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ABSTRACT
This paper provides an overview of algorithmic noise-tolerance
(ANT) for designing reliable and energy-efficient digital sig-
nal processing systems. Techniques such as prediction-based,
error cancellation-based, and reduced precision redundancy
based ANT are discussed. Average energy-savings range
from 67% to 71% over conventional systems. Fluid IP core
generators are proposed as a means of encapsulating the
benefits of an ANT-based low-power design methodology.
CAD issues resident in such a methodology are also dis-
cussed.
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1. INTRODUCTION
Next generation wireless communication standards such

as wireless LAN (IEEE 802.11b and a), access (IEEE 802.16)
and 3G (UMTS) reflect the rapid growth in demand for
portable and wireless services. Such systems demand higher
functionality with extremely low levels of energy consump-
tion. These conflicting requirements have been met to a
great extent via scaling of feature sizes in modern CMOS
technologies. However, technology scaling has also resulted
in the emergence of deep submicron (DSM) noise [13] raising
concerns regarding the ability of the semiconductor industry
to extend Moore’s law well into the deep submicron regime.
At the heart of the issue mentioned above is the problem

of achieving energy-efficiency in the presence of noise, re-
ferred to as the reliable low-power design [12] problem. This
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problem has two components: 1.) determining bounds on
energy-efficiency in the presence of noise, and 2.) developing
design techniques for approaching these bounds. Since 1995,
our research has directly addressed these two subproblems.
First, we developed an information-theoretic paradigm for

DSM VLSI systems [11, 6] and employed it to determine
bounds on energy-efficiency of these systems in the pres-
ence of noise. In [11], we proposed the idea of viewing DSM
VLSI systems as communication networks. Recently, other
researchers have employed information-theoretic considera-
tions to determine bounds on the switching energy of binary
transition [9], bounds on energy for deep submicron busses
[15], and on biological systems [1].
Second, we developed key elements of a design philos-

ophy based on noise-tolerance, including noise-tolerant cir-
cuit design [2], and algorithmic noise-tolerance (ANT) [7] for
broadband communication systems. Indeed, the recent 2001
International Technology Roadmap for Semiconductors [8]
(ITRS2001) has described error-tolerance as a cost-effective
approach for achieving reliability. The ITRS2001 further as-
serts the need to view systems-on-a-chip as a communication
network.
In this paper, we provide an overview of ANT as a ef-

fective technique that provides significant gains in energy-
efficiency in the presence of noise over conventional systems.
The key idea behind ANT is to permit errors to occur in a
signal processing block and then correct it via a separate
error control block. This approach of error/noise-tolerance
is fundamentally superior to mitigating noise and achieves
energy-efficiencies beyond what is achievable via present day
techniques. Note, ANT techniques are somewhat orthogo-
nal to known low-power techniques [3, 10] in that ANT can
be applied after/along with known power reduction tech-
niques. A key difference between ANT and related work in
the information-theoretic and coding communities [4] is that
the latter do not account for energy-efficiency.
In this paper, we focus on ANT techniques as an attrac-

tive approach for jointly addressing reliability and energy-
efficiency issues for broadband communications and digital
signal processing systems.

2. ALGORITHMIC NOISE-TOLERANCE
In this section, we first define an ANT-based system in

section 2.1 followed by a motivational example in section 2.2.
In section 2.3, we describe the key elements of an ANT-
based system and in section 2.4 we provide a rationale for
the effectiveness of ANT in enhancing energy-efficiency.



Table 1: Motivational Example
i 1 2 3 4 5 6 7 8
x 0.875 -0.875 0.875 -0.875 0.875 0.875 -0.875 0.875
η 0.000 0.000 0.875 0.000 0.000 0.875 0.000 0.000
y 0.547 0.219 0.328 -0.328 0.328 0.766 0.766 0.328
y′ 0.547 0.219 1.203 -0.328 0.328 1.641 0.766 0.328
yr 0.438 0.000 0.438 -0.438 0.438 0.438 0.438 0.438
y 0.547 0.219 0.438 -0.328 0.328 0.438 0.766 0.328

ŷ[n]
y’[n]

MDSP EC
x[n] + sn[n]

Figure 1: ANT-based DSP System.

