26.3

System-on-Chip Beyond the Nanometer Wall

Philippe Magarshack
Central R&D, STMicroelectronics
Ave. Jean Monnet
38031 Crolles cedex, France
+33-4-7692-6498

philippe.magarshack@st.com

ABSTRACT

In this paper, we analyze the emerging trends in the design of
complex Systems-on-a-Chip for nanometer-scale semiconductor
technologies and their impact on design automation requirements,
from the perspective of a broad range SoC supplier.

We present our vision of some of the key changes that will
emerge in the next five years. This vision is characterized by two
major paradigm changes. The first is that SoC design will become
divided into four mostly non-overlapping distinct abstraction
levels. Very different competences and design automation tools
will be needed at each level.

The second paradigm change is the emergence of domain-specific
S/W programmable SoC platforms consisting of large,
heterogeneous sets of embedded processors. These will be
complemented by embedded reconfigurable hardware and
networks-on-chip. A key enabler for the effective us of these
flexible SoC platforms, is a high-level parallel programming
model supporting automatic specification-to-platform mapping.

Categories and Subject Descriptors

B7.1 [Integrated Circuits]: Types and Design Styles — VLSI,
Advanced technologies, Microprocessors and microcomputers

C3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms
Algorithms, Design, Economics

Keywords

System-on-chip, network-on-chip, reconfigurable systems, multi-
processor systems, embedded software technologies, design
automation tools.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC’03, June 2-6, 2003, Anaheim, California, USA

Copyright 2003 ACM 1-58113-688-9/03/0006...$5.00.

419

Pierre G. Paulin
Central R&D, STMicroelectronics
16 Fitzgerald Road
Ottawa, ON, Canada, K2H 8R6
+1-613-768-9069

pierre.paulin@st.com

1. INTRODUCTION

The continued increase in the non-recurring expenses (NRE) for
the manufacturing and design of nanoscale systems-on-chip
(SoC), in the face of continued time-to-market pressures, is
leading to the need for significant changes to their design and
manufacturing. The SoC mask set manufacturing NRE cost has
been multiplied by a factor of ten in about three process
technology generations, exceeding 1M$ for current 90nm process.
At this cost, many smaller design houses cannot afford the
financial risk of a tape-out. For example, for a chip sold at a price
of $5, and a profit margin of 20%, this implies selling over one
million chips simply to pay for the mask set NRE. This does not
even account for the accompanying increase in design NRE,
which ranges from 10M$ to 100MS$ for today’s complex 0.13
micron designs. Using the same assumptions as above, this
implies volumes of 10 to 100 million chips to break even.

These figures partially explain the strong growth rate of Field-
Programmable Gate Arrays (FPGA) and application-specific
standard products (ASSP) in certain markets. This is particularly
true in the communications infrastructure space for example,
where medium volumes (below 100K chips/year) preclude the
development of specialized ASICs.

A radical change is needed to allow small-to-medium entrants in
the market, or to support products with volumes well below the
multi-million chip threshold needed to make a profit on low-cost
IC’s. Somehow, the mask-set NRE needs to be reduced or
amortized over many more products. FPGA’s are one solution to
this, but their higher power and cost preclude high-volume and
low-power applications. Recent approaches using a gate-array
style fabric and top metal-level configuration will also help
provide an intermediate point on the NRE-flexibility continuum.
Finally, ‘systems-in-a-package’ (SiP) approaches, which contain
multiple dies of various process technologies (e.g. logic and
DRAM) will also help address the manufacturing NRE.

However, neither of these solutions address the design NRE and
time-to-market needs for today’s SoC’s which can have over 100
million transistors — enough to theoretically place the logic of
over one thousand 32 bit RISC processors on a die. Leveraging
these capabilities is a major challenge. For this reason, a SoC
design platform needs to be amortized over many variants and
generations of a product family, to help amortize both the mask
and the design NRE's. Moreover, platform users need better
productivity tools to reduce the end-product design NRE.

2. EVOLUTION OR REVOLUTION?

For many of the traditional CAD companies supporting the
semiconductor business, there seems to be an underlying
assumption that we will continue doing design in essentially the
same way we are doing it now, albeit with (much) more
complexity. We would be using essentially the same type of
components, namely, a slowly evolving mix of hardware and
software: a few general-purpose processors, a few DSP’s and still
many H/W IP blocks (digital and analog). It also seems assumed
that evolving current design and CAD technologies will be able to
address the complexity growth.

