
13.2
Delay Budgeting in Sequential Circuit with Application
on FPGA Placement

Chao-Yang Yeh and Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering,

University of California, Santa Barbara, CA 93106, USA

slack algorithm (ZSA) [7]. It is a greedy algorithm of
ABSTRACT
Delay budgeting is a process of determining upper bounds for
net delays to guide timing-driven placement. The existing
approaches deal de facto only with combinational circuits.
However, incorporating retiming into delay budgeting
introduces more freedom to optimize sequential circuits. In
this paper, we propose an approach for budgeting sequential
circuits. We propose a new algorithm, T-SBGT, which uses an
LP formulation to solve the budgeting problem in sequential
circuits and guarantees that the clock period constraints are
met. We then utilize the skew-retiming equivalence relation
[9] and retime the circuit. We demonstrate usefulness of our
approach in the context of FPGA placement flow. An effective
algorithm to minimize Flip-Flops (FFs) number after
placement using the net slack is also proposed. The results
show the placement flow improves timing by 9%, and reduces
budget violations by 16% compared to the traditional flow.
The post-placement FF reduction algorithm decreases the FF
count by 19% on average.

Categories and Subject Descriptors

B.7.2 [Design Aids]: Delay Budgeting in Sequential Circuits
with Application on FPGA Placement

General Terms

Algorithms, Design, Theory and Performance.

Keywords

Delay budgeting, Sequential circuits, Placement, FPGA.

1. INTRODUCTION
Placement has always been a critical step in IC design. It
affects greatly the circuit’s area and performance. In order to
achieve higher speed, several approaches have been proposed
for timing-driven placement. One of them involves net
budgeting [7][5]. With a user defined expected clock period,
through budgeting, path timing constraints are translated into
length, or timing upper bounds for nets. Those upper bounds
are then used to guide placement and routing. The net-lengths
or delay upper bounds constitute a delay budget. The first net
budgeting approach for placement application was the zero-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006...$5.00.

20
assigning budgets to nets on long paths. ZSA ensures that the
net budget is maximal, i.e. no more budget can be assigned to
any of the nets without violating the path constraints. In [5],
the authors propose to assign budget ensuring the “maximum
flexibility” in placement. Their approach is able to adjust
timing budget based on the initial information, for example,
based on the results from a failed placement.

Retiming, proposed by Leiserson and Saxe in [6], is a
procedure of relocating FFs across combinational blocks to
speed up the circuit. Clock skew-equivalence retiming [9] is a
different way of looking at the retiming problem. The idea is to
compute first the clock skew for each FF to minimize the clock
period, and then to move the FFs using the skew-retiming
equivalence relation.

The existing delay budgeting approaches work only for
combinational circuits. In case of sequential circuits, their
combinational blocks are budgeted individually. FFs are
treated as primary inputs and outputs. In this paper, we
introduce budgeting problem for sequential circuits and solve
it by combining combinational budgeting technique with
retiming. By doing so we have a larger solution space and we
will have more chances to obtain a better result. We refer to
the new formulation as T-SBGT. We solve the sequential
budgeting in two steps. Step (1): In budgeting, we allow a free
introduction of clock skew to every FF. To this end, we have
modified the budgeting constraints so that they include FFs. In
our formulation we include the clock period constraints to
guarantee correct timing. After performing the clock period
optimization, we obtain clock skew assignment for each FF.
Step (2): We move FFs according to the skew-retiming
equivalence relation [11]. We consider interconnect delay in
this retiming procedure. We assume a linear interconnect delay
model. The final retimed circuit satisfies the clock period
constraints and optimizes budgeting.

We demonstrate the effectiveness of our algorithm in an FPGA
placement flow. In our experiments, we assume that the FPGA
has an island architecture, and each table look-up (TLB) block
is associated with one FF. For placement, we first decouple
FFs and TLBs and let the simulated annealing-based placer
find the best positions for FFs on interconnect. After
placement, an effective algorithm reduces the FF count using
net slack without sacrificing timing. At the same time we pair
FFs and TLBs.

