved in both the equalities. Intuitively, this is because the
aliasing betweerY and Z (introduced by the call t@) imposes
more conditions on the data transformation to be found. This small
example demonstrates how the locality constraints are propagateq’:ﬂe
up in the call graph, and how the parameter arrays are translated
after the propagation.

Satisfying memory layouts through loop transformations means se-
lecting a suitable loop transformation for each nest such that the
nest exhibits good locality with the inherited layouts. Recall that
loop transformatiorl” (whose inverse i€"~') transforms the
ference(R.,7%) to (R.T~',7%). If, however, the reference in
guestion is first transformed using the data transformation matrix
M., then, after the loop transformation, the reference becomes
(M.R,T', M,73). Since, at this pointM,, R, andr; are

5. DETERMINING MEMORY LAYOUTS known (recall that\/,, represents the data transformation that gives

W (r€ data :
It should be stressed that the locality constraints collected at the € |nhe_][_|te<ﬂ Iayout)ﬁ Wf dcanl determifie hfcr)]r the best locality.
root should be solved for our unknowns; that is, the data transfor- SPecifically, we should selecti&™" such that

mation matrices. Obviously, it is possible that we may not have a v v u ... uw 0

solution for this large set of equalities. If this is the case, in order v u u .. uw 0

to find a solution, we need to sacrifice some constraints. In other MyR,T '=| v v uw ... uw 0 2
words, we need to drop some constraints from further considera-

tion, and try to solve the resulting (reduced) system of constraints v uw u .. uw c

again. This constraint elimination continues until we find a solu- o . .
tion (i.e., determine all data transformation matricesljo deter- is satisfied. As before, here,denotes alon't careentry andc is a

mine which constraints to drop, we use the weight components of Small value. Note, however, that unlike Equation (1), here we have
the constraints. More specifically, we order the locality constraints two different choices fot. If we are able to selectA” " such that:
according to their weights, and at each step we eliminate the con-iS 0. then this means we obtain temporal locality. On the other hand,
straint with the minimum weight (until the resulting system has a if we can only find aI"~" such that is a small non-zero constant
solution). (preferably 1), we havz_e spatial locality. Obwous!y, asin the case of
It should be noted that solving this set of constraints has addi- data tr?nsformatlons, it may or may not be possible to find stth a
tional complexities. Maybe the most challenging of these is the (Or 7~ ") matrix. Moreover, a suitable loop transformation matrix
fact that the data transformation matrices should be non-singular, Should satisfy multiple (array) references in the nest (possibly to
Therefore, in building a data transformation matrix, we should be different arrays). _ _
careful. Note that each locality constraint can be expressed in terms L&t us focus now on a given nest in a proceduré\ssume that
of rows of the data transformation matrix. For example, Equation this nest accessesarrays,s’ of which have already-determined

(1) can be re-written (for a-dimensional array in an-deep nest) ~ memory layouts (i.e., non-local arrays). So, in the first step, we
asmiie Trie = 0, mide Tie = 0, ..., m(tjl)TTT;m = 0, and select &'~ " such that all references to these arrays are optimized

(as explained above) either for temporal locality= 0) or spatial
locality (¢ = 1). Once such a loop transformation is found for each
in selecting the rowsi.”, ms.”, ..., mii.". More specifically, nest, we build a second set of locality constraints to determine the

!
these rows should be selected in such a way that they are Iinearlymem.cf).ry Illayouts of éh? f_ ‘3 arc;ai/s tlocalfto pr?_cedurZWMcf)re
independent. To achieve this, in determining each row, we check specitically, we need 10 find a data transformation matiix for

: P each such local array(’ so thatM,, R,,T~" exhibits good local-
whether this row is independent of the rows that have already beenity. Note that, hereR., andT~* are known, and\/,, needs to be

determined.

Note, however, that we only determine the transformation matrices for the When a given procedu_re_ has two or more pare_nts, the IOP'O_'OW”
arrays whose constraints are propagated to the root. The remaining dataPhase becomes more difficult to handle. This is because differ-
transformations (those that come from local arrays) are determined during €nt parents can require different memory layouts (at the end of the
the top-down phase when the associated procedures are visited. bottom-up phase) for the same array. If this array is also accessed

Mie e = ¢, Wherenii, T is theith row of M, andry, is the
last column ofR,. To ensure non-singularity, we should be careful

890

in the current procedure being optimized, then we need to decide
which layout to consider in selecting loop transformations for the
said procedure. Figure 2(c) presents an example call graph frag-
ment depicting a procedurg)(with two parents £’ andp”). If,

after the bottom-up phasg, andp” demand, say, column-major
and row-major layouts, respectively, for the same array, we need to
resolve this conflict in optimizing.

There are at least two ways of resolving such a conflict. The Pr9C2() 7
first way exploits the weight components of the locality constraints —"‘ CM
as follows. It first calculates aarray weight, which is simply N
the sum of the weights of the all constraints that involve the ar- !

