
Techniques to Evolve a C++ Based System Design Language

Robert Paško, and Serge Vernalde
Inter-University Microelectronics Center
Kapeldreef 57, B-3001 Leuven, Belgium�

pasko,vernalde � @imec.be

Patrick Schaumont
UCLA, Electrical Engineering Department

Los Angeles, CA 90095-1594
schaum@ee.ucla.edu

Abstract

Complex systems-on-chip present one of the most chal-
lenging design problems of today. To meet this challenge,
new design languages capable to model such heteroge-
neous, dynamic systems are needed. For implementation
of such a language, the use of an object oriented C++ class
library has proven to be a promising approach, since new
classes dealing with design- and platform-specific problems
can be added in a conceptual and seamlessly reusable way.

This paper shows the development of such an extension
aimed to provide a platform-independent high-level struc-
tured storage object through hiding of the low-level imple-
mentation details. It results in a completely virtualised,
user-extendible component, suitable for use in heteroge-
neous systems.

1. Introduction

The design of a System on Chip (SoC) is one of the ma-
jor conceptual challenges of today. It typically requires the
modelling and integration of various SoftWare (SW), Hard-
Ware (HW) and Intellectual Property (IP) elements, so any
SoC aspiring language or methodology must provide means
to deal with these issues, preferably in a uniform SW-like
way. This need has stimulated a significant amount of re-
search aimed at the exploration of new languages/design
methodologies to meet these goals, i.e. to be able to model
SW and HW parts, handle the interfaces between them and
provide for a seamless use of IP cores.

C++ based methodologies (SystemC [1, 2], Forte (prev.
CynApps) [3], Ocapi [4, 5, 6]) tackle the complexity and
diversity of the SoC designs by introducing the Object Ori-
ented (OO) programming principles into the design process.
These principles allow to separate interface from implemen-
tations, and provide for reuse at a higher level of abstraction
using the OO concept of classes. Furthermore, the core set
of classes implementing the basic semantic primitives can
be easily extended according to the designer’s needs. This

extendibility, typical for OO languages, is one of the most
interesting ideas behind the C++ based design. It allows
to refine the methodology for a given task and platform, as
well as to generalise and reuse the obtained results. Unfor-
tunately, it implies that knowledge of C++ is necessary to
certain extend. However, even without the bells and whis-
tles of the advanced OO techniques, understanding of the
basic OO principles is often sufficient for normal users to
take advantage of these techniques.

In this paper, we present an extension of the C++ based
design methodology Ocapi-XL with a set of classes provid-
ing the support for array-like data structures. We begin with
several ad-hoc classes implementing a storage element on
different platforms, and gradually show the conceptual re-
finement of these into a full fledged virtual array compo-
nent. This component completely hides the low-level im-
plementation details behind a clean high-level interface. We
put a lot of emphasis onto a detailed explanation of the used
programming techniques, so that the reader can follow and
understand the role of the underlying C++ concepts in the
design process.

The rest of the paper is structured as follows. In the next
section, the essential ideas of C++ based design are dis-
cussed. In Section 3, our methodology Ocapi-XL is com-
pared to the mainstream SystemC and short overview of
Ocapi-XL is given. The initial ad-hoc array implementa-
tions are shown in Section 4. In Section 5, the refinement
of the concepts using OO principles is discussed, and the
resulting set of classes providing the generic array func-
tionality is presented. Finally, the conclusions are drawn
in Section 6.

2. C++ Based Design and Related Work

The essential idea of all C++ based design methodolo-
gies is to support the design of HW, or even SW via a library
of the necessary semantic primitives. It is realised through
C++ classes, and complemented with a suitable simulation
engine. This makes the idea of C++ based methodologies
quite similar to the concept of meta-languages, i.e. lan-

Interpreter of the specification language implemented via
 an object library

Design specification language

Implementation
language ?

SystemC Ocapi 1 Ocapi-XL Cynlibs

C++ Java

Figure 1. Meta-language concept in the C++
based design methodologies.

guages not self-contained, but rather interpreted in terms
of another programming language, as illustrated in Fig. 1.
This strategy has some interesting advantages, like imple-
mentation simplicity and seamless extendibility. The ex-
tendibility is even more important in the SoC context, be-
cause the necessary semantic elements, as well as computa-
tional models, can vary from one application to another dra-
matically. However, when designing such an application in
a C++ based methodology, the designer can devise his/her
own extensions to deal with the problems at hand. This ap-
proach is well supported in the OO programming paradigm,
since it allows to define and use the new primitives in the
same way as the built-in data types and functions. Finally,
the description is compiled using a standard C++ compiler,
resulting in an executable specification, as shown in Fig. 2.

