
Optimal Code Size Reduction for Software-Pipelined and
Unfolded Loops �

Qingfeng Zhuge, Bin Xiao, Zili Shao,
Edwin H.-M. Sha

Department of Computer Science
University of Texas at Dallas

Richardson, Texas 75083

Chantana Chantrapornchai
Faculty of Science

Silpakorn University
Nakorn Pathom, Thailand 73000

ABSTRACT
Software pipelining and unfolding are commonly used techniques
to increase parallelism for DSP applications. However, these
techniques expand the code size of the application significantly.
For most DSP systems with limited memory resources, code
size becomes one of the most critical concerns for the high-
performance applications. In this paper, we present the code
size reduction theory based on retiming and unfolding concepts.
We propose a code size reduction framework to achieve the opti-
mal code size of software-pipelined and unfolded loops by using
conditional registers. The experimental results on several well-
know benchmarks show the effectiveness of our code size reduc-
tion technique in controlling the code size of optimized loops.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems—Real-Time and Embedded Systems;
C.1.1 [Processor Architectures]: Single Data Stream Architec-
tures—RISC/CISC, VLIW architectures; D.3.4 [Programming
Languages]: Procssors—Compilers

General Terms
Design

Keywords
Software pipelining, Retiming, Unfolding, Rotation scheduling

1. INTRODUCTION
Many real-time or high-performance DSP applications, such

as telecommunication and image processing, exhibit intensive
computations in a repetitive pattern such as loops. Software

�This work is partially supported by TI University Program,
NSF EIA-0103709, Texas ARP 009741-0028-2001, USA, and
by NECTEC, NT-B-06-4D-16-509, Thailand.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

pipelining and unfolding are widely used in various compilers
[2, 6, 8] to expose the parallelisms in these loops. The compiler
of TI’s TMS320C6000, a family of high-performance VLIW
processors targeted toward Digital Signal Processing (DSP), is
an example of using software pipelining to exploit the multiple
functional units [4]. However, the drawback of using these opti-
mization techniques is the expanded code size. Software pipelin-
ing introduces prologue and epilogue sections, which are the
codes executed before entering and after leaving the new loop
body. Unfolding expands a loop body and may result in codes
that are outside of the unfolded loop body. For example, unfold-
ing a loop with 10 instructions for 2 times, and then performing
software pipelining with pipeline depth of 3, will result in a new
code with size of 60 instructions. For some kind of architec-
tures such as embedded systems, memory resources are limited.
The program code size becomes a major concern for these sys-
tems. Two critical requirements, performance and code size, are
conflicting with each other when using software pipelining and
unfolding techniques to increase parallelisms. The difficult task
is then left to the designers to decide the acceptable performance
with code size constraint.

Some ad-hoc code size reduction techniques were used to re-
duce the prologue/epilogue produced by software pipelining. How-
ever, the quality of their techniques could not be guaranteed
[4, 8]. The code size control technique such as code collaps-
ing technique presented in [4] is developed to be applied on
TMS320C6000 family. However, there is no theoretical frame-
work presented in literature for code size control techniques of
software-pipelined and unfolded loops.

In this paper, we present the theoretical foundation as well
as code size reduction framework when software pipelining and
unfolding techniques are used. The performance of software-
pipelined applications after applying code size reduction can be
further improved by some optimization techniques considering
memory constraints and data prefetching [3, 10].

Our contributions in this paper are as follows:

1. Present the code size reduction theory based on funda-
mental understanding of retiming, software pipelining and
unfolding.

2. Propose the code size reduction framework for control-
ling the code size of the software-pipelined and unfolded
loops by using conditional registers without jeopardizing
the performance.

3. Give the required number of conditional registers to achieve
the optimal code size.

144

4. Show that the approach which applies retiming first and
then unfolding to a loop results in a smaller code size than
the approach that applies unfolding first and then retiming.

The experiments show that our techniques can reduce the code
size of the software-pipelined and unfolded loops up to 61%.

In Section 2, we introduce several basic concepts and prin-
ciples used in the code size reduction technique, such as data
flow graph, retiming and unfolding. In Section 3, we illustrate
the code size reduction framework by using conditional regis-
ters. Then, Section 4 presents the code size reduction theorems
that consider the code size requirement and the number of con-
ditional registers needed to achieve the optimal code size. Sec-
tion 5 presents the experimental results and Section 6 concludes
the paper.

2. BASIC PRINCIPLES
In this section, we give an overview of some necessary con-

cepts related to our code size reduction techniques.

2.1 Data Flow Graph
A data flow graph (DFG)G = hV;E; d; ti is a node-weighted

and edge-weighted directed graph, where V is the set of compu-
tation nodes, E � V �V is the set of edges, d is a function from
E to a set of non-negative integers, representing the number of
delays between any two nodes, and t is a function from V to a
set of positive integers, representing a computation time of each
node.