2.1 Formal Definition of ANT
An ANT-based DSP system (see Fig. 1) has a main DSP

(MDSP) block that computes in an energy-efficient man-
ner but makes intermittent errors. It accepts as its input the
signal x[n] + sn[n], where x[n] is the input signal and sn[n]
is the input signal noise. The noisy output of the MDSP
block is denoted by y′[n]. In essence, the MDSP block sac-
rifices noise-immunity for energy-efficiency. The EC block
observes the noisy output y′[n], and the input x[n] + sn[n]
and perhaps certain internal MDSP signals to detect and
correct errors. The final corrected output of the ANT-based
system is denoted as ŷ[n]. The error-control (EC) block
operates in an error-free manner but consumes significantly
more energy per operation than the MDSP block.
The assumption of an error-free EC block can be easily

justified as follows. Due to energy-efficiency considerations,
the EC block will be designed to be much simpler/smaller
than the MDSP block. Thus, the constraints on delay
and power will be significantly relaxed for the EC block
and therefore can be easily met with a much higher noise-
immunity. For example, one can use a highly noise-tolerant
circuit technique [2] to design the EC block and pay a price
in terms of extra power. As the EC block is designed to be
much smaller than the MDSP block, this extra power will
have minimal impact on the overall power consumption.
If the MDSP block is an FIR filter, then its noisy output

y′(n) can be written as,

y′[n] =
N−1X

k=0

hkx[n − k] + η[n]

= y[n] + η[n] (1)

where y[n] is the error-free output and η[n] represents the
manifestation of DSM noise at the algorithmic level on a
per (output) sample basis. We now describe an example to
illustrate the ANT concept.

2.2 Motivational Example
Consider the error-free output y[n] of a finite-impulse re-

sponse (FIR) filter (main filter) given by

y[n] = 0.625x[n] + 0.875x[n − 1] + 0.625x[n − 2], (2)

where x[n] is a 4-bit two’s complement uncorrelated input
that is equally likely to take on a value of either 0.875 or
-0.875. Note that the coefficients also have a 4-bit two’s
complement representation.
We model the impact of a DSM noise source with the

signal η[n] that takes on a value of ±0.875 with probability
0.1 and 0 with a probability of 0.9. We denote the noisy
output of the main filter as y′[n], where

y′[n] = y[n] + η[n] (3)

Note that η[n] is non-zero quite infrequently but that the
non-zero value (0.875) is quite large, i.e., comparable to the
maximum value of the output y[n] (1.86). Table 1 shows the
values of x[n], y[n], η[n] and y′[n] for 8 sample periods.
In order to detect and correct these errors, we implement

a half-precision filter (i.e., a filter whose coefficient precision
is half of that of the main filter in (2)) whose input is x[n]
(i.e., same as that of the main filter), and whose output yr[n]
is given by

yr[n] = 0.5x[n] + 0.5x[n − 1] + 0.5x[n − 2] (4)

Note that the coefficients of the half-precision filter can be
obtained by truncating the 4-bit two’s complement repre-
sentation of the main filter by two LSBs.
We flag an error when the absolute value of the difference

between the two filter outputs |y′[n]− yr[n]| is greater than
a pre-specified threshold Eth. In this example, we set Eth =
max(|y[n]− yr[n]|) = 0.547, where the maximization is over
all input combinations. Let ŷ[n] be the final (corrected)
output of this system. If an error is flagged then we correct
it via the assignment: ŷ[n] = yr[n]. Otherwise, we set ŷ[n] =
y′[n].
Table 1 shows the values of yr[n] and ŷ[n]. A run of

approximately 1000 samples shows that the output signal-
to-noise ratios (SNRs) as

SNRn = 10log10(
σ2

y

σ2
n

) = 8.0474dB (5)

SNRANT = 10log10(
σ2

y

σ2
ŷ−y

) = 13.2667dB (6)

where σ2
y, σ2

n, and σ2
ŷ−y are the variances of the error-free

output y[n], the noise signal η[n] and the residual noise sig-
nal ŷ[n] − y[n], respectively. Note that SNRn is the out-
put SNR of the noisy main filter before error control and
SNRANT is the output SNR of the ANT-based system, i.e.,
after error correction. It can be seen that a very simple er-
ror correction scheme can improve the output SNR by more
than 5dB.



