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Categories and Subject Descriptors Buffering changes the memory requirements and can lead to internal

C.0 [General: System Architecture; C.3omputer Systems Or- event bursts. . . . )
ganization]: Special-Purpose and Application-Based Systerresa- The analysis of such a platform is a major challenge and is cur-

time and embedded syster@is4 [Computer Systems Organizatiof: rently limited to simulation approaches, such as in V@ ¢r Seam-
Performance of Systems less [L1]. The known limitations of simulation such as incomplete

coverage and corner case identification are aggravated since many of
General Terms the design errors only result from system integration requiring detailed
knowledge which is often not available to the integrator. As a result,

Algorithms, Performance, Verification . - . X M -
simulation does not provide conservative system properties, in partic-

Keywords ular_ timing. In case c_ertain timing properties have to be guaranteed,
Platform-Based Design, Performance Analysis, Scheduling, Formal Static formal analysis is the only option.
Analysis

Target system timing analysis can be divided in two parts: analysis
Abstract of a single process executed on a target system component (i. e. the

We present a compositional approach to analyze timing behavior of core execution time), and analysis of resource sharing effects on the
complex platforms with different scheduling strategies. The approach response time of a process based on given core execution times. For
uses event interfacing in order to couple previously incompatible anal- the first part, there are many recent contributions combining implicit
ysis techniques which provide subsystem and component behavioro! explicit program path analysis and cycle-true processor modeling,
Based on these interfaces, event propagation using abstract modelssuch as9, 3, 17, 5]. In addition, process communication can be de-

is used to derive global system timing properties. termined to analyze communication channel load and tinfi@y For
the second part, there is a huge amount of work, mainly in the do-
1. INTRODUCTION main of real-time operating systemk0[ 6]. These approaches cap-

Embedded system platforms consist of a combination of different ture system timing using equations and provide appropriate solution
processor types, specialized memories, and weakly programmable oglgorithms. Unfortunately, a single coherent scheduling strategy for a
fixed function components with a communication infrastructure con- given system, whether single or multiprocessor, is assumed in litera-
sisting of busses, switches or point-to-point connections. Programma-ture. There are very few exceptions which consider special cases of
bility and configurable software architectures are key to adapt plat- more complex architectures, such &8][analyzing response times for
forms to a variety of applications. The verification of such platforms static-priority process scheduling combined with a TDMA bus proto-
faces two main problems, verification of the system function and ver- col. However, it is doubtful that a general approach to a self-contained
ification of the platform implementation, i.e. the adherence to system solution for arbitrarily complex platform architectures can be found,
timing constraints, memory requirements, or power consumption. In mainly because of the highly complex dependencies in such systems.
this paper, we will focus on timing verification. The approach presented in this paper is based on analysis coupling

In traditional hardware design, system timing can usually be derived rather than finding self-contained solutions. We identify architecture
by hierarchical composition of individual component timing. This is components for which an appropriate analysis exists. Then, we com-
possible since in most cases, component control is single threaded fol-bine these analysis approaches in order to obtain a compositional de-
lowing a fixed control sequence which only depends on input patterns. scription of the complex system-level timing behavior. This is not an
Optimization is concerned with an optimal static schedule of opera- easy task, mainly because of the incompatibilities of the used event
tions. Behavioral synthesis closely follows this approagh [ models. Most of the analysis approaches in literature assume certain

Embedded software adds process preemption to enable another cladgput event models that lead to process or communication execution.
of scheduling strategies. Preemptive and time-driven scheduling in- In effect, the input events determine the system workload. In dis-
troduces timing dependencies between functionally independent pro-tributed platforms, the input events of one component result from the
cesses. output events of the connected components. For our compositional ap-