The inter-iteration data dependencies are represented by edges
with delays, indicated by edges with bar lines in the graph. An
edge e(u ! v) with delay d(e) means the input data of node v
is generated by the computation of node u which is in d(e) iter-
ations earlier. Iterative applications can be represented by cyclic
data flow graphs. The dependencies within the same iteration
are represented by edges with d(e) = 0, called intra-iteration
dependency. A legal static schedule must obey both intra and
inter-iteration dependencies. The cycle period of a DFG is de-
fined as the computation time of the longest path without delay
in the graph. The cycle period of a DFG corresponds to the min-
imum schedule length of one iteration when there is no resource
constraint. In this paper, we assume the computation time is 1
time unit without special notation. The iteration period is de-
fined as an average computation time it takes to compute one
iteration of a loop body. Each cycle of a DFG imposes the lower
bound on the iteration period. This lower bound is called itera-
tion bound of a DFG. A schedule is said to be rate-optimal if its
iteration period equals to its iteration bound.

2.2 Retiming and Unfolding
The retiming technique [7] can be applied on a data flow graph

to improve the cycle period by evenly distributing the delays in
the graph. For a retimed DFG G = hV;E; d; ti, retiming opera-
tion is represented by retiming function r : V ! Z. The retim-
ing function value r(u) represents the number of delays pushed
through a node u 2 V . The number of delays of an edge e(u!
v) after applying retiming r is dr(e) = d(e)+ r(u)� r(v). For
any legal retiming r, we have dr(e) � 0, and the total number
of delays remains constant for any cycle in the graph.

For example, consider node A in the DFG in Figure 1(a).
Since r(A) = 1, one delay is drawn from all incoming edges
of A and pushes through all outgoing edges of A. Figure 1(b)
shows the retimed graph where the bar line represents a delay on
the edge.

A

B

(a)

B

A

(b)

Figure 1: (a) A simple DFG. (b) The retimed DFG with
r(A) = 1 and r(B) = 0.

Consider the retimed graph in Figure 1(b). When a delay is
pushed through node A to its outgoing edge, the actual effect on
the schedule of the new DFG is that the ith copy of A is shifted
up and is executed with (i� 1)th copy of node B. The schedule
length of the new loop body is then reduced from two control
steps to one control steps. Hence, every retiming operation cor-
responds to a software pipelining operation. When one delay
is pushed forward through a node u, every copy of this node
is shifted up by one iteration, and the first copy of the node is
shifted out of the first iteration into the prologue.

Iteration
The Original

Inter−iteration
Dependency

A

 B

A
 B

A

 B

A

A

 B

 B

(a)

Inter−iteration
Dependency

Prologue

Repeating
Schedule

Epilogue

time

B

B A

B A

B A

B A

A

(b)

Figure 2: (a) A static schedule of original loop. (b) The
pipelined loops.

We can measure the size of prologue and epilogue if the min-
imum retiming value in the graph is 0. This can be done by sim-
ply subtracting all the retiming values by the minimum retiming
value, which is called normalized retiming function. When r(v)
delays are pushed forward through node v, there are r(v) copies
of node v appeared in the prologue. Let the maximum retiming
value in the data flow graph be maxur(u), then the number of
copies of node v appeared in the epilogue is maxur(u)� r(v).
After retiming, the new loop body is repeated for n�maxur(u)
times where n is the number of iterations in the original loop.

Unfolding technique is popularly used in a compiler design.
For a give data flow Graph G = (V;E; d; t), given an unfolding
factor f , the unfolded graph Gf = (Vf ; Ef ; df ; t) is obtained
by unfolding G for f times. In particular, all nodes v 2 V are
duplicated into f copies in Vf and the edges and their delays
are adjusted properly [2]. Unfolding exposes more parallelism

145

among different iterations. To generate a rate-optimal schedule,
a commonly used method is to unfold the loop body and then
do software pipelining. Obviously, the code size grows propor-
tionally with the unfolding factor. Besides, if the number of it-
erations in the original loop program n is not divisible by the
unfolding factor f , the last n(mod)f iterations need to be ex-
ecuted out of loop body. These remaining iterations add more
code size in an unfolded program. Due to the significant code
size expansion resulted from performance optimization, control-
ling code size of optimized loops becomes even more critical for
embedded systems with limited memory space.

3. CODE SIZE REDUCTION FRAMEWORK
In this section, we propose the code size reduction framework

by using conditional register and conditional operation to imple-
ment code size reduction technique. We will show that this tech-
nique can achieve the optimal code size of software-pipelined
and/or unfolded loops without jeopardizing the performance by
and large.

