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ABSTRACT

Software pipelining and unfolding are commonly used techniques
to increase parallelism for DSP applications. However, these
techniques expand the code size of the application significantly.
For most DSP systems with limited memory resources, code
size becomes one of the most critical concerns for the high-
performance applications. In this paper, we present the code
size reduction theory based on retiming and unfolding concepts.
We propose a code size reduction framework to achieve the opti-
mal code size of software-pipelined and unfolded loops by using
conditional registers. The experimental results on several well-
know benchmarks show the effectiveness of our code size reduc-
tion technique in controlling the code size of optimized loops.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose and

Application-Based Systems—Real - Time and Embedded Systems;
C.1.1 [Processor Architectures]: Single Data Stream Architec-

tures—RISC/CISC, VLIW architectures, D.3.4 [Programming

Languages]: Procssors—Compilers
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1. INTRODUCTION

Many real-time or high-performance DSP applications, such
as telecommunication and image processing, exhibit intensive
computations in a repetitive pattern such as loops. Software
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pipelining and unfolding are widely used in various compilers
[2,6,8] to expose the parallelisms in these loops. The compiler
of TI’'s TMS320C6000, a family of high-performance VLIW
processors targeted toward Digital Signal Processing (DSP), is
an example of using software pipelining to exploit the multiple
functional units [4]. However, the drawback of using these opti-
mization techniquesisthe expanded code size. Software pipelin-
ing introduces prologue and epilogue sections, which are the
codes executed before entering and after leaving the new loop
body. Unfolding expands a loop body and may result in codes
that are outside of the unfolded loop body. For example, unfold-
ing aloop with 10 instructions for 2 times, and then performing
software pipelining with pipeline depth of 3, will result in anew
code with size of 60 instructions. For some kind of architec-
tures such as embedded systems, memory resources are limited.
The program code size becomes a major concern for these sys-
tems. Two critical requirements, performance and code size, are
conflicting with each other when using software pipelining and
unfolding techniques to increase parallelisms. The difficult task
isthen left to the designers to decide the acceptable performance
with code size constraint.

Some ad-hoc code size reduction techniques were used to re-
duce the prol ogue/epilogue produced by software pipelining. How-
ever, the quality of their techniques could not be guaranteed
[4,8]. The code size control technique such as code collaps-
ing technique presented in [4] is developed to be applied on
TMS320C6000 family. However, there is no theoretical frame-
work presented in literature for code size control techniques of
software-pipelined and unfolded |oops.

In this paper, we present the theoretical foundation as well
as code size reduction framework when software pipelining and
unfolding techniques are used. The performance of software-
pipelined applications after applying code size reduction can be
further improved by some optimization techniques considering
memory constraints and data prefetching 3, 10].

Our contributions in this paper are as follows:

1. Present the code size reduction theory based on funda-
mental understanding of retiming, software pipelining and
unfolding.

2. Propose the code size reduction framework for control-
ling the code size of the software-pipelined and unfolded
loops by using conditional registers without jeopardizing
the performance.

3. Givetherequired number of conditional registersto achieve
the optimal code size.



4. Show that the approach which applies retiming first and
then unfolding to aloop resultsin asmaller code size than
the approach that applies unfolding first and then retiming.

The experiments show that our techniques can reduce the code
size of the software-pipelined and unfolded loops up to 61%.

In Section 2, we introduce several basic concepts and prin-
ciples used in the code size reduction technique, such as data
flow graph, retiming and unfolding. In Section 3, we illustrate
the code size reduction framework by using conditional regis-
ters. Then, Section 4 presents the code size reduction theorems
that consider the code size regquirement and the number of con-
ditional registers needed to achieve the optimal code size. Sec-
tion 5 presents the experimental results and Section 6 concludes
the paper.

2. BASIC PRINCIPLES

In this section, we give an overview of some necessary con-
cepts related to our code size reduction techniques.

2.1 Data Flow Graph

A dataflow graph (DFG) G = (V, E, d, t) isanode-weighted
and edge-weighted directed graph, where V' isthe set of compu-
tation nodes, E C V =V isthe set of edges, d isafunction from
E to aset of non-negative integers, representing the number of
delays between any two nodes, and ¢ is a function from V' to a
set of positive integers, representing a computation time of each
node.