Heterogeneous platforms take the next step of target system com-proach, it is required that the output event models of one architecture
plexity combining several preemptive and non-preemptive scheduling component are compatible with the input event models of the con-
strategies in one system, e. g. a static schedule on a DSP and a priorityrected components. Otherwise, they can not be reasonably coupled.
driven schedule on a microcontroller. Communication adds to behav- Interestingly, the importance of output event models has been widely

ioral complexity by introducing additional resource sharing strategies. neglected. In this paper, we will first present ways to derive output

o o ) ] event models from the existing analysis approaches. We will see that
Permission to make digital or hard copies of all or part of this work for  these output event models are usually different from the input event
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The paper is organized as follows. The next section reviews exist- transformations are uni-directional, and can not be found for all com-
ing work in the area of real-time scheduling analysis and event models. binations of event models. For instance, an event stream with burst can
Section3 contains some preliminaries: the derivation of output event not be captured by the parameters of a purely periodic event model. In
models and further analysis assumptions. In Sectjome show how this case, we need to adapt the event stream itself. This can be done by
analyzable subsystems (analysis domains) can be identified and repadding functionality to the system, the so called event adaptation func-

resented. The actual composition is explained in Sed&ioAfter an tions (EAF). A periodic event stream with jitter can be re-synchronized
example of a complex analysis problem in Sectipwe conclude the by means of a buffer with a periodic output issue rate. The same ap-
paper with an outlook on future work. plies to the re-synchronization of event streams with burst. For de-
tailed information about EMIFs and EAFs and the corresponding for-
2. STATE QF THE ART . malisms, we refer tol4]. There, we also derive worst-case buffer
2.1 Analyzing Scheduling Strategies sizes for the EAFs and additional event delays which result from re-

In the area of real-time operating systems, there are several substansynchronization.
tially different resource sharing (scheduling) strategies. Preemptive
scheduling based on static priorities (e.g. rate-monotonic), dynamics' PRELIMlNARlES . o )
priorities (e. g. earliest deadline first), and time-slicing (e. g. time divi-  FOr our proposed composition of existing analysis approaches, the
sion multiple access and round robin) are among the most importantOUtput event models of one architecture component have to be compat-
strategies. For each of the mentioned strategies, a set of analysis apP!e to the assumed input event models of the connected components.
proaches exist. The approaches take the scheduling strategy and thEowever, output event models have been widely neglected in litera-
core execution times as input to a self-contained mathematical descrip{ure. and the analysis approaches do not characterize them by them-
tion in order to calculate conservative bounds on the response times ofselves. Instead c_)f going into the det_all_s of_the analysis approaches,
processes. we rathe_r use their a_bstract characteristics (input event models and re-
In the early 70s, Liu and Layland proposed a preemptive priority- SPONse times) to derive the output event models.
driven scheduling to guarantee deadlines for periodic hard real-time 3.1 Output Event Models
processesl0]. They considered a static (Rate Monotonic) and a dy-
namic (Earliest Deadline First) priority assignment and provided a for-
mal analysis framework for both. [r6], Kopetz and Gruensteind|
proposed TTP (time triggered protocol) for communication schedul-

ing in distributed systems ?”d pre_sented an analy5|s._ TTP Irnple'i.e. after the corresponding response time. When having a constant re-
ments the TDMA (time division multiple access) scheduling strategy. gnonse time, each event experiences the same propagation delay. Thus,
Both contributions assume a periodic activation of processes. Recenty, . output model is identical to the input model. However, in complex

extensions of the mentioned work allow periodic activation with jit- ;
. ; Co software systems only upper and lower bounds for the response time
ter, e.g. 1], and arbitrary deadlines and burs] for static-priority will be given, e.g. due to data dependent process execution times or

scheduling. Sprunt et. al1] analyze the influence of sporadic pro- varying number of preemptions by other processes. For a periodic
cess activation. Unfortunately, all mentioned approaches assume a}nput model, the output is not purely periodic anymore, but will ex-

single <_:oherent scheduling strategy for a given system, whether smgleperience a jitter that equals the difference between the UW@@& (
or multiprocessor. Very few exceptions consider special cases of more