The advantages of the C++ based design languages with
respect to the extendibility were considered recently by sev-
eral authors. The methodology of choice in these works was
SystemC1, which appears to be more and more accepted by
the design community. In [7] and [8], the support for high-
level communications was added, in the first case to allow
the clock-true simulation of a multi-processor platform, and
in the second to facilitate interface-based design paradigm.
In [9], a methodology for smooth interfacing of a third party
SW was discussed. All these papers concentrated almost
exclusively on the ensuing application of the library exten-
sions. This paper targets the C++ issues related to the im-
plementation of the extension itself, since in our opinion,
this sort of information was generally missing.

In several recent designs made with Ocapi-XL [5],
we have repeatedly faced problems which were solvable
through an extension of the core library. Among the most
compelling ones was the support of an indexed storage ele-
ment, not present in the base library. However, the introduc-
tion of such a simple high-level concept was complicated
by the variability of the target platforms, each one requiring
a different implementation. For example, a register bank

1The relation between Ocapi-XL and SystemC will be briefly outlined
in the next section.

C++
compiler

executable specs
internal data

structure

simulation and/or
code-generation

engine
C++ primitives

library

system specification and
user library extensions

code

sim

Figure 2. C++ based methodology design flow

was needed in a design of a small RISC core for a Field
Programmable Gate Array (FPGA), C-like arrays were re-
quired in the design of an embedded SW medium access
(MAC) layer for a wireless network [10], or finally, on- and
off-chip SRAMs were used for storage in an FPGA based
embedded camera design [11]. Such diversity and need for
reuse in different contexts is typical for SoC design, and the
presented approach can be can be considered rather charac-
teristic for C++ based methodologies.

3. Ocapi-XL Overview

Ocapi-XL is a good example of a C++ based design
methodology. It was specifically designed for modelling of
heterogeneous HW/SW systems and it uses a unified ap-
proach to HW and SW code [5] to achieve that objective.
More specifically, it provides parallelism at a process level,
uses high-level communication primitives like messages or
semaphores, and offers several options for incorporation
of C/C++ legacy code for simulation purposes. This fea-
tures put it approximately on the same level of abstraction
as SystemC v2.0, which embodies similar concepts. Thus
Ocapi-XL can be used for executable specifications of a sys-
tem in a similar way as it is done in SystemC (e.g. in [12]).

The crucial difference between Ocapi-XL and SystemC
is that Ocapi-XL unifies the simulation and code generation
under the same set of objects. Thus, a single executable
Ocapi-XL program can perform simulation as well as HDL
or SW code generation. This allows a gradual refinement of
the original high-level C/C++ code inside of the same en-
vironment. In order to make the following chapters under-
standable, the supported modelling/code-generation primi-
tives must be introduced more in detail.

The basic quantum of computation is an instruction. In
HW, multiple instructions can be executed in a single clock-
cycle. The instructions can be divided into data and control
ones. The data instructions provide the necessary collec-
tion of arithmetic, logic and assignment operations for the
Ocapi-XL data type Int, which stands for a simple integer.
For control, the conditional execution statements, as well as

2

/*--- variables definitions ---*/
Int a,b,c;
/*--- starting a new process named P ---*/
procHLHW P("P");
a = cc(0); //assigning constant 0 to a
//cc(x) is a macro converting integer to Int
label L; //label definition for branching
c = a+cc(1); //arithmetic operation
//control statement equivalent
//to a C statement => b = (c == 1) ? a : b
b = (c == cc(1)).sel(a,b);
sync_(); //control returns to the scheduler
jumpif(L,a); //conditional branch to label L
a = a & b; //logic operation
jump(L); //unconditional branch

Figure 3. Ocapi-XL code example.

looping and branching instructions are provided.