The reality is that we are not adequately solving the 0.13 micron
design problem now, and it is unrealistically optimistic to try to
solve the sub-90nm problem using extensions of today's
approaches. In fact, it could be argued that for 90nm technologies
and beyond, the design productivity (transistors designed per
man-year) will actually decline due to the new deep submicron
effects discussed later.

It is also assumed that most new SoC products will be a novel
assembly of (hopefully reused) IP's. Even if the SoC is entirely
made of reused IP's, this does not solve manufacturing cost NRE,
the deep submicron physical design issues, and the combined
verification and design-for-test issues of the resulting SoC.

Given the repeated message of exponentially rising complexity,
we strongly advocate complementing this evolutionary roadmap
with an exploration of significantly different design methods for
complex SoC's. We believe a major paradigm change will be
needed — and will occur — in the next five years or less. This is
already happening in some markets. This paradigm change will be
driven by three requirements:

1. Faster time-to-market for SoC platform implementation.
In particular, through the use of higher-level off-the-
shelf IP’s, connected via a modular, scaleable SoC
interconnect topology and standard communication
interfaces.

2. Increased flexibility in SoC platforms to amortize the
mask and design NRE over more products. This can be
achieved by a combination of S/W programmability and
configurable H/W, leading to more reusable platforms.

3. Dramatically increased productivity for the platform
user. This will be the key requirement and will have the
highest impact on the application S/W structure and the
underlying platform architecture. This will drive the
development of new parallel programming models to
enable automated application-to-platform mapping.

As a result of these requirements, we believe that two major
paradigm changes will emerge in the next five years:

e Embedded SoC design will become divided into four mostly
non-overlapping distinct abstraction levels.

e The emergence of domain-specific S/W programmable SoC
platforms consisting of large, heterogeneous sets of
embedded processors, reconfigurable H/W and networks-on-
chip.

We examine the first paradigm shift in sections 3 to 5, the second
in section 6, and a vision of emerging solutions in section 7 and
section 8.

420

3. MULTI-LEVEL SOC DESIGN

In order to manage the complexity explosion, SoC design will
become divided into four mostly non-overlapping distinct
abstraction levels:

1. System application design: This level involves
application specialists, writing embedded S/W at a high
level, using general-purpose and domain-specific
embedded S/W productivity tools. This includes the
initial algorithm design task. No hardware design is
done here. At most, this might involve the specification
of configurations of an existing platform.

2. Multi-processor SoC (MP-SoC) platform design: This
consists of highly flexible S/W-programmable and
reconfigurable platforms for well-defined application
areas: wireless, multimedia, networking, automotive.
Specialists at this level assist with the (re)configuration
of the platform for the system application developer. As
a rule, no IP design is done here, but specification,
assembly and configuration of existing IP blocks.

3. High-level IP block design: This includes embedded
processors (RISC, DSP, MCU, ASIPs), interconnect
technologies (with a trend towards networks-on-chip,
and away from traditional shared buses), domain-
specific standard I/O's (PCl-variants, SPIx variants,
HyperTransport, I12C, FireWire, QDR, etc.), and finally,
well defined H/W IP for standards (e.g. an MPEG4
video codec).

4. Semiconductor technology & basic IP: Standard cells,
I/O, memories and the basic technology processes

supporting them. The trend here is for more
heterogeneous technologies, combining embedded
DRAM, embedded Flash, mixed-signal BiCMOS, RF,
analog.

These four abstraction levels will require mostly orthogonal
competences. Or put another way, they must be orthogonal in
order to solve the complexity explosion. The underlying divide-
and-conquer approach implies very different needs for designers
working at each level.

In order to achieve this, better tools will be needed to feed the
power, performance and area figures up to higher abstraction
levels to better quantify the effect of the mapping of a system
application onto a MP-SoC platform. The two main design issues
will be power optimization and embedded memory architecture
tradeoffs (embedded SRAM, eDRAM and eFlash, v.s. external
memories).