complex architectures, such ] analyzing response times for static ~ and the lowertesgresponse time bound. If the input events already

priority process scheduling combined with a TDMA bus protocol. arrive with a certain jitter, th|§ jitter is addltlonally propagated to the
So far, there is no general approach to a self-contained solution foroutput. In other words, both jitters —the internal and the external— are

arbitrarily complex systems. In contrast, we propose a compositional SUperposed:

approach. Currently, this is not possible due to incompatible assump-

tions on the type of process activation, e. g. periodic, jitter, burst. In

the existing analysis approaches, the activation of processes is usually internal jitter

captured using abstract event models.

The basic idea of deriving output event models is simply based on
abstract event propagation through architecture components. An in-
put event activates a dedicated function inside the component. A cor-
responding output event will occur after the function is completed,

\]out = Jin + t%sp— tr;sp
N——

229  Event Models A more complicated situation can be found for input event models with
: burst. An overview of how output event models can be derived from
In the literature on real-time analysis, there are four event models the analysis characteristics (input event model and response time) is

of major importance. A simple and efficient assumption is a stream of given in Table2.

periodicinput events. Here, the arrival of events can be captured by a

single parameter, the peridd Often, periodic events are allowed to Input Event Model ~ Output Event Model

deviate with respect to their period. This adds another parameter to the sporadic: sporadic:

periodic model, théitter (J). Other models captureurstsof events. tin tout = MaX(tresp tin — (trhsp— tresp))
A burst is characterized by a number of events (burst lebpitithin periodic: periodic with jitter:

a given time interval (the outer peridd. This outer period may also Tn Tout = Tin, Jout = trésp— tresp

jitter (J). If known, a minimum time distance (the inter-arrival tit)e periodic with jitter:  periodic with jitter:

Tin, Jin Tout = Tin
Jout = Jin + t|Tesp_ trTssp
periodic with burst:  periodic with burst and jitter:

between two successive events within a burst can be specBigok-
radic events are captured by the minimum inter-arrival timenly.

Gresser4] provides a more general model. Itintroduces vectors of se- T, bin, tin Tou= Tin

quential time intervals. However, the model is not applicable to most Bout = bin

of the analysis approaches. tout = MaX(tresp t — (trhsp—tresp))
In a recent publicationl4], we have presented an approactirto Jout = tisp— Liesp

terfacebetween different event models. Talllshows simple trans- Table 2: Deriving Output Event Models

formation functions, which we call event model interfaces (EMIFs),

between these models. An EMIF transforms the representation of an3.2  Input Event Interfaces

event stream from one event model into the abstract parameters of Above, we have shown how output event models can be derived.

another event model. For instance, a periodic event stream with theln our compositional approach, we will use the output event models

periodTx can be captured by the burst event model, when we set the of one component as the input event model of the connected compo-

burst length tdoy = 1, the outer burst period B = Tx, and the min- nents, possibly incorporating model transformations. In Se@iove

imum inter-arrival time tdy = Tx. mentioned that the assumed input event models of the existing anal-
Note that such EMIFs do not modify the actual event streams, ratherysis approaches can be categorized into four classes. Additionally,

they transform the abstract representation of a single event stream. Thesome of the analysis approaches require a few more properties. For



EMIFx_y || Y=periodic | Y=jitter | Y=burst | Y=sporadic

X=periodic || & =1« G@entty)y | Ty =Tx, Iy =0 | Ty =Tx, by =1,ty =Tx | ty =Tx
X=jitter — Ty =T, y = Jy (identity) — ty = Tx — Jx
X=burst — — Ty =Tx by =by.ty =ty (dent) | ty = tx
X=sporadic — — — ty=ty (identity)

Table 1: Event Model Interfaces for the Transformation of Event Models

example, the analysis of Liu and Laylanti] requires that the pro- In this section, we explain how such seemingly incompatible analysis
cess response times do not exceed the corresponding activation peridomains can be coupled. We start by finding reasonable waagd=tat

ods. Lehoczky§] provides an analysis assuming the same input event event models for comparatively simple systems without any feed-back
model (periodic) but without the additional constraint. In general, as- in the process graph as well as in the analysis itself. Then, we will hi-

suming a certain model is not enough to analyze scheduling. We will erarchically compose compatible domains. Finally, we will investigate

therefore use the term “input event interface” to describe an “input several types of feed-back within this analysis process.

event model” together with additional assumptions. Correspondingly,

we use the term “output event interface”. We assume these “input

event interfaces” to be provided by the analysis techniques employed.