This paper is organized as follows: In section 2, we define the
terminology. In section 3, we introduce previous work and
provide the background. We explain the traditional
combinational budgeting (CDB) in section 3.1. In section 3.2,
we discuss the skew-based retiming (SCO). In section 4, we
show how CDB and SCO are combined and form the timing-
aware sequential budgeting formulation (T-SBGT). CDB
2

provides the budgeting constraints in T-SBGT, and SCO
provides the clock period constraints. In section 4.1, we extend
CDB by including FFs into the constraints and obtain the
sequential budgeting formulation (S-CDB). In section 4.2, we
transform the skew variables in SCO into arrival time variables
and combine SCO with S-CDB constraints. In section 4.3, we
show the complete combined T-SBGT formulation. In
section 5, we show the flow of our algorithm with FPGA
placement. In section 6, we present experimental results. In
section 7, we conclude this work.

2. DEFINITIONS
For a given circuit, we construct a directed graph G(V,E), with
a set of vertices V and a set of edges E. The vertices correspond
to combinational modules, FFs, PIs and POs. The edges
represent source-sink relations of nets. PIs are primary inputs
and POs are primary outputs. An edge is created between
the vertices i and j if in the circuit they are connected by a net
and i drives j. We assume that gates have constant delays and
we formulate budgeting problem in terms of interconnect
delays. For each vertex i, we introduce two symbols: and

 which are the latest input arrival time and module’s delay,
respectively. PIs input arrival times are 0. For each node type
PI, FF and PO, we introduce an additional variable which
represents the clock skew assigned to that node. For PIs and
POs, their s-values are set to 0. The edge delay represents
the delay from the fanout of i to the fanin of j. is the lower
bound on delay of edge . It is used in budgeting
formulation. We also create a set PS. If there is a
combinational path from a PI or FF i to a PO or FF j, then we
include into PS. The delay budget of the edge is
denoted as . and denote the longest
and shortest path delays from i to j, respectively.
denotes the longest path delay from i to j using the as the
net delays rather than . P is the clock period.

3. BACKGROUND
In this section, we first briefly introduce the traditional delay
budgeting problem formulation (CDB). Then, we introduce the
skew-based clock optimization formulation (SCO). They will
be later extended and combined into the T-SBGT formulation.

3.1 Budgeting Formulation
Here, we summarize the budgeting formulation given in [5].
First, for a given circuit, we construct an edge-weighted,
directed graph G(V,E) as described in section 2. denotes a
delay slack of the edge and is equal to .

 is the cost for each edge in the objective function. In
[5],the authors have tried several different objective functions
and compared the results. We can set the objective function
according to the needs of a heuristic. For example, we can: (a)
allocate slacks to all nets evenly. (b) assign slacks based on the
current or estimated net lengths. The general delay budgeting
problem is formulated as follows:

 Convex Delay Budgeting Problem (CDB): Given a convex
function , and a timing constraint graph G(V,E):

 minimize:

 subject to:

 , , (EQ 1)

, , , (EQ 2)

, .

This formulation constitutes a convex programming (CP)
problem. The arrival time of PIs are 0. In [5], the authors
converted this CDB problem into a linear programming
problem and used graph-based simplex algorithm to solve it.

Later on we will transform CDB into its sequential version, S-
CDB, and include FFs in the formulation.

3.2 Clock skew-equivalence retiming
formulation

Clock skew-equivalence retiming has been proposed in [4].
There, the clock skew problem for minimizing the clock period
is found by solving the following LP.

Skew-based Clock Optimization Formulation (SCO): Given a
circuit with node and edge delays, the set PS and clock period
P.

 minimize: P

 subject to:

, (EQ 3)

, (EQ 4)

, are the hold and setup times of FFs. The
formula (EQ 4) states the long path constraints and (EQ 3)
states the short path constraints. In [9], the authors use a
formulation as stated above to do retiming. The procedure
contains two steps:

Step 1: Solve the optimization and find skews assigned to FFs.

Step 2: Using the skew-retiming equivalence, move FFs to
bring skews to 0 as much as possible. Moving FF across gates
has a similar effect as introducing clock skew. If an FF has a
positive (negative) skew, it is retimed backward (forward).

There are two significant points about the SCO formulation
which makes it particularly useful for our purpose:

(a) We are going to assign clock skew to FFs when solving the
sequential budgeting problem. The formulation of SCO also is
based on skews. So, the constraints of both formulations can be
combined. Additionally, we can include clock period
constraints in sequential budgeting. But, modules other than
FFs cannot be assigned skews, so we have to transform skew
variables into the latest arrival time variables.

(b) Based on the skew-retiming equivalence relation, the
assigned skews can be resolved by moving FFs.