From this example, we conclude that the key elements
of an ANT-based system are: 1.) the DSM noise model
η[n], 2.) the statistical nature of the metrics (e.g. SNR)
employed to evaluate the algorithmic performance, and 3.)
statistical properties of the signals being processed, and the
algorithm itself. These are described next.

2.3 Elements of ANT

2.3.0.1 DSM Noise models and Architecture.
The signal η[n] in (1) models the impact of DSM noise on

an output sample. In general, noise may be random (e.g.,
alpha particle hits on a dynamic node) or may be systematic
(e.g., critical path violations or delay faults due to numerous
causes including variations in process, temperature and sup-
ply voltage). For practical reasons, in certain cases we may
deliberately take η[n] to be random even if the correspond-
ing physical noise source is systematic. For example, supply
bounce is a systematic source of noise because of its depen-
dence on the input. This dependence is however extremely
complex for large designs. Therefore, we may choose an η[n]
to be random when modelling the impact of supply bounce
on the output of a DSP block.
DSM noise in general is hard to model especially at the

algorithmic level as needed by ANT based systems. For this
reason, in the past, we have proposed the concept of voltage
overscaling (VOS) which extends the idea of voltage scaling
and provides a ’well understood’ source of noise. Assume
that Vdd−crit is the supply voltage at which the critical path
delay just meets the delay constraints imposed by the appli-
cation and architecture. VOS implies scaling of the supply
voltage to a value below Vdd,crit, i.e., Vdd = Vdd,crit/kvos,
where kvos ≥ 1 is referred to as the voltage overscaling fac-
tor (VOSF). VOS results in one or more critical paths vio-
lating their delay constraints. This in turn will result in the
output y′(n) being in error when ever an appropriate input
sequence is applied. We refer to such errors as soft errors
because these disappear when the input sequence no longer
excites the critical path.
Note that the statistics of η[n] in a VOS scenario is a

strong function not only of the input statistics but also
the architecture. This is because the distribution of criti-
cal paths a function of the delay is dependent on the archi-
tecture. For example, an architecture utilizing ripple-carry
structures and array multipliers will have a skewed distri-
bution, i.e., a few paths will determine the overall delay of
the system. This delay imbalance favors ANT because a
skewed distribution implies a low frequency of errors when
the architecture is voltage overscaled.
Therefore, in a VOS scenario and perhaps others, the noise

model η[n] has a dependence on the input signal x[n]. Later
in the paper, we will present ANT techniques that exploit
this dependence and those that do not.

2.3.0.2 Algorithmic Performance Metrics.
ANT techniques exploit the fact that the functional per-

formance metrics for DSP and communication systems are
statistical in nature. In reference to Fig. 1, the output SNR
of a critically scaled (i.e., Vdd = Vdd,crit) (or noiseless) filter
is given as

SNRo = 10 log10

�
σy

2

σ2
sno

�
(7)

where σ2
y and σ2

sno are the powers of the output signal y[n]
and the output signal noise sno[n] (not shown in Fig. 1),
respectively. The term ’signal noise’ refers to the noise that
is present in the input signal x[n] and which is denoted in
Fig. 1 as sn[n]. Therefore, sno[n] is a filtered version of
sn[n]. Note, a signal noise source will exist even though the
critically scaled filter is error-free thereby providing a finite
value for SNRo.
Now, the output SNR for a voltage overscaled or noisy

filter is given by

SNRn = 10 log10

�
σy

2

σsno
2 + σn

2

�
(8)

where σy
2, σsno

2 and σn
2 are the powers of the output signal

y[n], output signal noise sno[n], and soft errors due to DSM
noise η[n], respectively.
Similarly, the output SNR of an ANT-based filter is given

by

SNRANT = 10 log10

�
σy

2

σsno
2 + σr

2

�
(9)

where σr
2 is the power in the residual soft error r[n] =

ŷ[n]− y[n].
Note that the presence of σ2

sno in the denominator in (9)
provides room for imperfect error control and hence greater
energy-efficiencies. This implies that in an ANT-based sys-
tem, it is sufficient to reduce the DSM noise source η[n]
below the output signal noise floor represented by σ2

sno in
order to minimize the impact on the output SNR.