5.1 Feed-Forward
4. ANALYSIS DOMAINS

We use an example, depicted in Figi,eto demonstrate the cou-
pling of analysis domains. In this example, the analysis domains have
Response already been selected. The system consists of two analysis domains
consisting of one processor ea€iRU; andCPU,. Either of the pro-
cessors executes two processes. The procBssawdP, are activated
by events coming from the systems environment. On completion, they
activate the processd¥ and P4 which themselves produce output
to the environment. From the specification, we know that process
P is activated periodically with a fixed periop, i, = 40ms. Pro-
cessP; is also activated periodicallyig, jn = 20ms) but with a jitter
Jp,.in = 5ms. The processes @PU; are scheduled according to the
rate-monotonic priority assignmerit(], while a round robin sched-
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Output Event
Interface

Input Event Interface: - event model purely periodic(Tp; jn) uler alternately assigrSP U to either of its processes. The time slots
additional assumption from analysis in [10]: vpi:‘;i.resp<TPi-,in for P3 and P4 aretP3,S|0t = 5ms and:P4,S|0t — 3ms' respective|y. The

Response Times: GetResponseMax(), GetResponseMin( core execution time intervals of the processes|[af17]ms for Py,
Example forGetResponseMax() ~ for the analysis in 10]: and [87 11} ms, [10’ 11]m5, ar‘]d[s7 S]ms for the processdég, P3, and
GetResponseMax( = smallst positve roots of: P4, respectively. We are looking for conservative (upper and lower)
b s [ B bounds on the response times for each event that is input to the system
Piresp Py core *VPEHAPI | | Teyin | Ficore until a corresponding event is output to the environment.

Output Event Interface:  periodic (Tp, oyt ) With jtter (Jp, our): For simplicity, we would like to use the approach of Liu and Lay-
Tp,.out=TPy.in Jp;.0ut=p, resp Py resp land [10] to analyze the processes @iPU;. For the processes on

Figure 1: Representation of Analysis Domain CPU,, we want to use the analysis fror][ An interesting point

is that we do not even need to know about the details of the men-

As described in the introduction, we assume that a platform consiststioned analysis approaches. We only need to know the restrictions on
of disjoint parts that use different scheduling strategies. In the follow- the input event interfaces and the algorithms to calculate the response
ing, we will call these parts scheduling domains. In the design, these times. In contrast to finding a dedicated self-contained _analysns for
scheduling domains are coupled via input and output events betweerfh® given problem (like e.g.1B] does), the event model interfaces
domains. We have introduced event interfaces to describe the inter-(EMIFs) from [L4] will help us to combine both analysis domains with
facing between these domains. We assume that for each schedulin@nly little additional effort.
domain there is an analysis technique that allows to derive the timing
of the domain. As described before, there is a host of solutions in this
field which can directly be employed. This disjoint set of schedul-
ing domains defines a corresponding set of analysis domains. More
precisely, an analysis domain is an architecture component or subsys-
tem for which an analysis technique is available. Figushows an Application
analysis domain example.