4. EVOLUTIONARY SOLUTIONS

The two lowest levels (high-level and basic IP) will require most
of the evolutions underway in the CAD industry today. Here, an
evolution of existing design and verification tools is appropriate:
e.g. faster simulators, more IP reuse, integrated logic and physical
design synthesis, etc. Of particular importance in this space are
the following issues:

e Deep sub-micron effects that are becoming predominant in
90nm and below. These include: electro-migration, voltage-
drop, and on-chip variations, all of which will lead to
statistical ~design, self-repair and various forms of
redundancy.

e The integration of analog and RF IP's, which, when
integrated with digital logic on a SoC, can save the cost of an
additional die in the bill of materials.

e DFT has to evolve together with SoC complexity. The IEEE
1500 class of on-chip test bus is an example of this trend. In
addition, BIST will need to support all sorts of IP’s: Not only
memories, but also digital logic, analog and RF.

e Increased use of formal proof between abstraction layers, as
well as the use of unique verification testbenches and
environments across abstraction layers [7].

e Continued improvement of H/W-S/W codesign tools, but
extended to include reconfigurable H/W as a design option.

e Transaction-level modeling (TLM) of mixed H/W-S/W
systems to anticipate the step when effective HW-SW co-
simulation is effective before RTL, reduce the time to
develop executable specifications of HW blocks and increase
the simulation speed [10]. Standardization of TLM
approaches and API’s is urgently needed.

e Finally, low-power is a must, not just an added-value feature.
This includes techniques such as on-chip voltage control,
back-bias to master leakage, and multi-Vt transistors. The
objective of low-power will favor the use of hardware over
software in many cases, when design time permits. This
tradeoff of productivity versus lower power will be a key
consideration in the design of next generation SoC platforms.

The list above addresses many of today’s problems at the two
lower abstraction levels. However, for the system application and
multi-processor SoC platform levels, new approaches need to be
considered, and very different design automation tool needs will
emerge for each of these levels. These are examined below.

5. SYSTEM APPLICATION DESIGN TOOL
NEEDS AND SOLUTIONS

The two key requirements in this space are: 1. system application
development productivity, and 2. higher independence from the
implementation platform.

5.1 Use of Domain-specific Specification and
Modeling Tools

A variety of effective domain-specific tools already exist. For
example, the Matlab environment is one of the most widely used
set of tools, and it effectively covers a wide range of analog,
digital and mathematical problems. Other domain specific tools
and abstractions include the SDL-based tools from Telelogic,
Esterel Studio, and a variety of queuing and dataflow simulators.
It is our belief that these tools provide sufficient productivity for
high-level application development, in their specific application
domain. Better interoperability is needed though. More
importantly, there is a need for a more automated refinement to
the MP-SoC implementation platform, as discussed below.

5.2 Use of Leading Edge S/W Tools

Many of the leading ideas of the ‘traditional’ (non-embedded)
S/W development approaches are demonstrating promising
productivity gains. For example, Java and Microsoft .NET
illustrate the potential for higher S/W productivity via
encapsulation and reuse. Object-oriented formalisms like CORBA

provide many clean abstractions for distributed systems that we
believe are adaptable for complex SoC’s.

Nevertheless, embedded S/W productivity and reuse remain key
challenges. One big issue is the proliferation of S/W specification
languages (e.g. UML, SDL), object-oriented distributed system
formalisms (CORBA, DCOM, RMI), message passing formalisms
(MPI), general-purpose programming languages (C, C++, Java),
and embedded operating systems (Embedded Windows, Linux,
VxWorks). There is a huge overlap in the concepts and
capabilities across all of these.

Some simplification and rationalization is needed for their
effective use in SoC's. Hopefully, the experience - and mindset -
of the VLSI H/W community in raising abstraction levels and
defining standards can be put to benefit here. SystemC
approaches this objective from the bottom-up, but more work is
still needed.

In the O/S domain, the main additional need is for ultra-
lightweight versions of these O/S’s, which supply a level of
services tuned to the application domain. In some cases, part of
the O/S services will need to be performed in hardware.

5.3 The System Application to Platform Gap
The domain-specific and general-purpose tools above will help
mostly with high-level specification, modeling and platform-
independent S/W development. When used in the context of MP-
SoC platforms, a common issue for these tools is the difficulty in
refining and mapping the application to the platform.