2.3.0.3 Signal and Algorithmic Properties.
Signals being processed in DSP and communication sys-

tems can be modelled as random processes. The power spec-
trum of these signals are modulated by transmit filters, the
physical channel and the receive filters (equalizers). Thus,
one has a good idea of what the statistical properties of sig-
nals should be in a well-behaved or error-free system. DSM
noise sources tend to disturb the statistical structure of sig-
nals. ANT techniques are extremely effective when the dis-
turbance is large but correctable. Large disturbances make
it easy to detect errors and, if correctable, the overall impact
on SNR can be made minimal, i.e., SNRANT ≈ SNRo.

2.4 Energy Savings due to ANT
We now derive the conditions under which an ANT-based

system leads to energy savings in a VOS scenario over a crit-
ically voltage-scaled system (defined as a system operating
at Vdd−crit). The dynamic energy dissipation per clock cycle
Eorig of such a system is given by

Eorig = CorigVdd−crit
2 (10)

where Corig is the average switching capacitance. Note that
Eorig is the minimum energy dissipation that conventional
voltage scaling can achieve.
In comparison, the dynamic energy dissipation per clock

cycle EANT of the corresponding ANT-based system is given
by

EANT = Corig

�
Vdd−crit

kvos

�2

+ CANT Vdd−ant
2 (11)

where CANT represents the overhead complexity due to ANT,
Vdd−ant is the critical supply voltage for EC block, and
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Figure 2: Prediction-based ANT technique.

kvos > 1 is the VOS factor (VOSF). From (10)−(11), it
can be easily shown that EANT < Ecrit provided that

CANT Vdd−ant
2 < CorigVdd−crit

2(1− 1

kvos
2 ) (12)

In practice, the condition in (12) is easily satisfied by making
CANT as small as possible and/or by making kvos as large
as possible. There is indeed an interesting trade-off between
kvos and CANT . When kvos is increased, the performance
degradation becomes larger as more critical paths and other
longer paths start to fail. This requires increasingly sophis-
ticated and hence complex ANT techniques which would
increase CANT .

3. PREDICTION-BASED ANT
In this section, we describe a technique referred to as

prediction-based ANT [7] (see Fig. 2) that employs the filter
output y′[n] to detect and correct errors.
Consider the output y′[n] of a VOS filter that uses a least

significant bit (LSB) first architecture. LSB first architec-
tures are in fact the most commonly employed in practice. If
the filter is sufficiently narrowband then the error-free out-
put signal y[n] is highly correlated, i.e., the MSBs do not
change from one sample to the next. A linear predictor,
which is another filter, therefore can be used to statistically
predict the output y[n]. The output yp[n] of a linear predic-
tor of y[n] is given by

yp[n] =

Np−1X

k=0

pky[n − k − 1] (13)

where Np is the number of predictor taps and pk are the
predictor coefficients. The prediction error e[n] = y[n] −
yp[n] can be minimized via a proper choice of the coefficients
pk.
Under VOS, we do not have access to y[n] (the error-

free output) but only to y′[n] (the noisy output). We will
assume however that the errors occur with a frequency which
is sufficiently less than 1/(2Np). In that case, the predictor
output under VOS y′

p[n] equals yp[n] (the error-free output).
Also, under VOS, the MSBs will fail first, i.e., η[n] in (1)

is large. The prediction error under VOS e′p[n] is therefore

given by

e′p[n] = y′[n]− y′
p[n]

= y[n]− yp[n] + η[n]. (14)

In this case, error detection is accomplished via a simple
threshold on e′p[n]. Error correction on the other hand is
also achieved by assigning the final corrected output ŷ[n] as

ŷ[n] = yp[n]. (15)

In addition, we also assign yp[n] as the next Np corrected
outputs. This is because once y′[n] is in error (i.e., y′[n] �=
y[n]) then yp[n] �= y′

p[n] for the next Np samples while the
incorrect output y′[n] is being flushed out from the data
buffer in the predictor (see (13).
We summarize the prediction-based ANT scheme consists

of the following steps:

• Error detection: if |e′p[n]| > Eth an error is declared.