4. TIMING-AWARE SEQUENTIAL
DELAY BUDGETING

To allow the CDB formulation truly optimize sequential
circuits, we introduce clock skew on FFs. We call this new
formulation S-CDB. Using just S-CDB to optimize budgeting
may affect the clock period requirement of a circuit, so we
combine SCO with it. The combined formulation is called T-
SBGT.

First, we describe, how we transform the CDB into the S-CDB.
Next, we transform the skew variables in SCO into the latest
arrival times. After having the new SCO constraints and the S-
CDB, we combine them together into the T-SBGT. After
optimization, FFs are assigned skews. The assigned clock
skews can then be reduced by moving FFs using the skew-
retiming equivalence relation.

���

��
��

��

ϒ��
���

���

��� ���
��� �	�
��() ���
��()

��	�
��()
���

ϒ��

��
��� �� ��– ��–()

���
��()

���
��()
���
��()

��� �∈∑

�� �� ��– ��–=
�� �≥ ���∀ �∈
�� �= �
�∈∀ �� �≥ � �∈∀

 �
�∈ � �

�∈

�� �� ���
��()+() ����	+– ��≤ ���∀
�∈

�� �
���
 �� �	�
��()+()+ + ��
+< ���∀
�∈

����	 �
���

203

4.1 Transforming budgeting formulation
from combinational into sequential

Since the original CDB formulation applies only to
combinational circuits, here we transform it such that it can
handle sequential circuits.

First, based on the constraints and ,
the constraint (EQ 1) is transformed into:

, (EQ 5)

(EQ 5) states that the latest arrival time at j must be bigger than
the arrival time at a fanin i plus the delay of i. Suppose that
originally if a clock arrives at time 0 to an FF i, i will have a
correct value at its output at time . If the latest fanin arrival
time to i is which is less than P, we can adjust i’s clock
skew to . Now is a negative value. FF i will have
a correct output at the time . The allowed delay of
combinational paths originating from i can be extended by

. If is bigger than P, we can delay the clock signal
by . So the combinational paths originating at i have to
be shortened by . Based on this analysis, for an edge

, if i is an FF, the timing of this edge has to satisfy
. We can transform (EQ 5) into the following

constraints:

 , if (EQ 6)

 , if (EQ 7)

In our formulation we also set budget lower bounds s on all
edges. Those bounds can be obtained from the initial
placement or can be predicted. We use them to guide the next
placement run, hopefully, towards better results. Now the
latest arrival time at j must be bigger than the arrival time at
the fanin of i plus the delay of i and . Finally, we obtain the
S-CDB formulation. In S-CDB, we use edge budgets as
parameters in the cost function. We also include the edge
timing constraints in the formulation. Note that unlike CDB, S-
CDB considers FFs and budget lower bounds on the edges.

 Sequential Circuit Convex Delay Budgeting Problem (S-
CDB): Given a convex function , and a timing constraint
graph G(V,E):

 minimize:

(EQ 8)

 subject to:

, if (EQ 9)

, if (EQ 10)

, ; ,

P denotes the expected clock period of the circuit. For PO the
arrival time must to be smaller than P. For PI the arrival time is
set to 0. is the slack of if i is not an FF.

 is the slack if i is an FF. controls the
weighting for each edge. (EQ 9) and (EQ 10) are delay
constraints. This formulation allows us to optimize budgeting
in sequential circuit.

4.2 Transforming the skew-based clock
optimization (SCO) formulation

To apply the SCO constraints in the S-CDB, we have to change
the clock skew variables in the SCO to the latest arrival times

of some signals. Following the discussion from the previous
subsection, we set the clock skew of an FF i as the latest
fanin arrival time . Since PIs have skew 0, for PI j, the
skew is replaced by . of every FF will be also
assigned 0. Based on this and assuming that the short path
constraints are always satisfied, and setting to 0 to
simplify the formulation, we obtain (EQ 11) and (EQ 12) from
(EQ 4).