3.1 Conditional Register and Conditional Op-
eration

Conditional registers and conditional operations are commonly
implemented in many architectures, such as TI’s TMS320C6000
family [4,9] and IA64 architecture [5]. Conditional registers are
sometimes called predicate registers. Generally speaking, these
registers only hold boolean values which is the result of a con-
ditional test. In some architecture, conditional registers are a
subset of general register file [4]. The execution of a conditional
instruction depends on the result of the conditional test. If the
condition test is true, the instruction is executed. Otherwise, the
instruction is disabled or nullified. Such guarded instructions are
also called conditional operations.

Using the conditional register, an instruction in the loop body
may be guarded in a way that it starts execution in a later itera-
tion. For example, the following code,

p1 = 1;
for i = 1 to n do

(p1) A[i] = E[i-4] + 9;
p1 = p1 - 1;

end

indicates that the computation of node A can be executed from the sec-
ond iteration. In other words, when p1 > 0, the instruction at node A
is disable. Conditional test is conducted at the beginning of the execu-
tion stage in many implemented architectures [5, 9]. Then, the value of
conditional register p1 is decreased every iteration.

3.2 Code Size Reduction for Retimed Loops
The conditional operation can be used to reduce the code in the pro-

logue and epilogue introduced by the retiming technique. We set the
initial value of conditional registers as the maximum retiming value mi-
nus the retiming value of the guarded computation node v, i.e. p =
maxur(u) � r(v). We have to specify that the instruction is executed
only when 0 � p > �LC . In other words, the instruction is disabled
when p > 0 or p � �LC , where LC represents the original loop
counter. Hence, the loop boundary must be specified in the conditional
register.

We propose a new instruction to set the initial value and boundary of
a conditional register.

setp p1 = 3 : -LC

This instruction sets the initial value of p1 to 3. Also, the guarded in-
struction will be disabled when p1 > 0 or p1 � �LC . The value
of conditional register p is decreased by 1 in every iteration using an ex-
plicit decrement instruction. If r(A) < maxur(u), the execution of the
operation will be disabled in the first (maxur(u) � r(A)) iterations,

E[n−1] = D[n−1] + 30;
D[n] = A[n] * C[n];

B[n] = A[n] * 5;

E[n−2] = D[n−2] + 30;

C[n] = A[n] + B[n−2];
D[n−1] = A[n−1] * C[n−1];

A[2] = E[−2] + 9;
A[1] = E[−3] + 9;

B[1] = A[1] * 5;

A[3] = E[−1] + 9;
B[2] = A[2] * 5;

for i = 1 to n−3 do

end

C[1] = A[1] + B[−1];

C[2] = A[2] + B[0];
D[1] = A[1] * C[1];

A[i+3] = E[i−1] + 9;
B[i+2] = A[i+2] * 5;
C[i+2] = A[i+2] + B[i];
D[i+1] = A[i+1] * C[i+1];
E[i] = D[i] + 30;

E[n] = D[n] + 30;

(a)

end

p2 <−− 1;
p3 <−− 2;
p4 <−− 3;

p1 = p1 − 1;

p2 = p2 − 1;

p3 = p3 − 1;

p4 = p4 − 1;

p1 <−− 0; // setp p1 = 0 : −n

(p1) A[i+3] = E[i−1] + 9;

(p3) D[i+1] = A[i+1] * C[i+1];

(p4) E[i] = D[i] + 30;

(p2) B[i+2] = A[i+2] * 5;
(p2) C[i+2] = A[i+2] + B[i];

for i = −2 to n do

(b)

Epilogue

Prologue

Static
Schedule

(2)D[−1]

(1)D[0]

(0)D[1]

(−1)D[2]

(−3)D[n−1]

(−4)D[n]

(−5)D[n+1]

(1)B[0]

(0)B[1]

(−1)B[2]

(−2)B[3]

(−4)B[n]

(−5)B[n+1]

(−6)B[n+2]

(3)E[−2]

(2)E[−1]

(1)E[0]

(0)E[1]

(−2)E[n−2]

(−3)E[n−1]

(−4)E[n]

(1)C[0]

(0)C[1]

(−1)C[2]

(−2)C[3]

(−4)C[n]

(−4)C[n+1]

(−4)C[n+2]

(0)A[1]

(−1)A[2]

(−2)A[3]

(−3)A[4]

(−4)A[n+1]

(−4)A[n+2]

[−4]A[n+3]

(−1)E[i] (−3)C[i+2] (−4)A[i+3](−2)D[i+1] (−3)B[i+2]

(c)

Figure 3: (a) Software-pipelined code. (b) Code after remov-
ing prologue/epilogue. (c) Execution sequence.

until the conditional register value is decremented downto �LC . The
comparison between the value of conditional register and the negative
loop counter (-LC) is implemented by hardware.