• Error correction: If an error is declared then ŷ[n] =
y′

p[n] else ŷ[n] = y′[n].

The assumptions made in deriving the prediction-based ANT
technique are:

• magnitude of noise η[n] is relatively large, i.e., compa-
rable to the maximum value that y[n] can achieve.

• the probability of η[n] �= 0 is less than 1/(2Np).

In addition, for obtaining large energy savings, we require
that the bandwidth of the output y[n] is sufficiently small so
that the predictor complexity is much smaller than that of
the MDSP block. We have shown through measurements
conducted on an integrated circuit designed in 0.35µm, 3.3V
CMOS process [5] that the prediction-based ANT technique
provides up to 67% energy savings over a critically scaled
filter.
The prediction-based ANT technique is surprisingly effec-

tive even when the output bits are flipped randomly with a
probability perr. We have shown [7] that ANT technique re-
duces the drop in SNR over a noiseless system from 11dB to
2dB for a value of perr as high as 10−3. In other words, the
ANT based system improves the SNR by 9dB when each
filter output bit is being flipped at an average rate of once
every 1000 samples independent of each other.

4. ERROR CANCELLATION-BASED ANT
The error cancellation-based ANT technique shown in

Fig. 3 exploits any correlation that may exist between η[n]
and the input x[n]. Note that such correlation certainly
exists under a VOS scenario.
The error cancellation-based ANT requires a separate fil-

ter called the error canceller he[n] that generates an estimate
of η[n] (denoted as η̂[n]) from x[n]. This error canceller
needs to be trained first in order to learn the correlation
structure between η[n] and the input x[n]. Figure 3, shows
how this is done. During the training phase, a known input
sequence x[n]+sn[n] is provided at the input to the MDSP
block. At the same time, the multiplexer provides the cor-
responding precomputed error-free output y[n]. Therefore,
during the training phase, the output y”[n] is given by,

y”[n] = y′[n]− y[n] = y[n] + η[n]− y[n] = η[n] (16)
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Figure 3: Error cancellation-based ANT technique.

and therefore the final output ŷ[n] is given by

ŷ[n] = η[n]− η̂[n] = e[n] (17)

where the estimation error e[n] is used to adapt the error
canceller. Any of the well-known adaptive filtering algo-
rithms such as the least-mean squared (LMS) algorithm can
be employed here.
Normal operation commences once the error canceller has

been trained, i.e., the variance of e[n] has been minimized.
In this phase, the input sequence is unknown and the multi-
plexer outputs a zero. In addition, the error canceller stops
adapting. The output y”[n] is therefore given by,

y”[n] = y′[n]− 0 = y[n] + η[n] (18)

and hence the final output ŷ[n] is given by

ŷ[n] = y”[n]− η̂[n]

= y[n] + η[n]− η̂[n] = y[n] + e[n] (19)

Equation (19) indicates that if the error canceller has been
trained correctly then during normal mode of operation, the
final output y”[n] will be very close to the error free output
y[n].
When applied to digital FIR filters, we have shown that

error-cancellation works best for broadband filters and en-
ergy savings of up to 71% can be achieved over critically
scaled systems.

5. REDUCED PRECISION REDUNDANCY
(RPR) BASED ANT

In the RPR technique [14], we exploit the fact that MSBs
are the critical bits and hence need to be protected from
noise.
The RPR technique shown in Fig. 4 has a low precision

replica hr[n] of the filter h[n] in the MDSP block. In this
case, hr[n] takes the same input x[n] + sn[n] as h[n] but
computes only the MSBs of the error-free output y[n]. Note
that the output of the RPR filter yr[n] will not equal the
error-free output y[n] of the MDSP filter due to quantiza-
tion noise. Quantization noise properties for DSP systems
are well-understood. Thus, the error control scheme in case
of RPR is as follows:

• compute the difference metric: d(y′, yr) = |y′[n] −
yr[n]|.

|  |  > T.

h  [n]r

[n] M
U

X
h[n]

y [n]r

η

y[n]x[n] + sn[n]

MDSP

EC

y[n]^

y’[n]

Figure 4: Reduced precision redundancy-based
ANT technique.