As previously mentioned, the availability of analysis approaches for
an architecture component strongly depends on the scheduling strategy
of the component. If several analysis approaches exist, as it is the case
for preemptive static-priority scheduling, one candidate has to be se-
lected. The input event interface of the component is constrained by
the analysis. If we can find an analysis for the given scheduling strat-
egy, and if the input events are compatible with the assumed interface,
the analysis allows us to calculate conservative response times of pro-
cesses. From these, we can further derive the output event interface, as
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explained in SectioB.1 The process of analyzing architecture com- Analysis

ponents and deriving analysis domains is depicted in Figure

5. DOMAIN COUPLING @
As previously mentioned, the well known scheduling analysis ap-

proaches assume certain input event interfaces. But as mentioned in
Section2.2, the output event interfaces do not necessarily directly fit
any of the possible input interfaces of the connected analysis domains. Figure 2: Local Analysis of Component
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In the example, the selected analysis approaches assume the inpL g) f
of CPU; to be purely periodic (this is not a limitation of the approach,
just an example), while only minimum inter-arrival times are required ! .
to analyze the timing o€EPU,. Our first problem is the jitter on the i ) '"'
input events foP,. We can not use a simple model transformation, | ~ | :
but have to transform the event stream itself by means of an appro- )
priate event adaptation function. As explained in Secfa?) we . ] - . .
need an event buffer of size “one event” with an output issue rate of Figure 5: Composition of Analysis Domains
Tp, in = 20ms to adapt the input event stream to the required input in-
terface of the analysis domain GPU;. By this, we re-synchronize  § 2 Composition
f[he event stream to i.ts period and eliminate the jitter. As can be. S€EN  Now, after we have successfully added EMIFs and EAFs to the sys-
in F_lgur%l,hthe EAr']: |shrepresenteo|| ]Ehe same wayhas the analysis do-yo 1, "1 output-input event interfaces match. In other words, no more
Events to output events, they have a dedicated timing behaviar n ferme2aptation s reqired, and the domains can be directly connected to-
of input and output eveﬁt interfaces, and a response time, which in this-gether' as shown n Figuréga) and (-b)' Now, we can eliminate all

- . ' ! internal interfaces in our representation (Figbe)) and calculate the
case equals the jitter of the input event stream. Now, we can do theaccumulated response times along each path:
selected analysis. We obtain the response times: ’

tpiresp = [23,39ms tﬁ’_lﬂP3,resp = tp,resptip;resp
tp,resp = [8,11ms o, _p,resp = D59Ms
Obviously, the response times are less than the corresponding periods, te _p — 36ms
; . . . 1—P3,resp
and the input interface is met. The output event model can be easily tp, p. rosp = tP.resot Py res
derived. We obtain two periodic event streams with jitter, as described o P _ Zéfnsp 4 resp
in Section3.1: P2—Py resp
Tpout = Tfhiﬂ =40ms thﬂP‘;,resp = 1llms
Jprout = tPl,reSp_tP1,reSp: 39ms— 23ms=16ms We obtain a system, that is characterized by an input event interface
Tpout = T+Pz:in = 29ms (same as obtained for the original analysis don@#;), an output
Jprout = 15, resp~tp, resp= 11MS—8ms=3ms event interface (obtained for doma@PU,), and response times for
Now, we have the output interface of the analysis domaiRg; . the propagation of events. Following the definitiongljwe obtain a

The next task is to meet the input interface(dfU,, where minimum single analysis domain for our entire sub-system (Fidi{cg). This
inter-arrival timesp, jntin andtp, int.in (known from sporadic process smgle domain can be fur_ther hierarchically combined with othgr_ do-
activation) are required. Again, we use the EMIF suppliedi&.[In mains, and so on. By this, we are now able to apply compositional
contrast to the timed buffer for the input Bf, we find out that the ~ timing analysis, which is well known from hardware design, to het-
interface ofCPU, can be met without the need of additional interface €rogeneous and highly dynamic preemptive software systems.
components. The event stream can be directly input. However, to be So far, we have shown, how analysis domains can be coupled and
able to do the analysis f@PU,, we have to transform the represen- composed into larger analysis domains. We did so by selecting appro-
tation of the event stream. We have periodic event streams with jitter. priate EMIFs and EAFs to adapt the event models and streams, respec-

We find the appropriate EMIF in Tableand obtain: tively. We showed that internal EMIFs can eliminated after domain
te.intin = Tp. out—Jp, out = 24ms composition, since they do neither add functionality nor architecture
tP3’im'in _ Tpl’outhPI’out —17ms to the system. They are just used to couple the analysis approaches.