Theinter-iteration data dependencies are represented by edges
with delays, indicated by edges with bar lines in the graph. An
edge e(u — v) with delay d(e) means the input data of node v
is generated by the computation of node » which isin d(e) iter-
ations earlier. Iterative applications can be represented by cyclic
data flow graphs. The dependencies within the same iteration
are represented by edges with d(e) = 0, caled intra-iteration
dependency. A legal static schedule must obey both intra and
inter-iteration dependencies. The cycle period of a DFG is de-
fined as the computation time of the longest path without delay
in the graph. The cycle period of a DFG corresponds to the min-
imum schedule length of one iteration when there is no resource
constraint. In this paper, we assume the computation time is 1
time unit without specia notation. The iteration period is de-
fined as an average computation time it takes to compute one
iteration of aloop body. Each cycle of a DFG imposes the lower
bound on the iteration period. Thislower bound is called itera-
tion bound of a DFG. A schedule is said to be rate-optimal if its
iteration period equals to itsiteration bound.

2.2 Retiming and Unfolding

Theretiming technique [ 7] can be applied on adataflow graph
to improve the cycle period by evenly distributing the delays in
the graph. For aretimed DFG G = (V, E, d, t), retiming opera-
tion is represented by retiming functionr : V- — Z. Theretim-
ing function value r(u) represents the number of delays pushed
through anode u € V. The number of delays of an edgee(u —
v) after applying retiming r isd, (e) = d(e) + r(u) —r(v). For
any legal retiming r, we have d.(e) > 0, and the total number
of delays remains constant for any cycle in the graph.

For example, consider node A in the DFG in Figure 1(a).
Since r(A) = 1, one delay is drawn from all incoming edges
of A and pushes through all outgoing edges of A. Figure 1(b)
shows the retimed graph where the bar line represents adelay on
the edge.
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Figure 1: (a) A simple DFG. (b) The retimed DFG with
r(A)=1and r(B) = 0.

Consider the retimed graph in Figure 1(b). When adelay is
pushed through node A to its outgoing edge, the actual effect on
the schedule of the new DFG isthat the i** copy of A is shifted
up and is executed with (i — 1)** copy of node B. The schedule
length of the new loop body is then reduced from two control
steps to one control steps. Hence, every retiming operation cor-
responds to a software pipelining operation. When one delay
is pushed forward through a node u, every copy of this node
is shifted up by one iteration, and the first copy of the node is
shifted out of the first iteration into the prologue.

A ] The Original
B Iteration
Inter-iteration| A time
Dependency B A % Prologue
A Repeating
g Intriteraio B\\A Schedule
len
<A ependency | B NA
B B
AVN B A
B B j Epilogue
(a) (b)

Figure 2: (a) A static schedule of original loop. (b) The
pipelined loops.

We can measure the size of prologue and epilogue if the min-
imum retiming value in the graph is0. This can be done by sim-
ply subtracting al the retiming values by the minimum retiming
value, which is called normalized retiming function. When r(v)
delays are pushed forward through node v, there are r(v) copies
of node v appeared in the prologue. Let the maximum retiming
value in the data flow graph be maz,r(u), then the number of
copies of node v appeared in the epilogue is maz,r(u) — r(v).
After retiming, the new loop body isrepeated for n —maz.,.r(u)
times where . is the number of iterations in the original loop.

Unfolding technique is popularly used in a compiler design.
For agive dataflow Graph G = (V, E, d, t), given an unfolding
factor f, the unfolded graph Gy = (Vy, Ey,dy,t) is obtained
by unfolding G for f times. In particular, al nodesv € V are
duplicated into f copies in V; and the edges and their delays
are adjusted properly [2]. Unfolding exposes more parallelism
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among different iterations. To generate arate-optimal schedule,
a commonly used method is to unfold the loop body and then
do software pipelining. Obvioudly, the code size grows propor-
tionally with the unfolding factor. Besides, if the number of it-
erations in the original loop program = is not divisible by the
unfolding factor f, the last n(mod) f iterations need to be ex-
ecuted out of loop body. These remaining iterations add more
code size in an unfolded program. Due to the significant code
size expansion resulted from performance optimization, control-
ling code size of optimized |oops becomes even more critical for
embedded systems with limited memory space.