An optimal system solution will require the “correct” mapping of
high-level abstractions on to the lower layers. This mapping
process involves optimizations and trade-offs between many
complex constraints, including quality of service, real time
response, power consumption, area, and other factors impacting
device cost. Tools are urgently needed to explore this mapping
process, and assist and automate optimization where possible. It is
also necessary to establish correctness between the various
abstraction levels, ideally using formal proofs where possible, and
allow reuse of test bench and verification environments across the
layers.

One obstacle to achieving more automation has been the
abstraction gap — perhaps more accurately referred to as the
abstraction ‘grand canyon’ - between the system specification and
most of the SoC platforms available today.

This is particularly true for today’s ad-hoc, heterogeneous, low-
level, H/W-S/W platforms. The issue is compounded when there
is no defined SoC platform programming model, or not even a set
of well-defined API’s to interact with the platform. In this case,
the platform user is directly exposed to the low-level hardwired,
reconfigurable and S/W programmable components. This is time
consuming and also makes the application non-portable.

The next sections will discuss the second major paradigm change,
namely the emergence of flexible multi-processor SoC platforms.
In particular, we will address the need for developing appropriate
parallel programming models for these platforms, in order to
simplify the automated application-to-platform mapping.

6. DOMAIN-SPECIFIC MULTI-
PROCESSOR SOC PLATFORMS

The growth of hardware complexity in SoC’s has tracked Moore’s
law, with a resulting growth of 56% in transistor count per year.
However, industry studies show that the complexity of embedded
S/W is rising at a staggering 140% per year. In many leading
SoC’s today, the embedded S/W development effort has
surpassed that of the H/W design effort. Moreover, in consumer
multimedia SoC products, such as set-top box, DVD, and audio,
the actual cost of licenses and royalties for the application S/W
(O/S, audio and video licenses) largely exceeds the chip
manufacturing cost in many applications.

Based on the requirements for flexibility, rapid platform
development and platform end-user productivity, our belief is
that, within five years, the large majority of end-user SoC product
functionality will run on heterogeneous embedded processors.
This does not translate to comparable proportions of area or total
performance though. Low-power and/or performance
requirements will dictate partitions where the majority of
performance will come from optimized H/W or FPGA,
implementing critical inner loops and parallel operations, but of
comparatively lower functional complexity.

MP-SoC platforms will include ten to hundreds of embedded
processors. These will come in a wide diversity, from general-
purpose RISC to specialized application-specific instruction-set
processors (ASIP), with different trade-offs in time-to-market
versus product differentiation (power, performance, cost), as
depicted in Figure 1.

ROM, Flash | eFPGA Standard
Mcu Standard 1O blocks
HAY IP eFPGA
1 1
; o A
Scalable SoC interconnect)b‘
- | . | —
Gen. Purp microProg
z - eripherals
DSk RISC, VLW RELE

vApplication-specific HW or FPGA

Increasing
differentiation vApplication-specific processors:
(cost, low- Video DSP, Network proc., IfO
power, v Domain-specific DSP:
performance), Audio, low-power wireless
and v Domain-specific MCU:
increasing Protocol processing, bit manip.
risk v General-purpose RISC, VLIW

Figure 1. MP-SoC Platform Component Options

Current generation platforms in consumer multimedia (e.g. set-top
box, DVD, digital video, camera and imaging), and wireless
handsets already include over a half-dozen processors. New
designs are appearing with much larger numbers of embedded
processors, ranging from 8 to 32 in communications and network
processing, security processors, storage array networks, and
wireless base stations; to over 100 processors in recent platforms
in consumer image processing, and high-end network processors.

All this leads to the increasing
programming tools for these platforms.

importance of effective

422

6.1 Network-on-Chip

A key component of the MP-SoC platform is the interconnect
technology. An orthogonal, scaleable, interconnect approach with
predictable bandwidth and latency is essential for many reasons:

1. It provides a regular, plug-and-play methodology for
interconnecting various hardwired, reconfigurable or
S/W programmable IP’s.

2. It supports the high-level communication between
processes on multiple processors, and simplifies the
automatic mapping onto the interconnect technology.

We advocate the recent so called ‘network-on-chip’ (NoC)
approaches currently under development [13]. We also strongly
support the need for a standard NoC interface definition. ST is
evolving its proprietary STBUS configurable interconnect
towards NoC. We are currently using the proposed OCP-IP
standard [11] in our MP-SoC platform experiments, as discussed
in [1], [10].