To support parallel execution, Ocapi-XL provides the no-
tion of a process as the basic level of parallelism and hier-
archy. Two essential types of processes are distinguished:
software (procHLSW), and hardware (procHLHW). The
switching between running and waiting processes is done
on a blocking operation or via the special instruction
sync (), which represents a clock-edge in HW and a pro-
cess switch in SW. Some examples of the data, control and
process primitives are shown in Fig. 3.

Communication between processes is implemented via
three basic communication primitives: messages imple-
menting blocking read and non-blocking write; shared vari-
ables with non-blocking access; and binary semaphores
with blocking grab and non-blocking release operations.
The blocking operations can be used for inter-process syn-
chronisation as well.

To increase the flexibility, a direct interface to C++
is implemented via a so-called Foreign Language Inter-
face (FLI). It allows to run any snippet of C++ code dur-
ing an Ocapi-XL simulation by overloading the originally
empty run method of the FLI class with the intended code
(Fig. 4). Another way to incorporate a C/C++ code into sim-
ulation is to use a special type of the process, which runs a
C thread inside. However, this technique is not used in the
rest of the paper, so it will not be discussed more in detail.

Finally, the Ocapi-XL description compiles into exe-
cutable code. In addition, it supports code-generation to
other languages: VHDL/Verilog for hardware and C for
software. The FLI’s are appearing in the generated code
as function signatures/calls in the C code and black-box en-
tities with appropriate ports in VHDL/Verilog.

/*--- FLI supplying the values of sin(x) ---*/
class sin_fli : public fli {
public:
//virtual run method is overloaded with
//the required behaviour
void run() { int x = var[1]; var[2] = sin(x); }
//var[..] are provided FLI variables used
//to import/export data to/from an FLI object

};
/*--- usage of the above defined fli ---*/
sin_fli SIN; //defining the fli object
Int a,b;
//fliIn and fliOut define the port direction
call(SIN,fliIn(a),fliOut(b)); //<==> b = sin(a)

Figure 4. Ocapi-XL FLI syntax and semantics.

_data

[a] write_array part [b] read_array part

_arr[2]

result

index == 1

index == 0

index == 2

index == 0 _arr[1]

_arr[0]

Figure 5. Hardware RegArr structure.

4. Initial Ad-hoc Array Designs

First, we present various ad-hoc schemes implementing
the indexed storage element in different contexts.

4.1. Register Array Implementation

The first type of array structure supports modeling of
the register bank of a RISC core. We developed a class
RegArr that provides such array access and automatically
refines to registers and multiplexers after the code genera-
tion, as shown in Fig. 5.

In order to get the proper code for synthesis, the read
and write operations must be implemented themselves us-
ing Ocapi-XL instructions. The key is the recursive method
match index, which internally unfolds into the multi-
plexer tree, as shown in Fig. 5[b]. Similarly, the for loop
in the write array method will generate the structure in
Fig. 5[a]. The corresponding class definition is shown in
Fig. 6 2.

2For readability, references and consts will be avoided, if not strictly
required. e.g. the purists’ read array definition is: const Int&
RegArr::read array(const Int& index) const;

3

/*--- Definition of the initial class ---*/
class RegArr {
vector<Int> _arr;
Int match_index(Int _index, int _i);

public:
RegArr(int _N) : _arr(N) {}
/* the read and write methods */
Int read_array(Int _index);
void write_array(Int _index, Int data);

};
/*--- generating the reading multiplexers ---*/
Int RegArr::match_index(Int _index, int _i) {
//if _arr[i] is the last element, finish
//the recursion and directly return it
if (_i == _arr.size()-1) { return _arr[i]; }
//otherwise check for the index match
//and recurse further down the array
return (_index == cc(_i)).sel(

_arr[i],
match_index(_index,i+1));

}
/*--- reads array by calling match method ---*/
Int RegArr::read_array(Int _index) {
return match_index(_index,0);

}
/*--- write_array uses similar mechanism ----*/
void RegArr::write_array(Int _index, Int _data) {
for(int i=0; i<_arr.size(); i++) {
_arr[i] = (_index != cc(i)).sel(

_arr[i],
_data);

} }

Figure 6. Initial RegArr implementation.