3. CODESIZEREDUCTION FRAMEWORK

In this section, we propose the code size reduction framework
by using conditional register and conditional operation toimple-
ment code size reduction technique. We will show that this tech-
nique can achieve the optimal code size of software-pipelined
and/or unfolded loops without jeopardizing the performance by
and large.

3.1 Conditional Register and Conditional Op-
eration

Conditional registersand conditional operations are commonly
implemented in many architectures, such as TI’s TM S320C6000
family [4,9] and |A64 architecture [5]. Conditional registers are
sometimes called predicate registers. Generally speaking, these
registers only hold boolean values which is the result of a con-
ditional test. In some architecture, conditional registers are a
subset of general register file [4]. The execution of a conditional
instruction depends on the result of the conditional test. If the
condition test is true, the instruction is executed. Otherwise, the
instruction isdisabled or nullified. Such guarded instructions are
also called conditional operations.

Using the conditional register, an instruction in the loop body
may be guarded in away that it starts execution in alater itera-
tion. For example, the following code,

pl = 1;
for i = 1 ton do
(pl) A[i] = E[i-4] + 9;
pl = pl - 1;
end

indicates that the computation of node A can be executed from the sec-
ond iteration. In other words, when p1 > 0, the instruction at node A
isdisable. Conditional test is conducted at the beginning of the execu-
tion stage in many implemented architectures [5,9]. Then, the value of
conditional register p1 isdecreased every iteration.

3.2 Code Size Reduction for Retimed Loops
The conditional operation can be used to reduce the code in the pro-
logue and epilogue introduced by the retiming technique. We set the
initial value of conditional registers as the maximum retiming value mi-
nus the retiming value of the guarded computation node v, i.e. p =
maz,r(u) — r(v). We have to specify that the instruction is executed
only when 0 > p > —LC'. In other words, the instruction is disabled
whenp > 0orp < —LC, where LC represents the original loop
counter. Hence, the loop boundary must be specified in the conditional
register.
egWe propose a hew instruction to set the initial value and boundary of
aconditional register.

setp pl = 3 : -LC

This instruction sets the initial value of p1 to 3. Also, the guarded in-
struction will be disabled when p1 > 0 or p1 < —LC. The vaue
of conditional register p is decreased by 1 in every iteration using an ex-
plicit decrement instruction. If r(A) < maw, r(u), the execution of the
operation will be disabled in the first (max,r(u) — r(A)) iterations,

146

A[l]l = E[-3] + 9;
Al2] = E[-2] + 9;
B[1] = A[1l] * 5;
c[1] = A[1] + B[-1];
A[3] = E[-1] + 9;
B[2] = A[2] * 5;
c[2] = a[2] + B[O];
D[1] = A[1] * C[1];
for i = 1 to n-3 do
A[i+3] = E[i-1] + 9;

pl <-- 0; // setppl =0 : -n

Bli+2] = A[i+2] * 5; P2 <-- 1;

cli+2] = A[i+2] + BIil; PZ o

DLi+1] = Ali+l] * Cli+l]; e i ia tondo

E[i] = DIi] + 30; (p1) A[i+3] = E[i-1] + 9;
end pl = pl - 1;
Eln] = D[n] + 30; (p2) Bli+2] = Alis2] * 5;

(p2) Cl[i+2] = A[i+2] + BI[il;
p2 = p2 - 1;
(p3) DLi+l] = A[i+1] * C[i+l];

D[n] = A[n] * C[n];
E[n-1] = D[n-1] + 30;

Blnl = Aln] * 5; o3 = p3 - 11
Clnl = Aln] + Bln-2]; (p4) E[i] = D[i] + 30;
D[n-1] = A[n-1] * CIn-1]; pd = pd - 1;
E[n-2] = D[n-2] + 30; end
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Figure 3: (a) Software-pipelined code. (b) Code after remov-
ing prologue/epilogue. (c) Execution sequence.

until the conditional register value is decremented downto —LC. The
comparison between the value of conditional register and the negative
loop counter (-LC) isimplemented by hardware.