Hence, we can use conditional registers and the retiming function to
eliminate all the code in prologue and epilogue. Figure 3(b) shows the
code after removing prologue/epilogue of the code in Figure 3(a). The
conditional registers p1, p2, p3 and p4 are used for different retiming
values for nodes A, B and C, D as well as E respectively. Each of them
is initialized to a different value depending on its retiming value, and is
decremented for every iteration. Since there are four different retiming
values, we need to use four conditional registers to completely remove
prologue and epilogue. A decrement instruction needs to be inserted into
the loop body for each register. For VLIW architecture, the inserted in-
structions can be put into a slot of the long instruction word wherever
possible after all the guarded instructions are issued. The decrement in-
structions can also be parallelized with other instructions by software
pipelining. In most cases, code size reduction does not hurt the perfor-
mance of an optimized loop. Note that the loop will now be executed for
n�3+3+3 = n+3 times, since it first decreases 3 iterations by soft-
ware pipelining, which is maxur(u) in this example, and then adds 3
iterations of prologue and the other 3 of epilogue. Figure 3(c) shows the
execution sequence of the conditional operations in our implementation.
The numbers in parentheses are the values of conditional registers.

for i = 1 to n do
A[i] = B[i-3] * 3;
B[i] = A[i]+ 7;
C[i] = B[i] * 2;

end

Figure 4: A Simple loop

146

3.3 Code Size Reduction for Unfolded Loops
Consider the code in Figure 4. After unfolded three times, we have

the code in Figure 5(a). If n is not divisible by 3, in the unfolded code,
the last two iterations of the original loop is performed outside the loop
in Figure 5(a). Figure 5(b) shows the new code that the execution of the
these remaining iterations are smaller. We obtain the minimal code size
by using only one conditional register p1. For any unfolded loops, we
need only one conditional register, namely R to completely remove the
expanded code outside the new unfolded loop body. The initial value
of R is set to 0 and -LC. Value inside R is decremented by unfolding
factor f for each iteration. When R equals to -LC, the loop will stop
execution. Suppose the original code size of the loop is Lorig , we can
totally reduce (n mod f) � Lorig � 2 instructions if n is not divisible
by unfolding factor f .

for i = 1 to 3bn
3
c do by 3

A[i] = B[i-3] * 3;
B[i] = A[i]+ 7;
C[i] = B[i] * 2;
A[i+1] = B[i-2] * 3;
B[i+1] = A[i+1]+ 7;
C[i+1] = B[i+1] * 2;
A[i+2] = B[i-1] * 3;
B[i+2] = A[i+2]+ 7;
C[i+2] = B[i+2] * 2;

end
A[n-1] = B[n-3] * 3;
B[n-1] = A[n-1]+ 7;
C[n-1] = B[n-1] * 2;
A[n] = B[n-2] * 3;
B[n] = A[n]+ 7;
C[n] = B[n] * 2;

(a)

p1 = 0;
for i = 1 to 3bn

3
c +1 do by 3

A[i] = B[i-3] * 3;
B[i] = A[i]+ 7;
C[i] = B[i] * 2;
(p1) A[i+1] = B[i-2] * 3;
(p1) B[i+1] = A[i+1]+ 7;
(p1) C[i+1] = B[i+1] * 2;
(p1) A[i+2] = B[i-1] * 3;
(p1) B[i+2] = A[i+2]+ 7;
(p1) C[i+2] = B[i+2] * 2;
p1 = p1 - 3;

end

(b)

Figure 5: (a) Unfolded loop when f = 2. (b) New unfolded
code.

3.4 Code Size Reduction for Retimed and
Unfolded Loops

For the loops optimized by both retiming and unfolding, the previous
technique can reduce the expanded code size. We call the loop that gets
retimed first and then unfolded a retimed unfolded loop and the loop that
unfolded first and then retimed a unfolded retimed loop. We will show
the code reduction technique for retimed unfolded loops does not require
more conditional registers.

Consider the original loop body shown in Figure 4. Figure 7(a) shows
the new code after reducing the code size of Figure 6(a). We use two con-
ditional registers to guard statements A,C andB, called p1 and p2. The
registers are initially set to 1 and 0, respectively. Figure 7(b) shows the
new code when the size of the retimed unfolded program in Figure 6(b)
is reduced. We can use the same set of registers to completely remove
the code outside the loop body. The idea is to hide the expanded code
into unfolded iterations. Since the number of iterations in prologue is

maxur(u), we have dmaxur(u)
f

e unfolded iterations for prologue. For

the codes after the loop body, we have dmaxur(u)%f+maxur(u)
f

e iter-
ations. By doing this, the lower bound of iteration body is adjusted to be