4.2. C-like Array Implementation

The second type of array structure was used in a HIPER-
LAN II MAC layer [10], where a SW implementation was
the primary target. We based our implementation here on
the FLI extension mechanism, since we wanted to use the
C compilers’ native implementation of an array. We still
want however seamless integration of this C array with the
Ocapi-XL computation model. This leads to a new imple-
mentation of a generic array class GenArr based on the
FLI mechanism, shown in Fig. 7.

The functionality in Fig. 7 is achieved through two FLI
calls for read and write, which are sharing the same C++
vector object. This implementation results in fast simula-
tion, as well as proper code-generation. Since the FLI’s are
generated as C-function calls, it is sufficient to provide two
externally defined functions, or macros, implementing the
C-style array access.

4.3. RAM Implementation

A third refinement of an array was introduced to facili-
tate the use of SRAM modules connected to an FPGA based

/*--- class providing reading through FLI ---*/
class fliREAD : public fli {

//reference to an outside array, since it must
//be shared for reading and writing
vector<int>& arr;

public:
fliREAD(vector<int>& _arr) : arr(_arr) {}
//run reads the array at the supplied address
void run {
int addr = var[0];
var[1] = arr[addr];

}
};
/*--- class providing writing through FLI ---*/
class fliWRITE i: public fli {

vector<int>& arr;
public:
fliWRITE(vector<int>& _arr) : arr(_arr) {}
//writes the data at the supplied address
void run {
int addr = var[0];
int data = var[1];
arr[addr] = data;

}
};
/*--- class GenArr implementation ---*/
class GenArr {

vector<int> arr;
fliREAD RD;
fliWRITE WR;
Int result;

public:
GenArr(int _N) : arr(_N), rd(arr), wr(arr) {}
//read and write just call the FLI’s
Int read_array(Int _index) {
call(RD, fliIn(_index), fliOut(result));
return result;

}
void write_array(Int _index, Int _data) {
call(WR, fliIn(_index), fliIn(_data));

} };

Figure 7. GenArr implementation using FLIs.

networked camera [11]. An external RAM Array can be
considered as a mixture of the two previous approaches.
The memory itself is an external element, thus FLI is the
proper modelling technique. However, the reading and writ-
ing operations have to comply to a certain protocol, which
must be implemented in Ocapi-XL code. Let us assume the
protocol for reading, as shown in Fig. 8[a], i.e. the address
and control signals must be asserted before the first clock
cycle, while the data can be read in with the second. In ad-
dition to this behaviour, an interface as in Fig. 8[b] must be
generated.

A possible implementation of RAMArr class is shown
in Fig. 9. The functionality is provided inside the fliRAM
class. It is not necessary to separate the read and write op-
erations into two FLI’s, since WE can be used to choose the
proper one. The read arraymethod describes the access

4

Addr

DOut

ck0 ck1

WE

EN

[a] RAM read access
 timing diagram

addr

en

we

di

do

RAMapp

[b] generated interface

Figure 8. RAM access protocol and interface.

protocol, i.e. two successive calls of the FLI, first with the
control signals asserted, and second to read the data. The
write operation was implemented in a similar way. This
code, with minor modifications, was used to simulate wide
range of RAMs, starting from external RAM modules to the
internal Xilinx-Virtex SelectRAM and BlockRAM struc-
tures.

5. Virtualising the Concept

All the above defined classes represent the low-level im-
plementations of a high-level concept: array. They are,
unfortunately, too application specific to provide a good li-
brary component. In order to provide a re-usable, virtual ar-
ray component, several requirements have to be taken into
account. First, a uniform high-level user-friendly interface
should be devised. Second, the structure must provide effi-
cient low-level implementations. Finally, it has to be seam-
lessly extendible. The first goal can be achieved by a sepa-
ration of the interface and implementation.

5.1. Separation of Interface and Implementation

The separation of interface and implementation can be
realised in C++ through a combination of the inheritance
and polymorphism mechanisms. The first one provides
the means for indicating commonalities between objects
by defining a parent-child relationship, while the second
ensures that the proper code will be executed when par-
ent or child class is used. In our problem, the inheri-
tance hierarchy, as shown in Fig. 10, can be used for the
separation of interface and implementation. The parent
AbsArr class’s sole purpose is to define the appropriate
high-level interface for later implementations. The methods
read array and write array are the obvious candi-
dates. Every one of the descendent classes provides the spe-
cific implementation of the abstract array object: RegArr