Hence, we can use conditional registers and the retiming function to
eliminate all the code in prologue and epilogue. Figure 3(b) shows the
code after removing prologue/epilogue of the code in Figure 3(a). The
conditional registers pl, p2, p3 and p4 are used for different retiming
values for nodes A, B and C, D aswell as E respectively. Each of them
isinitialized to a different value depending on its retiming value, and is
decremented for every iteration. Since there are four different retiming
values, we need to use four conditional registers to completely remove
prologue and epilogue. A decrement instruction needsto beinserted into
the loop body for each register. For VLIW architecture, the inserted in-
structions can be put into a slot of the long instruction word wherever
possible after all the guarded instructions are issued. The decrement in-
structions can also be parallelized with other instructions by software
pipelining. In most cases, code size reduction does not hurt the perfor-
mance of an optimized loop. Note that the loop will now be executed for
n—343+3 = n+ 3times, sinceit first decreases 3 iterations by soft-
ware pipelining, which is max, r(u) in this example, and then adds 3
iterations of prologue and the other 3 of epilogue. Figure 3(c) showsthe
execution sequence of the conditional operations in our implementation.
The numbers in parentheses are the values of conditional registers.

for i = 1 to n do
A[i] = B[1i-3] * 3;
B[i] = A[il+ 7;
C[i] = B[i] * 2;
end

Figure 4: A Simple loop



3.3 Code Size Reduction for Unfolded Loops

Consider the code in Figure 4. After unfolded three times, we have
the code in Figure 5(a). If n isnot divisible by 3, in the unfolded code,
the last two iterations of the original loop is performed outside the loop
in Figure 5(a). Figure 5(b) shows the new code that the execution of the
these remaining iterations are smaller. We obtain the minimal code size
by using only one conditional register p1. For any unfolded loops, we
need only one conditional register, namely R to completely remove the
expanded code outside the new unfolded loop body. The initial value
of Rissetto0and-LC. Vaueinside R is decremented by unfolding
factor f for each iteration. When R equals to -LC, the loop will stop
execution. Suppose the original code size of the loop is L4, We can
totally reduce (n mod f) * Lorig — 2 ingtructions if n is not divisible
by unfolding factor f.

for i = 1 to 3L%J do by 3

A[i] = B[i-3] * 3;

BIi] = Alil+ 7;

Cli] = BIi] * 2;

Ali+1] = B[i-2] * 3; pl = 0;

Bli+1] = Ali+1]+ 7; for i =1 to 3] 3] +1 doby3

Cli+l] = BLi+1] * 2; Ali] = B[i-3] * 3;

Ali+2] = Bli-1] * 3; B[i] = Alil+ 7;

Bli+2] = A[i+2]+ 7; Cli] = Bli] * 2;

cli+2] = B[i+2] * 2; (p1) Ali+1] = B[i-2] * 3;
end (p1) BIi+1] = Ali+1l+ 7;
A[n-1] = Bln-3] * 3; (p1) Cli+1] = Bli+1] * 2;
Bn-1] = Aln-11+ 7; (p1) Ali+2] = Bli-1] * 3;
Cin-1] = Bln-1] * 2; (p1) BIi+2] = Ali+2]+ 7;
aln] = Bln-2] * 3; (p1) Cli+2] = Bli+2] * 2;
B[n] = A[n]+ 7; pl = pl - 3;
Cinl = Bn] * 2; end

€) (b)

Figure 5: (a) Unfolded loop when f = 2. (b) New unfolded
code.

3.4 Code Size Reduction for Retimed and
Unfolded Loops

For the loops optimized by both retiming and unfolding, the previous
technique can reduce the expanded code size. We call the loop that gets
retimed first and then unfolded aretimed unfolded loop and the loop that
unfolded first and then retimed a unfolded retimed loop. We will show
the code reduction technique for retimed unfolded loops does not require
more conditional registers.