k� d
maxu r(u)

f
e, where k is the original lower bound. Also, the initial

value of a conditional register is adjusted to beR+(f�maxur(u)%f).
For example, if n = 9, and i run from 0 to 8. The index in the new

loop starts from -2 and runs until 9. The initial value of registers p2
and p1 are set to 3 and 2 respectively. Figure 7(c) shows that in the first
iteration when i = �2, only A[0] and C[0] are computed. All other
operations are disabled. And the last iteration computes the remaining
codes of unfolding and A[8] and C[8] as epilogue. Since each copy of
a computation node uses the same conditional register in unfolded loop
body, we use the same number of conditional registers for a retimed loop
and a retimed unfolded loop with the same maximum retiming value.

For the case when unfolding is performed before retiming, each copy
of the node may be retimed as a distinct node, therefore, the number of
conditional register may be more than retimed unfolded loop. The code
size reduction technique applied on unfolded retimed loop is straight for-

ward after we giving the technique for retimed loop, we will not describe
it in detail due to the limited space.

4. CODE SIZE REDUCTION THEOREMS
In this section, we present the theory of code size reduction technique

based on the retiming and unfolding concepts. The code size reduc-
tion technique is a code transformation that attempts to remove the code
expansion produced by software pipelining and unfolding, so that the
total code size of a loop program is minimized. The theorems show that
our code size reduction technique can achieve the optimal code size for
retimed and/or unfolded loops, while preserving the correctness of the
execution of the expanded code, i.e. the prologue/epilogue produced by
retiming and the remaining iterations produced by unfolding.

B[1] = A[1]+ 7;
for i = 1 to n-1 do

A[i] = B[i-3] * 3;
B[i+1] = A[i+1]+ 7;
C[i] = B[i] * 2;

end
A[n] = B[n-2]*3;
C[n] = B[n] * 2;

(a)

B[1] = A[1]+ 7;

for i = 1 to 3bn�1
3

c do by 3

A[i] = B[i-3] * 3;
B[i+1] = A[i+1]+ 7;
C[i] = B[i] * 2;
A[i+1] = B[i-2] * 3;
B[i+2] = A[i+2]+ 7;
C[i+1] = B[i+1] * 2;

end
A[n-2] = B[n-5] * 3; //from unfolding
B[n-1] = A[n-1]+ 7;
C[n-2] = B[n-2] * 2;
A[n-1] = B[n-4] * 3;
B[n] = A[n]+ 7;
C[n-1] = B[n-1] * 2;
A[n] = B[n-2]*3; //from retiming
C[n] = B[n] * 2;

(b)

Figure 6: (a) Retimed loop when r(B) = 1 (b) The new loop
after unfolded by a factor of 3.

In the following two theorems, we show the correctness of the code
size reduction technique for a software-pipelined loop. Due to the lim-
ited space, we omit the proofs of the theorems.

THEOREM 4.1. Let Gr = hV;E; dr; ti be a retimed DFG with a
given retiming function r, andMr = maxur(u), 8u 2 V . Let n be the
number of iterations of the original loop. The prologue can be correctly
replaced by conditionally executing the loop body of Gr for Mr times,
where a node v 2 V with retiming value r(v) is executed for r(v) times
starting from the (Mr � r(v) + 1)th iteration.

For example, if r(v) = 3 and Mr = 5, then node v will not be
executed in the first and the second iterations. Instead, it will start its
execution from the third iteration. Similar situation can be applied to the
epilogue.

THEOREM 4.2. Let Gr = hV;E; dr; ti be a retimed DFG with a
given retiming function r, andMr = maxur(u), 8u 2 V . Let n be the
number of iterations of the original loop. The epilogue can be correctly
executed by conditionally executing the loop body of Gr for Mr times,
where a node v 2 V with retiming value r(v) is executed forMr�r(v)
times in the last Mr iterations starting from the nth iteration.

Theorem 4.1 and Theorem 4.2 imply that the code in prologue or
epilogue can be removed by conditionally executing the schedule of loop
body. Therefore, the minimal code size required for a correct execution
is only the code size of the loop body.

Based on the retiming concept, the number of copies of the nodes in
prologue/epilogue are determined by their retiming functions as we dis-
cussed in Section 2. This property helps us to develop the code size re-
duction technique by using conditional register to guard the instructions
with a certain retiming value, as shown in Section 3. The following theo-
rem shows that we can completely remove the code in prologue/epilogue
by using a certain number of conditional registers.