/*--- fliRAM interface ---*/
class fliRAM : public fli {

vector<int> arr; //C++ array to hold the data
//to achieve the pipeling effect at the output
int lastdata;

public:
fliRAM(int _N) : arr(_N), lastdata(0) {}
virtual void run() {
int addr = var[0]; //address
int en = var[1]; //enable signal
int we = var[2]; //write enable signal
int di = var[3]; //data in
if (en) {

if (we == 1) { // read operation
lastdata = arr[addr];

} else { // write operation
arr[addr] = di;
lastdata = di; // write through

} }
var[4] = lastdata;

} };
/*--- class RAMArr implementation ---*/
class RAMArr : public AbsArr {

fliRAM RAM;
// the intermediate signals
Int addr, en, we, di, do;

public:
RAMArr(int _N) : RAM(_N);
Int read_array(Int _index);
void write_array(Int _index, Int _data);

};
/*--- RAMArr reading procedure ---*/
Int RAMArr::read_array(Int _index) {

addr = _index; // _index is the address
en = we = cc(1); // enable and read set to 1
di = cc(0); // input data is 0 for read
// calling the fli
call(fliIn(addr), fliIn(en), fliIn(we),

fliIn(di), fliOut(do));
sync_(); //---- the clock cycle boundary ----
// second call provides the data
en = cc(1); // en is 1 in the 2nd cycle
we = cc(0); // we is 0 in the 2nd cycle
call(fliIn(addr), fliIn(en), fliIn(we),

fliIn(di), fliOut(do));
return do;

}

Figure 9. RAMArr implementation using FLI.

is the previously described register array, RAMArr provides
the RAM interface and GenArr is the FLI based array
model. Polymorphism ensures that proper implementation
of read array or write array methods will be in-
voked whenever the AbsArr will be substituted by one of
its descendent classes.

The C++ declaration defining the inheritance tree from
Fig. 10 is shown in Fig. 11. The AbsArr parent class
contains just two pure virtual, i.e. empty, method declara-
tions. The descendant classes can be implemented as in the
previous section. The inheritance relationship to AbsArr

5

AbsArr

Int read_array(Int _index) = 0
void write_array(Int _index, Int _data) = 0

GenArr

read_array(...)
write_array(...)

RegArr

read_array(...)
write_array(...)

RAMArr

read_array(...)
write_array(...)

further
extensions

Figure 10. The inheritance hierarchy of array
classes.

/*--- Abstract parent class ---*/
class AbsArr {
public:
//pure virtual methods to be redefined later
Int read_array(Int _index) = 0;
void write_array(Int _index, Int _data) = 0;

};
/*--- Register Array class ---*/
class RegArr : public AbsArr {
//same code as in the previous section
};
/*--- generic array class ---*/
class GenArr : public AbsArr {
//same code as in the previous section
};
/*--- RAM based array class ---*/
class RAMArrr : public AbsArr {
//same code as in the previous section
};

Figure 11. Hierarchy definition in C++

must be indicated only in the header definition, as shown in
Fig. 11.

This set of classes provides the user an array interface
complemented with an easily extendible set of implementa-
tions. Since the component is intended for frequent reuse,
every detail has to be handled with care. This includes for
example the issues of efficiency and user-friendly syntax.

5.2. Refinements of the Scheme

Since the designed classes can be reused in various
scenarios and with different back-end tools, the structure
should be as efficient as possible. For example, the mul-
tiplexer chain providing the reading functionality is gener-
ated in a ripple-like configuration, making the overall delay
function of the array length � . A preferable structure in this
scenario is a balanced tree, making the total delay a function
of

������� �	� , as shown in Fig. 12.
A simple binary search strategy can achieve this our goal.

The basic idea for implementation of the binary search is to
start from the right side of the multiplexer tree and instead

result

index == 1

index == 0

index == 2

result

index < 2

index < 3

index < 1
A[0]

A[1]

A[2]

A[3]

A[0]

A[1]

A[2]

A[3]

[a] ripple-like structure [b] balanced tree structure

Figure 12. RegArr reading implemented via a
balanced tree.