However, there is still much remaining work to be done to
characterize the various topologies — ranging from bus, ring, tree
to full-crossbar — and their effectiveness for different application
domains.

A common issue with all NoC topologies is communication
latency. In 50 nm technologies, it is predicted that the intra-chip
propagation delay will be between six and ten clock cycles [12].
A complex NoC could therefore exhibit latencies many times
larger. Latency hiding is therefore a key aspect of in achieving
efficient parallel processing.

6.2 Heterogeneous Multi-Processors

We believe that the large scale use of software programmable
embedded processors will emerge as a key means to improve
flexibility and productivity. As depicted in Figure 1, a range of
processors will be used, to achieve different tradeoffs in time-to-
market versus power, area or speed.

General-purpose processors will continue to play an important
role, in particular for the most complex upper layers of the
application stack, where real-time constraints are not as tight.
Conventional real-time operating systems will run on these
processors. Domain- or application-specific processors will also
play an important role in bridging the gap between the required
ease-of-use and high flexibility of general-purpose processors on
one end, and the higher speed and/or lower power of hardware on
the other. Configurable processors (like Arc or Tensilica) are one
possible means to achieve processor specialization from a RISC-
based platform. Reconfigurable processors take this one step
further, by allowing run-time changes to the architecture [4].

Independent of the degree of processor instruction-set
specialization, a common requirement is the efficient handling of
the latencies of the interconnect, memory and co-processors. A
variety of approaches can be used, including multi-threading,
memory pre-fetching, and split-transaction interconnect.
Multithreading lets the processor execute other streams while
another thread is blocked on a high latency operation. A hardware
multithreaded processor has separate register banks for different
threads, with hardware units that schedule threads and swap them
in one cycle.

6.3 Embedded FPGA’s

Embedded FPGA's (eFPGA) will complement the processors, but
only with limited scope (less than 5% of the IC functionality).
The 10X cost and power penalty of eFPGA’s will restrict their
further use. Also, eFPGA's are like hardware in that they are
really suited to a well-defined, repeatable function. They are not
well-suited to small scale time division multiplexing of different
tasks. Embedded processors can execute a much wider variety of
tasks than an eFPGA. They are also more amenable to large-scale
changes in product specs or user requirements. Nevertheless, for
high-speed and simple functions, or highly parallel and regular
computations, eFPGA’s can play an important role. An important
question here is what is the best level of granularity of the basic
reconfigurable component. The evolution of current stand-alone
FPGA platforms suggest that a heterogeneous mix of datapath and
fine-grain fabrics will emerge.

6.4 Hardware IP

Of course, hardware will not disappear! But increasingly, it will
exist in the form of highly standardized functions, which
communicate via a standard protocol. Examples include high-
performance video processing, e.g an MPEG2 video codec.
Another main category of standard H/W is the I/O component.
Increasing standardization of I/O’s for different market spaces
will leave a dozen main I/O families: e.g. PCI evolutions,
RapidIO, HyperTransport, SPI-x, USB, FireWire, QDR, etc. Their
integration into the SoC will be facilitated by the network-on-
chip’s standardized protocol and scalability.

7. MULTI-PROCESSOR SOC PLATFORM:
EMERGING SOLUTIONS AT ST

7.1 FPPA Architecture Platform

In order to address the real objective, namely the productivity of
the platform end-user, we believe that the system application, the
platform architecture and the programming tools must be
considered as an interdependent whole. For this reason, we have
developed an environment to enable exploration of the
interactions between these three domains.

Host Processor

Processor Processor
Array 1 Array N
PCI-X
Conf. Proc. Conf. Proc.

SPl4, I]: SPH4,

|:> SPI5 [Network-on-ChipW

oFPGA I

Hyper Mem
Transport 110

emj. .. em
eFFPGA Coproc

eFPGA

eDRAM

osrAM |U| eFPGA (L | v P

Specialized External
co-processors RAM

Figure 2. Flexible Communications Platform Example

Figure 2 depicts an example of a domain-specific flexible
architecture platform, oriented towards networking applications.