THEOREM 4.3. (Total Code Reduction for Retimed Loop) Let Pr be
the number of available conditional registers, and Nr the set of distinct

147

p1 = 1; p2 =0;
for i = 0 to n do

(p1) A[i] = B[i-3] * 3;
(p2) B[i+1] = A[i+1]+ 7;
(p1) C[i] = B[i] * 2;
p1 = p1-1;
p2 = p2-1;

end

(a)

p1 = 3; p2 = 2;

for i = -2 to 3bn�1
3

c + 2 do by 3

(p1) A[i] = B[i-3] * 3;
(p2) B[i] = A[i]+ 7;
(p1) C[i] = B[i] * 2;
p1 = p1-1;
p2 = p2-1;
(p1) A[i+1] = B[i-2] * 3;
(p2) B[i+1] = A[i+1]+ 7;
(p1) C[i+1] = B[i+1] * 2;
p1 = p1-1;
p2 = p2-1;
(p1) A[i+2] = B[i-1] * 3;
(p2) B[i+2] = A[i+2]+ 7;
(p1) C[i+2] = B[i+2] * 2;
p1 = p1-1;
p2 = p2-1;

end

(b)

remaining code
& epilogue

A[0]

A[−3]

A[3]

A[6]

B[−2]

B[1]

B[4]

B[7]

C[−3]

C[0]

C[3]

C[6]

A[1]

A[−2]

A[4]

A[7]

B[−1]

B[2]

B[5]

B[8]

C[−2]

C[1]

C[4]

C[7]

A[2]

A[−1]

A[5]

A[8]

B[0]

B[3]

B[6]

B[9]

C[−1]

C[2]

C[5]

C[8]

prologue

(c)

Figure 7: (a) New code for Figure 6(a). (b) New code for
Figure 6(b). (c) Execution sequence when n = 9.

retiming values. The optimal code size of a retimed loop program can be
achieved by completely removing prologue and epilogue with Pr con-
ditional registers, if Pr � jNrj, where jNrj is the cardinality of set
Nr .

For example, if we have 3 distinct retiming values, f0,3,4g, we need
at least 3 conditional registers to remove all the codes in prologue and
epilogue. Without code size reduction, prologue and epilogue each con-
tains code of 4 iterations, since the maximum retiming value is 4.

By using unfolding, there are remaining iterations produced out of
unfolded loop body. For example, if the number of iteration is 98, and
unfolding factor is 3, the last two iterations need to be put out of the
loop body as additional codes. Let Qf represent the code size of the
remaining iterations, we have Qf = (n(mod)f) � Lorig , where n is
the number of iterations in the original loop, f is the unfolding factor
and Lorig is the code size of original loop body. Our technique can be
used to remove the code of remaining iterations completely by using one
conditional register as we showed in Section 3.

Retiming and unfolding are two commonly used techniques to im-
prove performance by exploiting the parallelism existing among differ-
ent iterations. Retiming, or software pipelining, can achieve the optimal
execution rate when iteration period is integer. For a DFG with a non-
integral iteration period, only retiming cannot achieve optimal execution
rate. There are two possible orders of applying retiming and unfolding
to a loop: first, which is the commonly used approach, applying retiming
first and then unfolding and applying unfolding first and then retiming.
Previous work by Chao and Sha [1] showed that these two approaches
can achieve the same minimum iteration period by carefully choose the
retiming values. In the following theorems, DFG Gf;r is generated by
unfolding the original DFG G, and then retiming the unfolded graph;
DFG Gf;r is generated by directly retiming the original DFG G, and
then unfolding it. we show that the code sizes of the second approach,
retiming first and then unfolding, may produce smaller code size than
the first one.

THEOREM 4.4. LetG = hV;E; d; ti be a DFG andGf;r = hVf;r ;
Ef;r ; df;r ; ti be the unfolded retimed G with unfolding factor f and re-
timing function r. Let the maximum retiming value Mr = maxur(u),
8u 2 Vf;r and Lorig the code size of the original loop body. The code
size ofGf;r is Sf;r = (Mr+1)�Lorig �f+Qf , whereQf represents
the remaining iterations produced by unfolding.

THEOREM 4.5. LetG = hV;E; d; ti be a DFG andGf;r = hVf;r;
Ef;r; df;r; ti be the unfolded retimed G with unfolding factor f and re-
timing function r. Let ui 2 Vf;r be the ith copy of node u 2 V , where
0 � i < f . Let Gr;f = hVr;f ; Er;f ; dr;f ; ti be the corresponding re-

timed unfolded Gwith retiming function rf =
Pf�1

i=0 r(ui), ui 2 Vf;r
and unfolding factor f , that achieves the same minimum cycle period
as Gf;r . Let Lorig be the code size of G. The code size of Gr;f is
Sr;f = (maxu(rf (u)) + f) � Lorig +Qf , where Qf represents the
remaining iterations produced by unfolding.