\

ray in question. Then, in optimizing procedyséduring the top- Proc3()!! ;

down phase), we consider the layout of the array (instance) with

the largest weight. In other words, depending on the weights (of

the same array) ip’ andp”, we select the memory layout to use in

determining the loop transformationspn Figure 3: An example call graph with nodes marked with the
The second way of resolving such a conflict is to employ a com- |ayouts they demand.

piler technique callegrocedure cloningCloning generates a new

version of a procedure for specific interprocedural information (see

[3] for more information on cloning). In the context of thiS pa- yransformation. Answering these questions is beyond the scope
per, we can create different versions of a given procedure wheneverys this paper; however, for comparison purposes, in the next sec-
multiple memory layouts (for the same arragachthe same pro- — ion e also report experimental results obtained using dynamic
cedure. For the call graph example in Figure 2(c), a typical cloning ransformations. Our current approach does not handle recursive
(assuming’ andp” demand different layouts for the same array) procedures or procedures that are called indirectly (e.g., by passing

creates two versions gf(denotedp+ andp * in Figure 2(d)), one procedure-pointers); however, we plan to address these issues in a
for each layout. That is, the loop transformationg+4nare applied future study.

assuming a column-major memory layout for the array while they
are applied irp = * under a row-major memory layout. It should be
stressed that procedure cloning increases the code space require8- EXPERIMENTS
ments (which is not desirable in embedded systems). So, in this To test the effectiveness of our approach, we used six array-
paper, we adopted the first alternative. intensive embedded application&ap is a video capture and pro-
cessing application. It generates video streams of different picture
sizes, color spaces, and frame rafEglis an image conversion pro-
7. DYNAMIC LAYOUT OPTIMIZATIONS gram that converts images from TIFF to MODCA or vice veiga.
So far, we have assumed that each array will be assigned a sin-is an image understanding code that performs target detection and
gle layout for its entire lifetime. In some cases, we might be able classificationH.263 is a key routine from a simple H.263 decoder
to achieve better performance by relaxing this constraint. As an implementationSegt is animage processing application that per-
example, consider the call graph in Figure 3. Let us focus on a forms segmentationFace is a face recognition algorithm. The
single array and assume that each procedure demands the layoutsput sets of these applications range from 211KB to 678KB. Their
(for that array) shown in the figure (RM means row-major and CM original execution times range from 57.7 seconds to 231.3 seconds.
means column-major). One alternative for optimizing for this array Our base cache architecture is 4KB, directed-mapped with a line
is to select a row-major layout and then use loop transformations in size of 32 bytes. We use Dinero [4] to collect cache hit/miss statis-
three procedures that demand column-major layout. Such an opti-tics and then convert them to cycles. We assume a cache hit latency
mization strategy may or may not be feasible depending on the dataof 1 cycle and a miss latency of 60 cycles. All results presented
dependences in these procedures. Recall that loop transformationdelow are percentage (execution time) improvements over the orig-
are bound by data dependences; that is, they must respect all dat@nal (unoptimized) codes.
dependences in the nest. Figure 4 shows the performance (execution time) improvements
An alternative optimization strategy is to use dynamic layout over the original codes. The cache behavior trends (i.e., hit/miss
transformations; i.e., modifying the memory layout during the coursebehavior) are very similar to execution time trends, and thus omit-
of execution. Since botRroc2() andProc3() demand column- ted due to lack of spacd.oop corresponds to a version that uses
major layout, a good point for converting layout (of the array in aggressive loop transformations for optimizing locality. Specifi-
question) from row-major to column-major is at the beginning of cally, it uses the technique explained in Li's thesis [8]. This tech-
Proc2() .Then,Proc2() andProc3() canexecutetheircodes nique employs both linear transformations (e.g., loop permutation
with the column-major layout, and just before returnin@toc1() |, and scaling) and nonlinear transformations such as iteration space
we can transform the layout back to row-major. Obviously, there tiling. Data is an optimization strategy that employs only mem-
are many issues involved in implementing dynamic layout trans- ory layout optimizations. It uses the approach proposed by Le-
formations. Maybe the most important issue is to decide whether ung and Zahorjan [7]Loop+Data is a technique that combines
to use dynamic transformations at all. Note that dynamic layout both loop and data transformations in a unified framework. The
transformations are implemented by inserting extra code in the ap- specific approach used in this paper is similar to that proposed in
plication to convert layouts (to copy the transpose of the origi- [5]. Finally, Interprocedural is the optimization technique
nal array into another). This entails extra code space, extra datadiscussed in this paper. Note that none of these versions employs
space, and execution cycles. Therefore, a careful cost/benefit anal-dynamic layout transformation. All of these versions have been
ysis is required. An equally important issue is to determine (in the implemented using the SUIF compiler infrastructure from Stanford
call graph) the point at which to transform the layout. Yet a third University [1]. From the results in Figure 4, we observe that in-
issue is to decide whether to transform multiple arrays together. terprocedural optimization is very successful and five of our six
This might be useful if multiple arrays demand the same type of applications benefit from it. The average improvements due to

" .CM/

891

m Data

ELoop

&interp

w W
e &

20

Percentage Improvement

™

Veap

H.263 Segt Face

Figure 4: Percentage improvements.