 , if (EQ 11)

, if (EQ 12)

4.3 Adding the clock period constraints to the
sequential budgeting formulation

After introducing the FFs in the CDB and transforming the
skews into arrival times in SCO, we are ready to combine both
constraints. The S-CDB constraints optimize budgeting and the
new SCO formulation guarantees that the circuit meets clock
period constraints. The new formulation is as follows:

Timing-aware Sequential Budgeting Formulation (T-SBGT):
Given the clock period P, a convex function and a timing
constraint graph G(V,E):

 minimize:

 subject to:

, if (EQ 13)

, if (EQ 14)

, if (EQ 15)

, if (EQ 16)

, (EQ 17)

, ; ,

(EQ 13) and (EQ 14) are the clock period constraints from
(EQ 11), (EQ 12); (EQ 15), (EQ 16) are the budgeting
constraints from S-CDB. This LP structure is very simple and
we can use graph-based simplex algorithm described in [5] to
solve it. The retiming constraints guarantee that the circuit
meets clock period constraints for a given P. It is necessary to
add (EQ 17). This is so because we do not constraint the range
of and allow it to be bigger than the original edge delay.
We need to make sure that the longest path composed of edge
budget lower bounds is smaller than the real longest path
delay. Otherwise, the timing constraints (EQ 13) and (EQ 14)
will be violated.

4.4 Designing the cost function
We would like our budgeting cost function to assign smaller
budgets to long nets. The idea is to constraint longer nets and
give shorter nets more flexibility. The net length can be
predicted, can be known from an initial placement run, or can
be assigned by a user. We use the product of and the
budget of as the cost function for S-CDB (EQ 8). The
terms and P are constants in (EQ 8) and do not affect the
optimization. Since the parameter is constant, the cost
function assigned to each edge can be transformed to weights
for each node. Instead of enumerating all the edges, the weight
of a node can be obtained by a summation of fanin edge

�� �� ��– ��–=
�� �≥

�� ��+ ��≤ ���∀ �∈

�
�

��
��
– ��
–

�
�

– �
�

+

��
– ��
�
�

–
��
–

���
�
�

–() �
�

+ �
�

≤

��
–() ��– ��–≤ ���∀ �∈ � ��∈
�� ��– ��–≤ ���∀ �∈ � ��∉

���

���

���

��� �� ��– ��–() �� � ��∉()

��� �� ��–
 ��–+() �� � ��∈()
��� �∈
∑

��
–() ��– �� ���+()–≤ ���∀ �∈ � ��∈
�� ��– �� ���+()–≤ ���∀ �∈ � ��∉

��
≤ �
�∈ �� �= �
�∈

�� ��– ��–() ���
�
�

�
�

– �
�

–
+() �
��

��
��
–

�� �� ��

�
���

�� ��–
 �� �	�
��()+()–≤ ���∀
�∈ � ��∈

�� ��– �� �	�
��()+()–≤ ���∀
�∈ � ��∉

���

�
��

�
�

�
�

– �
�

–() �� � ��∉()

��� �� ��–
 ��–+() �� � ��∈()
��� �∈
∑

�� ��–
 �� �	�
��()+()–≤ ���∀
�∈ � ��∈

�� ��– �� �	�
��()+()–≤ ���∀
�∈ � ��∉

�� ��–
 �� ���+()–≤ ���∀ �∈ � ��∈

�� ��– �� ���+()–≤ ���∀ �∈ � ��∉
��	�
��() �	�
��()≤ ���∀
�∈

��
≤ �
�∈ �� �= �
�∈

���

ϒ��
���

��
ϒ��
204

weights minus the summation of fanout edge delay, as stated
below:

 (EQ 18)

 (EQ 19)

(EQ 20)

4.5 Retiming implementation
After solving the T-SBGT formulation, in step 2 of the flow,
we do retiming to move FFs and realize the clock skew
assigned to each FF. Unlike previous algorithms which
perform retiming only in the logic level, or use lumped wire
delays [8], the retiming algorithm that we implemented
considers the interconnect delay. So, even when an FF with
non-zero skew cannot be retimed, because of other constraints,
for example the skew is not big enough to retime across blocks,
it can be still retimed across the interconnect. This is important
because interconnect delays are becoming dominating factors
of circuit performance [3].

4.6 An example
We illustrate the T-SBGT procedure using an example and
show that it can optimize the budgeting in sequential circuit
without violating the clock period constraint. In this example,
for simplicity, we set equal to . We also use
optimization goal (EQ 19) in CDB, so that we can explain the
cost easier.

In Figure 1, numbers on the edges are delay values. Node O5
has delay of 0 units and all other nodes have delay of 1 unit.
We set the clock period to 7 units. The original budgeting
formulation cannot move FFs. If we run CDB, we obtain the
arrival time assignments as those marked below each node.
The braced number for FF is the time clock comes and FF has a
correct value. According to the optimization function (EQ 19),
the cost of is . Delay of this edge is 2 and 7 is the
difference between the fanin arrival times of I1 and F6.
Similarly, the cost of is . The total cost of this
netlist is 33.