Based on the Theorem 4.4 and Theorem 4.5, we have Sf;r = (maxur(u)

+1) �Lorig�f and Sr;f = (maxu(
Pf�1

i=0 r(ui))+f)�Lorig . Since

maxu(
Pf�1

i=0 r(ui)) � maxur(u) � f , one obtains Sr;f � Sf;r .
That is, the approach that creates an unfolded retimed graph produces
larger code size than the one that creates a retimed unfolded graph.

The code size reduction technique can be effectively applied to data
flow graphs produced by retiming and unfolding. The following theo-
rem states that the correct execution sequence of prologue can be pre-
served by only executing the code of unfolded loop body. It follows
from Theorem 4.1 and Theorem 4.2, considering the unfolding factor.
The idea is to hide the iterations performed in prologue Mr in the new
unfolded loop. If Mr is not divisible by unfolding factor f , dummy it-
erations are added to fill the first iteration, which can be computed by
Qhead = (f �Mr mod f) mod f

THEOREM 4.6. LetG = hV;E; d; ti be a DFG andGr;f = hVr;f ;
Er;f ; dr;f ; ti be the retimed unfolded G with given retiming function r
and unfolding factor f , and Mr = maxur(u), 8u 2 V . The prologue
can be correctly replaced by executing the loop body of Gr;f for dMr

f
e

times, where node v 2 V with retiming value r(v) is executed for r(v)
times starting from (Mr � r(v) +Qhead + 1)th iteration of G.

We can do similar transformation to the epilogue and the remaining
iterations by hiding the code in the new unfolded loop. The conditional
registers that guard these nodes will ensure each node is executed for ex-
actly n times. For the retiming and then unfolding approach with retim-

ing function r and unfolding factor f , there are dmaxur(u)
f

e, additional
iterations for completely removing the epilogue and remaining iterations
of the unfolded loop body. For a node v with retiming value r(v), it will
be executed for ((n �maxur(u)) mod f +maxur(u) � r(v) times
in these additional iterations.

According to Theorem 4.7, we can completely remove the expanded
code size of a retimed unfolded loop by using conditional registers. An
elegant property of our code size reduction technique is that the number
of consumed conditional registers is not increased.

THEOREM 4.7. (Total Code Reduction for Retimed and Unfolded
Loop) Let Gr = hV;E; dr; ti be a retimed DFG and Gr;f = hVr;f
; Er;f ; dr;f ; ti be the unfolded Gr . Let r be a given retiming func-
tion and f a given unfolding factor. The optimal code size of a retimed
unfolded loop program can be achieved by completely removing pro-
logue/epilogue and remaining iterations with Pr;f conditional registers,
such that Pr;f = Pr , where Pr is the number of conditional registers
used for removing the prologue and epilogue of Gr .

Because the code size is increased proportionally with the unfold-
ing factor, we can compute the maximum unfolding factor by given
the retiming value and code size requirement. Let Lreq denote the
code size requirement, and Lorig denote the code size of original loop
body. The maximum unfolding factor given the retimed loop body is

Mf = b
Lreq
Lorig

c �Mr . On the other hand, by given the unfolding fac-

tor and code size requirement, we can also obtain the maximum retiming

value by Mr = b
Lreq
Lorig

c � f . Based on the fundamental understand-

ing of code size reduction for retimed and/or unfolded loop program, we
can explore the trade-off space for the code size and the performance
achieved by software pipelining and unfolding, which is important for
choosing an appropriate software pipelining degree and unfolding factor
in code optimization.

148

Benchmarks Code Size Rgs % Red.
Orig Ret. CR

IIR Filter 8 16 12 2 25.0
Differential Equation 11 33 17 3 48.5
All-pole Filter 15 60 23 4 61.7
Elliptical Filter 34 68 40 3 41.2
4-stage Lattice Filter 26 78 32 3 59.0
Voltera Filter 27 54 31 2 42.6

Table 1: Code size after retiming and registers needed.

5. EXPERIMENTAL RESULTS
In Table 1, Column “Code size” shows the original code size and after

retimed for various benchmarks to obtain the optimal cycle period. The
code size is measured as the number of nodes in a schedule including
prologue and epilogue parts. We assume that the computation time of
each node is one time unit. Under Column “Rgs”, we show the number
of registers that are needed to totally remove all these prologue and epi-
logue incurred by retiming. Column “Retime” shows the code size after
retiming is applied to achieve the rate-optimal cycle period. Column
“CR” shows the code size when the code size reduction is applied to the
graphs obtained in Column “Ret.”. Column “% Red” presents the per-
centage of code size reduction after these codes are removed. Similarly,

Benchmarks Code Size Rgs % Red.
R-U CR

IIR Filter 48 32 2 33.3
Differential Equation 77 45 3 41.6
All-pole Filter 120 61 4 49.2
Elliptical Filter 238 114 3 52.1
4-stage Lattice Filter 182 90 3 50.5
Voltera Filter 168 89 2 47.0

Table 2: Code size after retiming and unfolding and registers
needed, with unfolding factor 3 and loop counter 101.