// searches for an element between l and h
Int RegArr::bsearch(Int _index, int l, int h) {

//the base level is reached
if (l == h) { return _arr[li]; }
else {
//split the array into two halves
//and continute the search further down
int half = floor((l + h)/2) + 1);
return (_index < cc(half)).sel(

bsearch(_index,l,half-1),
bsearch(_index,half,h));

} }
/*--- read_array searches the whole array ---*/
Int RegArr::read_array(Int _index) {

return bsearch(_index,0,_arr.size()-1);
}

Figure 13. Binary search implementation.

of comparing the specific index, just decide in which half
of the array is the indexed element placed (see Fig. 12[b]).
With this information, the whole procedure can be recur-
sively applied on both halves, till the base level is reached,
as shown in the C++ implementation depicted in Fig. 13.
Thus the only necessary modification inside of the RegArr
class is the replacement of the original match index
method with the new bsearch, as shown in Fig. 13.

5.3. Adding Syntactic Consistency

Finally, there are two eventual objections concerning the
usage of the presented set of classes. First, in order to be
able to switch between various implementations, it is nec-
essary to work with pointers or references to the AbsArr
array, which is not very comfortable. Second, the array ac-
cess methods read array and write array are lack-
ing the simplicity and elegance of the C++ bracket operator
[] used normally for an array access.

The remedy for the first problem is relatively easy and
straightforward. One additional array class, the IntArr,

6

IntArr

AbsArr* _arr;

return _arr->read_array(...)read_array(...)

write_array(...) return _arr->read_array(...)

AbsArr

read_array(...)
write_array(...)

Figure 14. IntArr wrapper class.

/*--- overloading operator[] ---*/
class foo {
int* arr;
//operator[] just returns a reference to
//an appropriate memory location
int& operator[](int i) { return arr[i]; }

};
//...
foo A(10);
A[5] = 5; //writing operation
int i = 2 + A[7]; //reading operation
/*--- same approach for IntArr ??? ---*/
IntArr A(10); Int x;
A[5] = x; //lhs -> write_array(..) to be called
x = A[4]; //rhs -> read_array(..) to be called

Figure 15. Overloading of the operator[].

is needed to provide a wrapper around the AbsArr and the
descendant classes. The appropriate array type to create can
be specified as a parameter to the IntArr class construc-
tor, and the methods read array and write array
will simply call the polymorphic methods of the AbsArr,
as shown in Fig. 14.

The second problem, however, requires some imagina-
tive C++ programming techniques to employ. Since C++ al-
lows overloading of the operator[], the solution seems
to be similar to an example given in almost every C++ text,
shown in Fig. 15. This scheme of Fig. 15 works if the object
returned by the overloaded operator can be used in reading
as well as writing context, as in the case of integers. In our
array implementation however, two fundamentally different
operations are to be performed, i.e. it is necessary to distin-
guish, whether the operator[] is called for reading or
writing.

This distinction between reading and writing can not be
done at the time when the operator[] is called. Thus,
the evaluation of the expression must somehow be delayed.
This can be achieved by an intermediate proxy object, which
does not perform the array access immediately, but rather
stores the necessary information to do it later. Thorough
discussion of the implementation of the lazy evaluation
scheme in C++ is given in [13].

The decision, in which context the array access was
made, can be based on the reasoning indicated in Fig. 16.

A[cc(5)] = ...

operator=() is invoked

Int d = A[cc(5)];

Conversion to Int must be performed

[a] LHS expression [b] RHS expression

Figure 16. Distinction between read and write.

/*--- the Proxy class definition ---*/
class ProxyInt {

// the necessary info to store, so array
// access can be performed later,
AbsArr* a;
Int& i;

public:
ProxyInt(AbsArr* _a, Int& _i) : a(_a), i(_i) {}
//operator= used => left hand-side expression
ProxyInt& operator=(Int& _d) {
a->write_array(i,_d);
return *this;

}
//type conversion used => right hand-side
operator Int() {
return a->read_array(i);

} };
/*--- final and complete IntArr class ---*/
class IntArr {

AbsArr* arr;
public:
enum IntType {GEN, REG, RAM}; // and others ..
IntArr(int N, IntType=Gen) {
arr = 0;
if (IntType == GEN) arr = new GenArr(_N);
if (IntType == REG) arr = new RegArr(_N);
if (IntType == RAM) arr = new RAMArr(_N);

}
ProxyInt operator[](Int& _i) {
return ProxyInt(arr,_i);

} };

Figure 17. Final version of the IntArr class.