Consider the original loop body shown in Figure 4. Figure 7(a) shows
the new code after reducing the code size of Figure 6(a). We use two con-
ditional registersto guard statements A, C and B, called p1 and p2. The
registers are initially set to 1 and O, respectively. Figure 7(b) shows the
new code when the size of the retimed unfolded program in Figure 6(b)
is reduced. We can use the same set of registers to completely remove
the code outside the loop body. The idea is to hide the expanded code
into unfolded iterations. Since the number of iterations in prologue is

maxy,r(u), we have (%T(")} unfolded iterations for prologue. For

the codes after the loop body, we have [azur (W% +mazur(u) ] jter.
aions. By doing this, the lower bound of iteration body is adjusted to be
k— (%W], where k isthe origina lower bound. Also, the initial

value of aconditional register isadjusted tobe R+ ( f —max, r(u) % f).
For example, if n = 9, and ¢ run from O to 8. The index in the new
loop starts from -2 and runs until 9. The initial value of registers p2
and pl are set to 3 and 2 respectively. Figure 7(c) shows that in the first
iteration when ¢« = —2, only A[0] and C[0] are computed. All other
operations are disabled. And the last iteration computes the remaining
codes of unfolding and A[8] and C[8] as epilogue. Since each copy of
a computation node uses the same conditional register in unfolded loop
body, we use the same number of conditional registers for aretimed loop
and a retimed unfolded loop with the same maximum retiming value.
For the case when unfolding is performed before retiming, each copy
of the node may be retimed as a distinct node, therefore, the number of
conditional register may be more than retimed unfolded loop. The code
size reduction technique applied on unfolded retimed loop is straight for-

ward after we giving the technique for retimed loop, we will not describe
itin detail due to the limited space.

4. CODESIZEREDUCTION THEOREMS

In this section, we present the theory of code size reduction technique
based on the retiming and unfolding concepts. The code size reduc-
tion technique is a code transformation that attempts to remove the code
expansion produced by software pipelining and unfolding, so that the
total code size of aloop program is minimized. The theorems show that
our code size reduction technique can achieve the optimal code size for
retimed and/or unfolded loops, while preserving the correctness of the
execution of the expanded code, i.e. the prologue/epilogue produced by
retiming and the remaining iterations produced by unfolding.

B[1] = A[1]l+ 7;
for i = 1 to 3L"§1j do by 3
A[i] = B[i-3] * 3;
Bli+1] = A[i+l]l+ 7;
C[i] = B[i] * 2;
Ali+1] = B[i-2] * 3;
B[i+2] = A[i+2]+ 7;
Cli+1] = B[i+1] * 2;
end
B1] = A[1]l+ 7; A[n-2] = B[n-5] * 3; //from unfolding
for i = 1 to n-1 do Bln-1] = Aln-1]+ 7;
A[i] = B[i-3] * 3; C[n-2] = B[n-2] * 2;
Bli+1] = A[i+1]l+ 7; A[n-1] = B[n-4] * 3;
C[i] = BI[i] * 2; B[n] = Alnl+ 7;
end C[n-1] = B[n-1] * 2;
Aln] = B[n-2]*3; A[n] = B[n-2]1*3; //from retiming
C[n] = B[n] * 2; Cln] = B[n] * 2;
@ (b)

Figure 6: (a) Retimed loop when r(B) = 1 (b) The new loop
after unfolded by a factor of 3.

In the following two theorems, we show the correctness of the code
size reduction technique for a software-pipelined loop. Due to the lim-
ited space, we omit the proofs of the theorems.

THEOREM 4.1. Let G, = (V, E,d,,t) be aretimed DFG with a
givenretiming function r, and M, = max,r(u), Yu € V. Letn bethe
number of iterations of the original loop. The prologue can be correctly
replaced by conditionally executing the loop body of G. for M, times,
whereanodev € V with retiming value r(v) is executed for r(v) times
gtarting fromthe (M, — r(v) + 1)t" iteration.

For example, if 7(v) = 3 and M, = 5, then node v will not be
executed in the first and the second iterations. Instead, it will start its
execution from the third iteration. Similar situation can be applied to the
epilogue.

THEOREM 4.2. Let G, = (V, E,d,,t) be aretimed DFG with a
given retiming function r, and M, = maz,r(u), Vu € V. Letn bethe
number of iterations of the original loop. The epilogue can be correctly
executed by conditionally executing the loop body of G. for M, times,
whereanodev € V with retiming value r(v) isexecuted for M, —r(v)
timesin the last M, iterations starting fromthe n*” iteration.