• Error detection: if d(y′, yr) > Eth, where Eth is a
predefined threshold value, then flag an error.

• Error correction: if an error has been flagged then
ŷ[n] = yr[n] otherwise ŷ[n] = y′[n].

Note that the threshold Eth will need to be set at a value
above the quantization noise floor. An ideal value for Eth

would be max(y′[n]− yr[n], where the maximization is car-
ried out over all noise scenarios. In case of VOS, this maxi-
mization needs to be done over all possible input combina-
tions.
When applied to digital filtering [14], RPR provides up to

67% energy savings. We have also shown that RPR-based
multipliers provide up to 44% energy savings in an FFT.

6. CAD ISSUES
The design of ANT-based DSP systems presents numerous

opportunities for CAD researchers. This section describes
some of the challenges.

6.1 Noise-Tolerant Design Methodology
New techniques for DSM noise analysis are required that

lead to a better understanding of the energy penalty in-
volved in controlling noise at the physical level. Also, algo-
rithms and techniques need to be developed that propagate
the impact of various noise sources to the algorithmic level,
and development of algorithmic noise models. This will en-
able designers to evaluate the energy-efficiency benefits of
ANT-based DSP systems under general noise scenarios and
contribute greatly to the goals stated in ITRS2001[8].
Determining energy-optimal trade-offs between circuit level

noise-tolerance and ANT is an open problem. The VOS sce-
nario also provides a nice test case for exploring these trade-
offs because the above mentioned noise modelling problem
for VOS is much more tractable than for the general DSM
noise case.
While any noise-tolerance based design paradigm would

be effective in achieving energy-efficiency in the presence
of noise, a question still remains as to what the bounds on
energy-efficiency in the presence noise are? The information-
theoretic view proposed in [11] has been applied to sim-
ple gates, where ANT techniques do not apply. There is
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currently a gap between our ability to compute achievable
bounds on energy-efficiency and being able to compare those
with the efficiencies achieved via techniques such as ANT,
which by default are effective for complex systems. Compu-
tational techniques are required for determining the bounds
on energy-efficiencies for complex VLSI systems.

6.2 Fluid IP Core Generators
In order to make the benefits of an ANT-based design

methodology available to the designer, we propose the de-
velopment of a fluid IP core generator as shown in Fig. 5.
A fluid IP core generator synthesizes a custom-quality

layout of an algorithm-specific block (such as an equalizer)
from high-level specifications without going through a syn-
thesis and place & route step. The term ’fluid’ refers to
the fact that the core generator while optimizing the ar-
chitecture can reach down into the circuit fabric and tune
transistor sizes while generating layouts. Core generators
are useful in broadband communication systems where en-
ergy and throughput efficiency limits need to be approached
and where canonical blocks (such as equalizers, filters, FFTs,
Reed-Solomon decoders etc.) are employed repeatedly though
with varying parameters across multiple applications.
The key features/benefits of a fluid IP core generator are:

1.) process and device scalability, 2.) custom quality design
within a synthesis quality design cycle, 3.) predictability of
hard cores and flexibility of soft cores, and 4.) encapsulation
of cross-domain optimization techniques such as ANT. An
inherent drawback of such a core generator is that these are
designed for algorithm-specific blocks.
An IP core generator has two major components: 1.) an

architecture optimizer, and 2.) a layout synthesizer, and it
accepts as inputs: 1.) power and delay models, 2.) library
of template transforms, 3.) algorithmic specifications and
4.) power and delay specifications.
Design of a fluid IP core generator presents numerous

problems. Development of process scalable power and de-
lay models is one. Such development seems feasible given
the fact that the functionality of algorithm-specific blocks
do not change over process generations. Hence, models that
require incremental changes from one process generation to
the next would be useful.
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