4,111L, 25 2,

EAFs have to be treated differently when embedded within a newly
composed analysis domain. First, they add functionality (buffering)
{¥hich consumes time. Second, they add architecture (buffers, timers).
These influences have to be considered during the composition pro-
cess.

In contrast to the re-synchronization®f’s input events, no additional
components are needed to transform the event stream, as depicted i
Figure4. We just add some math to the models. The response times
calculated by the analysis i@][are:

tpyresp = [13,20ms The pseudo-algorithm for the composition of analysis domains con-

tp,resp = [3,15ms cludes this section. We assume that the scheduling domains (archi-
Again, we can compute the output event interface. We again propagateecture components including RTOS or bus protocols) and the corre-
the input model to the output and account for the above mentioned sponding available analysis techniques have already been identified.
“internal” jitter. However, we have teubtractthe internal jitter, since Then, we can can define the analysis as an iterative process:

we are looking fominimuminter-arrival times: . . . .
€ are looking fo uminter-arrival times 1. select scheduling domain for which all input event models are

. — L + — _ .
tpyintout = tpyintin — (tp, resp— tp, resp = 17MS already determined
tp,intout = 54_r95p= 3ms 2. select analysis approach for scheduling domain (to obtain anal-
ysis domain)

3. if necessary, adapt event models (using EMIFs and EAFS)

4. determine process (or communication) response times and out-
put event interfaces from corresponding analysis domain

Times |
) 5. determine output event interfaces

; - ) 6. repeat from step 1 until all scheduling domains have been ana-

\ ) Hf_/ lyzed

Event Adaptation Function Event Model Interface With wisely selected analysis approaches and event interfaces for
Figure 4: Use of EMIFs and EAFs the domains, this algorithm will find a solution, if there exists one
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with respect to the compositional approach. In practice, one usually Experiment 2 (without table) does not converge. The input jitters of
needs to back-track several times and modify these selections. FinallyPy, andPy, alternatingly increase and can not be bounded. Hence,

the domains can be merged as shown in Figure the input interface assumed by the selected analysis is not met.
53 Feed-BaCk . . Step | Jp,.in= | Jpy..in= | comment
So far, only a simple feed-forward example was investigated. Selec- pr out JPLl out | comment
tion of analysis methods was straight forward. Often, several analysis INTT 0 - PL, not preempted
approaches are avaliable for a given problem. As previously men- 1 0 9 Py, preempted by,
tioned, they substantially differ in the restrictions they impose on the 2 9 9 PL, preempted by,
input event interface. And they differ in complexity. Usually, the sim- TERM 9 9 P, preempted by,
pler the analysis, the more limited is the supported input event inter- Table 3: Experiment 1: tp, core= 9MS

face, and, as a result, the higher is the event adaptation overhead in The two experiments show that, while purely feed-forward event
terms of buffers, timers, etc. A reasonable design flow should balancepropagation through properly described local analysis domains will
between analysis complexity and input interface limitations. However, always lead to a solution, the feedback situation is more complicated
in the beginning of the analysis, it is often not clear which analysis (asitis in practice). There are cases where the feedback approach usec
is most suitable. Thus, similar to the actual design, also the analy-in the example does not lead to a solution (i. e. a convergence), even
sis might consist of several cycles of selecting, rejecting and back- though there exists a valid schedule in practice. This can be proved
tracking of analysis (_jecisions. Even in feed-fprward systems, severalpy analyzing the average processor utilization. With 91,6%5({)), the
analysis methods might be applicable for a given problem. However, system'is in fact schedulable, i.e. there is a point in time where to-
re-analysis becomes really important when we have more complexta| system workload will be zero and buffers are empty. However,

systems includingyclic dependencies. response time analysis is more complicated than only guaranteeing
schedulability.
Envlron- o
*—@ @4— i ment Assume Periodic Input Events