Theorem 4.1 and Theorem 4.2 imply that the code in prologue or
epilogue can be removed by conditionally executing the schedule of loop
body. Therefore, the minimal code size required for a correct execution
isonly the code size of the loop body.

Based on the retiming concept, the number of copies of the nodesin
prologue/epilogue are determined by their retiming functions as we dis-
cussed in Section 2. This property helps us to develop the code size re-
duction technique by using conditional register to guard the instructions
with acertain retiming value, as shown in Section 3. The following theo-
rem shows that we can completely remove the code in prologue/epilogue
by using a certain number of conditional registers.

THEOREM 4.3. (Total Code Reduction for Retimed Loop) Let B be
the number of available conditional registers, and N, the set of distinct
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pl = 3; p2 = 2;
for i = -2 to 3|21 | 4+ 2 do by 3
(pl) A[i] = B[i-3] * 3;
(p2) BI[i] = A[il+ 7;
(p1) C[i] = B[i] * 2;
pl = pl-1
p2 = p2-1;
(pl) A[i+1] = B[i-2] * 3;
(p2) Bli+1] = Al[i+ll+ 7;
(pl) Cl[i+1] = B[i+1] * 2;
pl = 1; p2 =0; pl = pl-1;
for i = 0 to n do p2 = p2-1;
(pl) A[i] = B[i-3] * 3; (pl) A[i+2] = B[i-1] * 3;
(p2) Bli+1] = A[i+1]+ 7; (p2) Bli+2] = A[i+2]+ 7;
(pl) C[i] = B[i] * 2; (pl) C[i+2] = B[i+2] * 2;
pl = pl-1; pl = pl-1;
p2 = p2-1; p2 = p2-1;
end end

@ (b)

A3 B2 O3 AR2] BI<d] T2 AL BlO] CF] prologue
A[0] B[1] C[0] A[1l] B[2] C[1] A[2] B[3] C[2]
A[3 B4 C[3 A4 B[S C[4] A[5 B[6] C[5]

Al6] B[] CI6] A7l BI8| C[7] Al BIS C[El a9

(©

Figure 7: (a) New code for Figure 6(a). (b) New code for
Figure 6(b). (c) Execution sequencewhenn = 9.

retiming values. The optimal code size of a retimed loop program can be
achieved by completely removing prologue and epilogue with B con-
ditional registers, if P, > |N,|, where |N;| is the cardinality of set
Ny.

For example, if we have 3 distinct retiming values, {0,3,4}, we need
at least 3 conditional registers to remove al the codes in prologue and
epilogue. Without code size reduction, prologue and epilogue each con-
tains code of 4 iterations, since the maximum retiming value is 4.

By using unfolding, there are remaining iterations produced out of
unfolded loop body. For example, if the number of iteration is 98, and
unfolding factor is 3, the last two iterations need to be put out of the
loop body as additional codes. Let Q represent the code size of the
remaining iterations, we have Q; = (n(mod)f) * Lorig, Where n is
the number of iterations in the original loop, f is the unfolding factor
and L,r;g4 is the code size of original loop body. Our technique can be
used to remove the code of remaining iterations completely by using one
conditional register as we showed in Section 3.

Retiming and unfolding are two commonly used techniques to im-
prove performance by exploiting the parallelism existing among differ-
ent iterations. Retiming, or software pipelining, can achieve the optimal
execution rate when iteration period is integer. For a DFG with a non-
integral iteration period, only retiming cannot achieve optimal execution
rate. There are two possible orders of applying retiming and unfolding
to aloop: first, which isthe commonly used approach, applying retiming
first and then unfolding and applying unfolding first and then retiming.
Previous work by Chao and Sha [1] showed that these two approaches
can achieve the same minimum iteration period by carefully choose the
retiming vaues. In the following theorems, DFG G/, is generated by
unfolding the origina DFG G, and then retiming the unfolded graph;
DFG G, is generated by directly retiming the original DFG G, and
then unfolding it. we show that the code sizes of the second approach,
retiming first and then unfolding, may produce smaller code size than
the first one.