Figure 2 shows the arrival time assigned after we apply T-
SBGT algorithm. The arrival time for both FFs are 3.5, so their

skews are -3.5. The edge delays do not change, but their
budgets have been changed. Now the cost for becomes

 and the cost for becomes . The total cost
of this netlist is 27.5, which is the minimum. The budgets for
shorter nets have increased and the budgets for long nets have
decreased.

Figure 3 shows the result after moving F6 and F7 according to
their skews, and merging them into a new flip-flop F8. The
new edge delays are shown above each edge. The budgeting
cost is 29 for this circuit. The cost after moving FFs is close to
that before moving. It is still smaller than that obtained by
CDB.

5. APPLICATION TO FPGA PLACEMENT
Figure 4 shows the new placement flow that we use in the
experiment. We modified VPR and refer to the modified
versions as VPR-FF and VPR-BGT. We have developed also a
method of reducing the number of FFs after placement and
maintaining the correct timing. These new algorithms will be
explained in this section. In sub-section 5.3, we will explain
the whole flow in more detail.

5.1 Modified placer
In many commercial FPGA architectures developed by Xilinx
or Altera, the FFs and TLBs are paired and form the
configurable logic blocks (CLBs), but can be accessed
independently. However, in VPR, CLBs and TLBs can not be
used independently. We modify VPR so that the FFs and TLBs
do not have to be combined together. This provides us an
advantage that the placer will decide the best locations for FFs
on interconnect. This is important because interconnect delay
accounts for more and more percentage in critical path delay
[3]. The new placement algorithm is called VPR-FF.

To allow the placement algorithm to consider budgeting, we
further modify the VPR-FF into the VPR-BGT. VPR-BGT has
a new cost function. Originally the timing cost for each edge

 is . is computed by VPR as a product of net

���
ϒ�� �� ��– ��–()⋅ �� � ��∉()

ϒ�� �� ��–
 ��–+()⋅ �� � ��∈()
��� �∈
∑

����� ϒ�� �� ��–()⋅
��� �∈
∑

����� ϒ��

� ����� �()∈
∑ ϒ��

� ������ �()∈
∑–

 
 
 

��⋅
� �∈
∑

��� ϒ��

O5B4B3

F6

F7

I1

I2

2

1

12
1

1

0

0

7

7

2 5
7

Figure 1. Combinational budgeting skew

(0)

(0)

��� ��, � �×

��� ��, 	 �×

O5B4B3

F6

F7

I1

I2

2

1

12
1

1

0

0

 3.5

0 3
7

 3.5

Figure 2. S-BGT skew

(-3.5)

(-3.5)

��� ��,
�
��× ��� ��, 	
��×

O5B4

I1

I2

1
0

0
7

B3 F83

2

1.5 0.5

4 7 5

Figure 3. The budget assignment after moving FF

(0)

Run VPR-FF to estimate wire length

Sequential budgeting
(T-SBGT) Retiming

Combinational budgeting

Net budget file

Placement using VPR-BGT

Reduce FF

Figure 4. New and original placement flows

FF duplication

new flow original flow

��� ���� ����
205

delay from i to j and the net criticality. Now the timing cost is
. is the budgeting cost and is defined by

(EQ 21):

 (EQ 21)

There are two cases in (EQ 21). In the first case, we assign
high costs for nets with delays larger than their budgets. In the
second case, those with smaller delays get negative budgeting
cost. The weights, 1000, in the first case is very big compared
to the weight, 0.003, in the second case. If the weight
difference is not big enough, the cost is dominated by the first
case.

5.2 FF reduction after placement
Here we propose an algorithm for post-layout FF reduction. It
uses net slacks to determine groups of FFs to be combined and
reduced.

After placement, we can compute timing slack for each net.
Knowing the slacks of nets connected to each FF, we can find
timing feasible region for their placement. Timing feasible
region is defined as the region where this FF can be placed
without violating timing. In our implementation, this area is
approximated by a circle with a radius equal to the minimum
slack of all nets connecting to it. The problem is to find FF
groups which can be combined together without timing
violation. First, we create a graph G(V,E). Its nodes V
correspond to FFs. For every pair of FFs driven by the same
module in the circuit, we create an edge between them if their
feasible placement regions intersect. Those edges form the
edge set E. Then we apply the minimum-clique-cover
algorithm on G. Each clique represents an FF-group that can be
reduced into one FF without timing violation. Since minimum-
clique-cover algorithm is an NP-complete problem, we use a
simple heuristic to find the cliques. We first find the maximum
clique of the circuit and then replace all FFs in the clique by one
FF. Then we find another maximum clique and continue the
iterations.