-+ Data —/ Loop+D

‘ ~O-Loop

Percentage Improvement

1KB 2KB 4KB 8KB

Cache Size

16KB 32KB 64KB

Figure 5: Impact of cache capacity.

Loop, Data, Loop+Data , andInterprocedural versions

with four different versions and present the improvements in ex-
ecution times in Figure 6Inter procedural is the version
discussed in this papebynamic is a dynamic layout optimiza-
tion strategy that does not perform any interprocedural analysis.
Dynamic- Inter procedural (1) is a version that com-
bines interprocedural optimization with dynamic layouts. It uses
dynamic layouts aggressively; that is, whenever two procedures
(neighboring in the call graph) demand different layouts for the
same array, a dynamic layout transformation is performed when
transitioning from the caller to the callee. Final®ynamic-

Inter procedural (I1) is similar toDynamic- Inter

procedural (1) except that it uses dynamic layout transfor-
mations more carefully. Specifically, it does not use dynamic lay-
outs unless two successively activated procedures use the trans-
formed layout before it is transformed to back to its original form.
Both Dynamic- Interprocedural (I) andDynamic-

Inter procedural (Il) are hand optimizations. The per-
centage improvements (i.e., across all six benchmarkdpfer
procedural , Dynamic , Dynamic- Inter procedural

() , and Dynamic- Interprocedural (l1) versions are
34.6%, 26.0%, 21.9%, and 40.4%, respectively. These results re-
veal that it is not a good idea to use dynamic layouts indiscrimi-
nately. They also show that employing dynamic layout optimiza-
tions without interprocedural analysis does not generate the best
results.

9. CONCLUDING REMARKS

One of the main problems in extracting maximum performance
out of current embedded architectures is poor data cache locality.
Due to cost and space concerns, increasing cache capacity arbitrar-
ily is not a long-term solution. So, software solutions are a promis-
ing alternative. This paper extends the state-of-the-art in cache

are 15.8%, 18.2%, 24.9%, and 34.6%, respectively. We also seelocality optimization by showing how locality can be optimized

from these results that neitheoop norData dominates the other.
It should also be mentioned thiabop+Data used in our experi-

interprocedurally. Our results show that the interprocedural opti-
mization is much more effective than the previous locality-based

ments represents the state-of-the-art in (intraprocedural) cache lo-techniques that handle each procedure in isolation, and that proper

cality optimization for array intensive codes.
To see the impact of the cache capacity on performance improve-

use of dynamic optimization makes a difference.

ments, we performed another set of experiments where we changed|). REFERENCES

the cache size from 1KB to 64KB. The results given in Figure 5
represent the averages across all benchmarks and indicate that th
Inter procedural version outperforms the other versions in

all cache sizes. While, as expected, the savings due to our approach [2]

diminish as we increase the cache size (this is because the origina
code captures more locality with a larger cache size and performs
better), we observe that even with a 64KB cache we obtain more
than 15% improvement.

In our next set of experiments, we studied the impact of dynamic
layout transformations on performance. We conducted experiments

Binterprocedural

M Dynamic
EDynamic+Interprocedural (1) i

BDy (

o
&

NN oW oW R &
S & & & & @

Percentage Improvement
&

™ H.263 Face

Veap

Segt

Figure 6: Percentage improvements.

892

[1] S.P. Amarasinghe et al. The SUIF compiler for scalable parallel

machines. IrProc. the Seventh SIAM Conf. on Parallel Proc. for

Scientific Computingrebruary, 1995.

F. Catthoor et alCustom Memory Management Methodology —

Exploration of Memory Organization for Embedded Multimedia

System DesigrKluwer Academic Publishers, 1998.

K. D. Cooper et al. A methodology for procedure cloni@pmputer

Languages19(2), April 1993, pages 105-118.

Dinero IV Trace-Driven Uniprocessor Cache Simulator.

http://www.cs.wisc.eduémarkhill/DinerolV/

M. Kandemir et al. Improving locality using loop and data

transformations in an integrated frameworkFiroc. International

Symposium on MicroarchitecturBallas, TX, December, 1998.

M. Kandemir et al. A framework for interprocedural locality

optimization. InProc. Intl. Conference on Parallel Processingzu,

Japan, 1999.

S.-T. Leung and J. Zahorjan. Optimizing data locality by array

restructuring.Technical Report TR 95—-09—-0ept. of Computer

Science and Engineering, University of Washington, September

1995.

[8] W.Li. Compiling for NUMA Parallel MachinesPh.D. Thesis,
Cornell University, Ithaca, New York, 1993.

[9] M. O’Boyle and P. Knijnenburg. Non-singular data transformations:

Definition, validity, applications. IfProc. 6th Workshop on

Compilers for Parallel Computerpages 287-297, Aachen,

Germany, 1996.

M. Wolf and M. Lam. A data locality optimizing algorithm. IRroc.

ACM Conf. Programming Language Design and Implementation

June 1991.

M. Wolfe. High Performance Compilers for Parallel Computing

Addison-Wesley Publishing Company, 1996.

e

|

(3]
]
(5]

[4

(6]

(7]

(20]

[11]

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