If it was used at the left hand-side of an expression, assign-
ment operator will be eventually invoked. So the code for
array write can be put inside of a method overloading that
operator of the proxy object. Similarly, an automatic type
conversion will be invoked in the right hand-side scenario,
so that is the place for the array read code. The C++ imple-
mentation of the IntArr wrapper class providing access
via the operator[] is given in Fig. 17 3.

The last example of the proxy classes requires consid-
erable knowledge of the C++ language. However, the
proxy class is completely hidden from the designer. He/she
is confronted only with the clean and simple interface of
the IntArr class, while the underlying code can be pro-

3The definition of the ProxyInt is in reality a bit more complex (the
interested reader should look at [13] and the proxy pattern in [14]), but the
presented code shows the essential idea.

7

//10 element register array
IntArr A(10,IntArr::REG);
//interface to a 1000 element RAM
IntArr B(1000,IntArr::RAM);
Int adr, dt, dt1;
//...
adr = cc(5);
dt = A[adr]; // reads dt from a register array
// writes to a memory addressed by dt with
B[dt] = dt1; // the proper access protocol

Figure 18. Example of IntArr definition and
use.

grammed by a skilled C++ expert designing the array mod-
ule. An example of code using the presented extensions is
shown in Fig. 18. It demonstrates the high-level simplicity
of the concept.

6. Conclusions

C++ based design methodologies are among the most ap-
pealing candidates for the design of complex SoC applica-
tions. One of the most important properties is the seamless
extendibility, which is especially useful in the highly het-
erogeneous SoC environments.

We have demonstrated, how virtualisation of an exten-
sion component can be realised in C++ based methodolo-
gies, thanks to the OOP features. The resulting set of classes
provides the user with an extendible array type of container
featuring an easy-to-use high-level interface hiding many
complex low-level implementation details. The use of such
component results in smaller, more intelligible code, with
the possibility to extend it whenever necessary.

References

[1] Guido Arnout, “SystemC Standard”, ‘Proc. of ASP-
DAC 2000, Yokohama, Japan, pp.573-577, January
2000.

[2] SystemC [online]. http://www.systemc.org

[3] Forte (prev. CynApps) [online].
http://www.ForteDS.com/

[4] P. Schaumont, et al., “A Programming Environment
for the Design of Complex High-Speed ASIC’s”,
Proc. DAC 1998, San Francisco, CA, June 1998.

[5] G.Vanmeerbeeck, et al., “Hardware/Software Parti-
tioning fo Embedded Systems in OCAPI-XL”, Proc.
of CODES 2001, Copenhagen, Denmark, April 2001.

[6] Ocapi [online]. http://www.imec.be/ocapi

[7] Patrice Gerin, et al., “Scalable and Flexible Cosim-
ulation of SoC Designs with Heterogeneous Multi-
Processor Target Architectures”, Proc. of ASP-DAC
2001, Yokohama, Japan, February 2001.

[8] Robert Siegmund, and Dietmar Müller, “SystemC �
�

:
An Extension of SystemC for Mixed Multi-Level
Communication Modelling and Interface-Based Sys-
tem Design”, Proc. of DATE 2001, Munich Germany,
March 2001.

[9] Luc Charest, et al., “A Methodology for Interfacing
Open Source SystemC with a Third Party Spftware”,
Proc. of DATE 2001, Munich Germany, March 2001.

[10] V. Nema, et al., “Optimised MAC Policy for a Ded-
icated Short Range Communication System”, Proc.
of IEEE International Conference on 3rd Generation
Wireless and Beyond, San Francisco, CA, June 2001.

[11] R.Cmar, et al., “Platform Design Approach for Re-
configurable Network Appliances”, Proc. of CICC
2001, San Diego, CA, May 2001.

[12] Ghassan Fayad, and Karim Khordoc, “An Object-
Oriented Refinement Methodology through the De-
sign of a Settop-Box”, Proc. of 2000 Canadian Con-
ference on Electrical and Computer Engineering, Hal-
ifax, Canada, March 2000.

[13] S. Meyers, “More Effective C++”, Addison-Wesley,
1996.

[14] E. Gamma, et al., “Design Patterns”, Addison-Wesley,
1999.

8

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