For example in Figure 5(a), the circles around FFs F1, F2 and
F3 represent their movable areas. Figure 5(b) shows the clique
graph, with three nodes f1, f2 and f3 corresponding to F1, F2
and F3 respectively. Since for F1 and F2, their feasible regions
intersect and they are driven by the same node, an edge is
created between them in the clique graph. The maximum
clique found in G contains f1 and f2. F1 and F2 in the circuit
will be replaced with one FF. After the reduction the total FF
number in the circuit will be reduced from 3 to 2.

5.3 New placement flow
In this section we explain the placement flow of Figure 4 in
greater detail. We apply FF duplication to the benchmark
circuits before running the VPR-FF placement. We duplicate

FFs with large number of fanout so we can utilize better the
empty FF slots. Moderately duplicating FFs helps placement
and routing.

In our case, the initial wire length estimation is obtained by
running a fast mode VPR-FF placement. Since T-SBGT
considers clock period constraints, it can also be used as a
retiming algorithm. We compare it with retiming using the
SCO formulation. In this step, for both T-SBGT and SCO
algorithms, we set the clock period, P, to the clock period
achieved by the fast placement run. We set equal to in
T-SBGT. After running the T-SBGT and the original retiming
algorithm, we obtain the retimed netlists. We set the skew of
each FF to zero and run the combinational budgeting algorithm
again using the cost function (EQ 20) and generate a budget
file. With the retimed netlist and the budget file, we run the
VPR-BGT placement algorithm. After VPR-BGT placement,
we also compute the budget violation ratio by dividing the
number of net budget violations by the total number of nets.
Fewer budgeting violations mean that it is easier for the
placement to meet timing goal and the budgeting is better [5].
We also apply the FF reduction algorithm at the end of both
flows for post-placement optimization.

6. EXPERIMENTAL RESULTS
We use MCNC benchmark for our experiments. We route the
circuits with larger channel widths than required, so the results
are controlled by placement. We use 0.13um technology
parameters to calculate the timing result. Table 1 shows the
result. In the table, T-SBGT denotes the placement flow using
T-SBGT for retiming and orig refers to the flow with the
original retiming algorithm. The column labeled #TLB lists the
number of TLB in the circuit. #FF denotes the initial number
of FFs in the circuit. To take advantage of the empty FF slots
in the circuit, we first duplicate FFs with high degree fanouts.
In the fourth column, max_fo is the upper bound on the number
of fanouts an FF can have after duplication. The fifth column,
#FF_d, gives the number of FFs after duplication. In some
circuits, like s298 and clma, the FF number increases a lot,
because many FFs in these circuits have huge fanouts. We
adjust the number of maximum-fanout allowed (max_fo), so
that #FF will not be too big compared to #TLB. During the
skew-equivalence retiming, FF number may increase
considerably. We add constraints in the LP to limit the skew of
all FF: , and . We adjust
k by running the program several times so that the number of
FFs generated after retiming will not exceed 80% of the total
number of TLBs.

As shown in the sixth and seventh columns, after retiming, T-
SBGT needs 5.05 times fewer FFs than the original flow. The
difference is especially big for s298 and clma, which as
mentioned earlier, have large average FF fanouts. We think the
reason for the reduction is because the original retiming
formulation only finds a feasible solution for the clock period
and only the FFs on the critical path or critical loop are
balanced. Those FFs not on the critical paths could have many
unnecessary retiming moves, so the FF number could increase
a lot. On the other hand, T-SBGT tries to balance FFs on all the
paths and loops to optimize budgeting. It also allows FFs move
to large delay paths to optimize budgeting. For the results, it
seems that spreading FFs on all paths evenly is better for
reducing FF number than placing them arbitrarily, even though
timing is satisfied.