]| spI5 :j>

It is derived from ST’s StepNP™ exploratory NPU platform [1].
This is not a product, but an experimentation vehicle used in ST’s
Central R&D organization as a means to explore MP-SoC
automation tool requirements. This platform includes models of
configurable processors, a network-on-chip, reconfigurable H/'W
and standard H/W, as well as communication-oriented 1/0’s. We
refer to this platform as a ‘Field-Programmable Processor Array’,
or FPPA. We believe that FPPA’s embody many of the
characteristics of the emerging high-productivity platforms we
will need in nanoscale technologies.

7.2 MultiFlex MP-SoC Tools

It is our conviction that the success of an FPPA platform will
depend mostly on its ability to support a high-level programming
model, therefore enabling higher productivity tools. This is the
key means to bridge the gap between system specifications and
the platform capabilities, as discussed in Section 5.3.

Within ST’s Central R&D organization, we have been working on
the ‘MultiFlex’ toolset for multi-processor SoC systems, with
networking and communications applications as the key drivers.
Over the past three years, our previous work was concerned with
the development of multi-processor modeling, debug and analysis
tools [1], [14], using StepNP as the reference platform. This
environment leverages our existing system-level design tools [7],
[10], and embedded software technologies [6], but also adds
several MP-oriented capabilities.

Our recent MP-SoC automation research work has focused on
parallel programming models and automatic mapping to MP-SoC
platforms. The programming model should be platform
independent in order to ease the porting of an application to
different platform (re)configurations. It should also express
parallelism in a natural and intuitive manner for the application
domain.

We have developed a lightweight Distributed System Object
Component (DSOC) programming model inspired by CORBA-
like concepts. DSOC objects can be executed on a variety of
processors supported in the StepNP environment, as well as on
hardware or on the eFPGA. Using the DSOC methodology, the
application design is largely decoupled from the details of a
particular FPPA target mapping.

To demonstrate the DSOC concepts, we have successfully
mapped a DSOC model of a complete IPv4 fast-path application
onto a large-scale multi-processor and H/W multi-threaded
instance of the StepNP platform. We achieved near 100%
utilization of the embedded processors and threads, even in
presence of NoC interconnect latencies of over 100 cycles, while
processing worst-case traffic at a 10 Gbit line rate. The first
results are presented in [2]. This is an early demonstration of the
feasibility of the application-to-platform mapping we are
advocating, at least for the networking application domain.

We believe the DSOC framework provides a very natural
programming model, immediately familiar and intuitive to
software developers exposed to mainstream distributed software
techniques such as Java RMI or CORBA. In addition, the
framework allows capture of characteristics of objects in a way
that can be exploited by tools. Given base properties of the
architecture, such as predictable NoC latency and throughput, the
tools can vastly simplify the mapping of the DSOC objects on to
the architecture, enabling rapid exploration and optimization.

8. CURRENT ACTIVITIES & OUTLOOK

Beyond the MultiFlex MP-SoC automation tools referred to
above, the several ST R&D organizations have been active on a
number of other fronts, which also address the emerging flexible
MP-SoC platform needs. This includes component development,
architecture platforms and system design and embedded systems
technologies:

e The development and manufacturing of a 1 GOPS
reconfigurable signal processing IC [4]. This combines a
commercial configurable RISC core with an embedded
FPGA fabric which implements the application-specific
instruction extensions. This IC also includes an embedded
Flash memory component [5].

e We are also exploring tradeoffs in configurable fabrics which
allow us to optimize the balance of processing done in
dedicated blocks versus software processors. The use of
coarse and fine grain configurable fabrics allows the system

designer to optimize performance versus power
consumption. We are exploring these issues in the
application of low-power wireless LAN’s.

e The development of a 6.4 Gbps/channel on-chip

communication network using Flash-EEPROM switches and
elastic interconnects. This approach implements a
configurable crossbar, using non-volatile memory [3].

e The design of a high-performance network packet search
engine optimized for IPv4/IPv6 forwarding. In comparison
with CAM-based look-up methods, it relies on an SRAM-
based approach that is more memory and power-efficient [9].

e In cooperation with the UPMC/LIP6 laboratory in Paris, we
have developed a 32 port version of the SPIN network-on-
chip [8], implemented using ST’s 0.13 micron process.

e The development of system-level design methods to support
mixed H/'W-S/W systems, from TLM to RTL [7], [10].

e The development of the ‘FlexWare’ high-performance
embedded software development tools, which is quickly
retargetable to a range of domain-specific processors [6].