Table 2 shows the code size of the benchmarks in Table 1 after unfold-
ing are applied. Column “R-U” shows the code size after unfolding is
applied to these graphs. We can see that our technique can significantly
reduce the code size while maintaining the performance of the code.

10 2

20
A

B D

C E
5

40

Figure 8: An example from [1] where nodes computation
times are not unit-time.

Tables 3–4 shows the code size when applying unfolding and retiming
in a different order with different unfolding factors. In the row “unfold-
retime”, is the case where unfolding is performed first and then retimed
and vice versa in Row “retime-unfold”. Row “retime-unfold-CR” show
the code size when our proposed technique is used. In Table 3 we fixed
the performance of the optimization by setting an iteration period for
each unfolding factor to make a fair comparison. As stated in Theorems
in Section 4, we suggest that performing retiming first and unfolding give
less code size. When applying our technique using conditional registers,
the code size is further reduced.

We can see that our approach can be used to effectively reduce code
size when retiming and/or unfolding is performed while maintaining par-
allelism as in the original code. Further, our approach can be integrated
in a design exploration in many aspects, for example, to find the maxi-
mum performance when the number of conditional registers are limited
or explore different architectures (eg. memory size and conditional reg-
isters) to achieve the maximum performance.

Approach uf=2 uf=3 uf=4
unfold-retime 20 30 40
retime-unfold 20 30 30
retime-unfold-CR 14 19 24
iteration period 20 19 13.5

Table 3: Comparison of code size and iteration period for
DFG in Figure 8.

6. CONCLUSION
Retiming and unfolding technique are commonly used techniques to

exploit instruction-level parallelism and achieve performance gain in
DSP systems. However, both techniques can enlarge code size by adding
prologue and epilogue sections to the original code. The more paral-
lelism is exposed, the more code size is expanded. For some systems
with a very limited memory resource, the code size expansion can be
a critical concern. In this paper, we present theoretical foundations and
code size reduction framework while the parallelism can still be explored
as in the original code. Our study shows that the approach that applies
retiming and then unfolding will achieve a smaller code size than ap-
plying unfolding first and then retiming. The experimental results show
that our technique can achieve optimal code size without degrading the
performance by using conditional registers.

Approach uf=2 uf=3 uf=4
unfold-retime 156 312 416
retime-unfold 130 156 182
retime-unfold-CR 61 90 119

Table 4: Comparison of code size for 4-stage lattice when
cycle period is fixed to 8.

7. REFERENCES
[1] L.-F. Chao and E. H.-M. Sha. Static scheduling for synthesis of

dsp algorithms on various models. Journal of VLSI Signal
Processing, 10:207–223, 1995.

[2] L.-F. Chao and E. H.-M. Sha. Scheduling data-flow graphs via
retiming and unfolding. IEEE Transactions on Parallel and
Distributed Systems, 8(12):1259–1267, Dec. 1997.

[3] F. Chen, T. W. O’Neil, and E. H.-M. Sha. Optimizing overall loop
schedules using prefetching and partitioning. IEEE Transactions
on Parallel and Distributed Systems, 11:604–614, Jun. 2000.

[4] E. Granston, R. Scales, E. Stotzer, A. Ward, and J. Zbiciak.
Controlling code size of software-pipelined loops on the
TMS320C6000 VLIW DSP architecture. In Proceedings of the
3rd Workshop on Media and Streaming Processorsin conjunction
with 34th Annual International Symposium on Microarchitecture,
pages 29–38. ACM, Dec. 2001.

[5] Intel Corporation. Intel Itanium Architecture Software Developer’s
Manual Volume 1: Application Architecture, Dec. 2001.

[6] M. Lam. Software pipelining: An effective scheduling technique
for VLIW machines. In Proceedings of the
SIGPLAN’88 Conference on Programming Language Design and
Implementation, pages 318–328. ACM, June 1988.

[7] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6:5–35, Aug. 1991.

[8] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. Code generation
schema for modulo scheduled loops. In Proceedings of the
25th Annual International Symposium on Microarchitecture,
pages 158–169. ACM, Dec. 1992.

[9] Texas Instruments, Inc. TMS320C6000 CPU and Instruction Set
Reference Guide, 2000.

[10] Z. Wang, T. W. O’Neil, and E. H.-M. Sha. Minimizing average
schedule length under memory constraints by optimal partitioning
and prefetching. Journal of VLSI Signal Processing Systems for
Signal, Image and Video Technology, 27:215–233, Jan. 2001.

149

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