���� ����+ ����

����
	��� ϒ�� ���–()���× �� ϒ�� ���>()

����
 ϒ�� ���–()× �
��






=

Figure 5. (a) movable area and (b) creation of clique

(a) (b)
F1

F2

f1

f2F3
f3

��� ϒ��

 �⋅ ��
 � �–()⋅≥ ≥ � ��∈()∀ � �<
206

The new flow improves timing by about 9% compared to the
original flow. The violation is also reduced by 16% compared
to the original flow.

The last two columns show the FF reduction after running the
clique-covering algorithm. We note that the number of FF
reduced is about proportional to the number of FFs increase
during the retiming step. The results show that the FF
reduction algorithm is quite effective and can be used as a
post-placement refinement procedure. On the average, the FF
reduction is 19% compared to the original number of FFs.

7. CONCLUSIONS
In this work, we present a new budgeting algorithm which
targets sequential circuits. This algorithm solves sequential
circuits better because it allows retiming to further optimize
budgeting. Besides optimizing budgeting, the formulation of
the algorithm also includes clock period constraints, so that we
guarantee timing satisfaction. Another post-layout
optimization algorithm is also proposed to reduce FF numbers
using slacks and preserving timing requirements. We apply our
new algorithms in an FPGA placement flow.

The results show the placement flow improves timing by 9%,
and reduces budget violations by 16% compared to the
traditional flow. The post-placement FF reduction algorithm
decreases the FF count by 19% on average.

Acknowledgement. This work was supported by the
California MICRO program through Xilinx and Mentor
Graphics.

8. REFERENCES
[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and

Routing Tool for FPGA Research”, International Workshop
on Field Programmable Logic and Applications, 1997.

[2] J. Cong and S. K. Lim, “Physical Planning with Retiming,”
Proc. IEEE International Conference on Computer Aided
Design, San Jose, California, pp. 2-7, November 2000.

[3] J. Cong, http://ballade.cs.ucla.edu/~cong/slides/sasimi01
_invited_final.pdf.

[4] J. P. Fishburn, “Clock skew optimization”, IEEE Trans.
Comput., vol 39, pp 945-951, July, 1990.

[5] D. Knol, G. Tellez and M. Sarrafzadeh, “A Delay Budgeting
Algorithm Ensuring Maximum Flexibility in Placement”,
IEEE Transactions on Computer Aided Design, vol 16, no 11,
pp 1332-1341, 1997.

[6] C. E. Leiserson and J. B. Saxe, “Optimizing Synchronous
Systems”, In Journal of VLSI and Computer Systems, pp. 41-
67, 1983.

[7] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa,
“Generation of performance constraints for layout”, IEEE
Trans. Computer Aided Design, vol 8, pp 860-874, 1989.

[8] A. Ranjan, A. Srivastava, V. Karnam, M. Sarrafzadeh,
“Layout aware retiming”, Proceedings of the 2001 conference
on Great lakes symposium on VLSI, p.25-30, March 2001.

[9] S. S. Sapatnekar, R. B. Deokar, “Utilizing the Retiming-Skew
Equivalence in a Practical Algorithm for Retiming Large
Circuits”, IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, vol 15, no 10, pp 1237-1248,

Oct, 1996.

Table 1. T-SBGT and original retiming in the new and traditional placement flow

circuit # TLB # FF max_fo # FF_d # FF after retiming clock period (ns) budget violation% FF reduction%

T-SBGT orig T-SBGT orig T-SBGT orig T-SBGT orig

bigkey 1707 224 10 224 896 1468 5.90 7.1 6.01 5.20 0 13

dsip 1370 224 5 228 893 972 5.28 6.31 4.74 4.62 0 4.93

elliptic 3602 1122 100 1134 1154 1758 17.05 18.83 5.61 10.24 0.8 17.7

frisc 3539 886 10 995 1099 2400 23.36 23.13 3.33 4.55 6 39.8

s298 1930 8 50 50 50 1281 22.61 23.03 5.80 6.40 0 28.9

s38417 6096 1463 30 1589 1697 4664 14.36 15.68 5.28 7.02 3.7 44.9

tseng 1046 385 50 391 392 706 13.30 13.34 3.88 4.10 1.5 33.1

diffeq 1494 377 30 409 487 1153 13.97 14.12 4.74 6.62 6.6 33.1

s38584 6281 1260 10 1578 1623 4765 11.39 11.81 4.44 3.82 14.2 49.8

clma 8381 33 10 409 751 6458 25.7 31.8 7.49 6.21 25.4 56.6

1 5.05 1 1.09 1.0 1.16 19.0
207

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