THEOREM 4.4. LetG = (V, E,d,t) beaDFGand Gy, =(Vs,,,
Ey¢ r,dy,r,t) bethe unfolded retimed G with unfolding factor f and re-
timing function r. Let the maximum retiming value M, = max,r(u),
Vu € Vi, and L,pig the code size of the original loop body. The code
sizeof Gy, i8Sy, = (My+1)*Lorig* f +Q ¢, where Q s represents
the remaining iterations produced by unfolding.
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THEOREM 45. LetG =(V, E,d,t)beaDFGand Gy, =(Vs,,,
E¢,,dy ) betheunfolded retimed G with unfolding factor f and re-
timing function r. Let u; € V. bethe it" copy of node u € V, where
0<i< f.Let G, 5 =(V, s,E, ¢,d, s,t) bethe corresponding re-
timed unfolded G with retiming function vy = S/ =" r(w;), u; € V.,
and unfolding factor f, that achieves the same minimum cycle period
as Gy .. Let Lypiy be the code size of G. The code size of G, ¢ is
S, = (mazy (rf(u)) + f) * Lorig + Qf, where Q ¢ representsthe
remaining iterations produced by unfolding.

Based on the Theorem 4.4 and Theorem 4 5, wehave Sf , = (maz,r(u)
+1) *Lomg*fand Sy = (maIu(Zl 0 T(uz))+f)*L0Tig Since
maxu(Zf:Ol r(u;)) < mazy,r(u) * f, one obtains S,y < Sy ..
That is, the approach that creates an unfolded retimed graph produces
larger code size than the one that creates a retimed unfolded graph.

The code size reduction technique can be effectively applied to data
flow graphs produced by retiming and unfolding. The following theo-
rem states that the correct execution sequence of prologue can be pre-
served by only executing the code of unfolded loop body. It follows
from Theorem 4.1 and Theorem 4.2, considering the unfolding factor.
Theideaisto hide the iterations performed in prologue M, in the new
unfolded loop. If M, isnot divisible by unfolding factor f, dummy it-
erations are added to fill the first iteration, which can be computed by
Qhread = (f — M, mod f) mod f

THEOREM 46. LetG = (V, E,d,t) beaDFGand G, y =(V; s,
E, ¢, dy ,t) bethe retimed unfolded G with given retiming function r
and unfo|d| ng factor f, and M, = max,7(u), Yu € V. The prologue
can be correctly replaced by executing the loop body of G, f for [%]

times, where node v € V' with retiming value r(v) is executed for r(v)
times starting from (M, — r(v) + Qpeaq + 1)!" iteration of G.

We can do similar transformation to the epilogue and the remaining
iterations by hiding the code in the new unfolded loop. The conditional
registers that guard these nodes will ensure each node is executed for ex-
actly n times. For the retiming and then unfolding approach with retim-
ing function » and unfolding factor f, there are (%T(“)W , additional
iterations for completely removing the epilogue and remaining iterations
of the unfolded loop body. For anode v with retiming value r(v), it will
be executed for ((n — mazyr(u)) mod f + mazy,r(u) — r(v) times
in these additional iterations.

According to Theorem 4.7, we can completely remove the expanded
code size of aretimed unfolded loop by using conditional registers. An
elegant property of our code size reduction technique is that the number
of consumed conditional registers is not increased.

THEOREM 4.7. (Total Code Reduction for Retimed and Unfolded
Loop) Let G» = (V,E,d,,t) bearetimed DFGand G, ; = (V, s
E,f,dy g, ) be the unfolded G,. Let r be a given retiming func-
tion and f a given unfolding factor. The optimal code size of a retimed
unfolded loop program can be achieved by completely removing pro-
logue/epilogue and remaining iterations with R, ; conditional registers,
such that P, y = P, where P, is the number of conditional registers
used for removing the prologue and epilogue of G..

Because the code size is increased proportionally with the unfold-
ing factor, we can compute the maximum unfolding factor by given
the retiming value and code size requirement. Let L.., denote the
code size requirement, and L,,,;, denote the code size of original loop
body. The maximum unfolding factor given the retimed loop body is

My = | Lree Lreq | — M. On the other hand, by given the unfolding fac-

orzg

tor and code size requirement, we can also obtain the maximum retiming
vaueby M, = | LL ned j f. Based on the fundamental understand-

ing of code size reductlon for retimed and/or unfolded loop program, we
can explore the trade-off space for the code size and the performance
achieved by software pipelining and unfolding, which is important for
choosing an appropriate software pipelining degree and unfolding factor
in code optimization.