Future activities in ST include the evaluation and manufacturing
of a range of network-on-chip topologies, further exploration of
reconfigurable H/W fabrics, and the extension of the MP-SoC
programming models and compilers for consumer multimedia
applications like image processing and digital video.

9. CONCLUSION

The continued increase in the non-recurring expenses for the
manufacturing and design of nanoscale systems-on-chip (SoC) is
leading to the need for significant changes to their design and
manufacturing. As a result, SoC design will become divided into
four, mostly non-overlapping, distinct abstraction levels. Different
competences and tools will be needed at each level.

In order to address flexibility and time-to-market needs, we will
see the emergence of domain-specific flexible platforms
consisting of a large, heterogeneous set of embedded processors,
reconfigurable H/W and standardized H/W IP’s, all connected via
a scalable network-on-chip.

424

10. ACKNOWLEDGMENTS

We thank our ST colleagues Laurent Bergher, Marco Cornero,
Faraydon Karim, Chuck Pilkington and Roger Shepherd for their
contributions to the themes discussed in this paper.

11. REFERENCES

[1] P.G. Paulin, C. Pilkington, E. Bensoudane, “StepNP: A
System-Level Exploration Platform for Network
Processors”, IEEE Design & Test of Computers, vol. 19,
n0.6, Nov. 2002.

P. G. Paulin, “StepNP: A Driver for Multi-processor SoC
tools”, Presentation at the Multi-Processor SoC Seminar,
Chamonix, July 2003. See http://tima.imag.fr/mpsoc.

M. Borgatti et al, "A Multi-Context 6.4Gbps/Channel On-
Chip Communication Network using 0.18um Flash-
EEPROM Switches and Elastic Interconnects", Proc. of
ISSC, San Francisco, Feb. 2003.

M. Borgatti et al, “A 0.18um, 1GOPS Reconfigurable Signal
Processing IC with embedded FPGA and 1.2GB/s, 3-Port
Flash Memory Subsystem”, Proc. of Intl. Solid-State
Circuits Conference (ISSC), San Francisco, Feb. 2003.

M. Pasotti et al, “An Application Specific Embeddable Flash
Memory System for Non-Volatile Storage of Code, Data and
Bit-Streams for Embedded FPGA Configurations”, Proc. of
Symposium on VLSI Circuits, Kyoto, June 2003.

P. G. Paulin and M. Santana, “FlexWare: A Retargetable
Embedded-Software Development Environment,” IEEE
Design & Test of Computers, vol. 19, no. 4, July 2002.

A. Clouard et al., “Towards Bridging the Gap between SoC
Transactional and Cycle-Accurate Levels,” Proc. Design,
Automation, and Test in Europe—Designer Forum, 2002, pp.
22-29.

A. Greiner et al, “SPIN: a Scalable, Packet-switched, On-
chip Micro-network, Proc. of Design Automation and Test in
Europe (Designer Forum), Munich, March 2003.

N. Soni et al, “NPSE: A High Performance Network Packet
Search Engine”, Proc. of Design Automation and Test in
Europe (Designer Forum), Munich, March 2003.

[10]A. Clouard, K. Jain, F. Ghenassia, L. Maillet-Contoz, J.-P.
Strassen, “Using Transactional Level Models in a SoC
Design Flow”, in “SystemC Methodologies and
Applications”, eds. W. Muller, W. Rosentiel, J. Ruf, Kluwer
Academic Publishers, 2003.

[11]See OCP-IP web site: http://www.ocpip.org.

[12]L. Benini and G. De Micheli, “Networks on Chip: A New
SoC Paradigm,” Computer, vol. 35, no. 1, Jan. 2002.

[13]A. Jantsch, H. Tenhunen (Eds.), “Networks on Chip”,
Kluwer Academic Publishers, 2003.

[14]P. G. Paulin, “Trends and Requirements for Network
Processor SoC Tools”, Presentation at Multi-Processor SoC
Seminar, Pizay, June 2002. See
http://tima.imag.fr/mpsoc/2002/slides/paulin02.pdf

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