Benchmarks Code Size Rgs | % Red.
Orig | Ret. | CR
TR Filter 8 16 | 12 2 25.0
Differential Equation | 11 33 | 17 3 485
All-pole Filter 15 60 | 23 | 4 61.7
Elliptical Filter 34 68 | 40 3 41.2
4-stage Lattice Filter | 26 78 | 32 3 59.0
Voltera Filter 27 54 | 31 2 42.6

Table 1: Code size after retiming and registers needed.

5. EXPERIMENTAL RESULTS

In Table 1, Column “Code size” showsthe original code size and after
retimed for various benchmarks to obtain the optimal cycle period. The
code size is measured as the number of nodes in a schedule including
prologue and epilogue parts. We assume that the computation time of
each node is one time unit. Under Column “Rgs”, we show the number
of registers that are needed to totally remove all these prologue and epi-
logue incurred by retiming. Column “Retime” shows the code size after
retiming is applied to achieve the rate-optimal cycle period. Column
“CR” shows the code size when the code size reduction is applied to the
graphs obtained in Column “Ret.”. Column “% Red” presents the per-
centage of code size reduction after these codes are removed. Similarly,

Benchmarks Code Size | Rgs | % Red.
R-U T CR
TR Filter 3 | 32 2 333
Differential Equation | 77 | 45 3 416
All-pole Filter 120 | 61 4 49.2
Elliptical Filter 238 | 114 | 3 52.1
4-stage Lattice Filter | 182 | 90 3 50.5
Voltera Filter 168 | 89 2 47.0

Table2: Codesizeafter retiming and unfoldingand registers
needed, with unfolding factor 3 and loop counter 101.

Table 2 shows the code size of the benchmarks in Table 1 after unfold-
ing are applied. Column “R-U” shows the code size after unfolding is
applied to these graphs. We can see that our technique can significantly
reduce the code size while maintaining the performance of the code.

5

Figure 8. An example from [1] where nodes computation
times are not unit-time.

Tables 3-4 shows the code size when applying unfolding and retiming
in adifferent order with different unfolding factors. In the row “unfold-
retime”, is the case where unfolding is performed first and then retimed
and vice versain Row “retime-unfold”. Row “retime-unfold-CR” show
the code size when our proposed technique is used. In Table 3 we fixed
the performance of the optimization by setting an iteration period for
each unfolding factor to make a fair comparison. As stated in Theorems
in Section 4, we suggest that performing retiming first and unfolding give
less code size. When applying our technique using conditional registers,
the code size is further reduced.

We can see that our approach can be used to effectively reduce code
sizewhen retiming and/or unfolding is performed while maintaining par-
dlelism asin the original code. Further, our approach can be integrated
in a design exploration in many aspects, for example, to find the maxi-
mum performance when the number of conditional registers are limited
or explore different architectures (eg. memory size and conditional reg-
isters) to achieve the maximum performance.

Approach uf=2 | uf=3 | uf=4
unfold-retime 20 30 40
retime-unfold 20 30 30
retime-unfold-CR 14 19 24
iteration period 20 19 | 135

Table 3: Comparison of code size and iteration period for
DFG in Figure8.

6. CONCLUSION

Retiming and unfolding technique are commonly used techniques to
exploit instruction-level parallelism and achieve performance gain in
DSP systems. However, both techniques can enlarge code size by adding
prologue and epilogue sections to the original code. The more paral-
lelism is exposed, the more code size is expanded. For some systems
with a very limited memory resource, the code size expansion can be
acritical concern. In this paper, we present theoretical foundations and
code size reduction framework while the parallelism can still be explored
asin the original code. Our study shows that the approach that applies
retiming and then unfolding will achieve a smaller code size than ap-
plying unfolding first and then retiming. The experimental results show
that our technique can achieve optimal code size without degrading the
performance by using conditional registers.

Approach uf=2 | uf=3 | uf=4
unfold-retime 156 | 312 | 416
retime-unfold 130 | 156 | 182
refime-unfold-CR | 61 90 119

Table 4: Comparison of code size for 4-stage lattice when
cycleperiod isfixed to 8.
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