L L, {H )_

C i environ-

g | ment
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Figure 6: Example System with Cyclic Timing Dependencies

An example for a cyclic dependency of process behavior is given in
Figure6. The output ofP|, (Low priority on component 1) activates
P, (High priority on component 2) which itself preemfits, whose
output activate®y,. And with Py, preemptingP,, all processes This effect is known from schedulability analysis and is due to the
cyclically depend on each other with respect to timing. Note that this is abstraction underlying the event propagation. It is often possible to
arather artificial example. However, similar but less obvious situations enforce convergence by inserting buffers for synchronization, as de-
are likely to be found in large real-world designs. The challenge of picted in Figure7. Here, analysis domains with periodic input event
resolving cyclic dependencies will be shown using a very simplified interfaces can be used. Trivially, the iterative propagation of event

Re-Synchronization

Figure 7: Cyclic Dependencies Resolved by Re-Synchronization

example. o ) models terminates after the first cycle. The introduction of buffers
From the specification, we know that the input event®pf and to decouple strong interdependencies is what an experienced designer
Py, arrive periodically with the period$p, jn andTp,, in. Further- would do in a manual design. As a key advantage of our approach,

more, we assume constant core execution times which are small enoughie can automatically synthesize the required adaptation function for a
not to violate the input event interface of Liu and Layland’s analysis. given analysis domain.
In the feed-forward example from Se&.1, we started the analysis A similar situation can be found when the processes graph itself
from system inputs to system outputs by propagating event models.contains cycles, e. g. feed-back loops in control engineering. The same
This is not possible here, since there is no dedicated starting pointproblems apply. However, cyclic process graphs are much better un-
with all parameters given. Hence, we need to start the analysis with derstood than cyclic non-functional dependencies. Designers are used
making assumptions on the unknown events. to insert buffers to store events within the cycle in order to avoid dead-
We may start simply by assuming periodic input eventsGBtJ;. lock. Finding a general theory for the feedback case is part of our
We work fromP,. The period ofPy, is not yet known. Thus, we  current research.
just ignorePy,. As a result,P|, is not preempted, and its output is
periodic, too. 1Now, we can analllyze the timing behavio€BU,. We 6. EXAMPLE
know the two input event models (both periodic), and analyze the be-
havior. We find out thaP, can be preempted By,, resulting in a
jitter for the output ofP,, and our initial assumption about periodic
input models foPy, is invalidated. Thus, we reject our initial assump-
tion and try again starting with periodic events with jitter. This proce-
dure has to be continued until the input event interfaces converge. This
is not necessarily the case. We carried out two simple experiments. In
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both experiments, the input periods of the environmental events are §~: ;Ne
Tle in =20ms andl'pLTin = 30ms. We use a very simplistic response Ol ]
time analysis for demonstration. At each activation, we iteratively cal- Figure 8: Example of Four Processors and One Bus

culate the worst-case number of process preemptions similar to the

approach in]0]. The best-case number of preemptions is set to zero.  Figure 8 shows the analysis domains of a complex heterogeneous
Experiment one assumes the core execution times of all four processegplatform architecture. It consists of four processors which are con-
to be 9ms, while these are 11ms in experiment 2. We std aand nected via a CAN buslP]. Processo£PU; runs a deterministic static
follow the dependencies until we reach a convergence point, i. e. we scheduler.CPU, runs a round robin scheduler. The other processors
meet a previously assumed event interface after one iteration. At eachrun static-priority schedulers. The arbitration of packets on the CAN
step, we calculate new internal jitters. The results of experiment 1 canbus is based on static priorities for communicated packets. We have
be seen in Tabl8. We see, that the algorithm terminates after three already select appropriate analysis approaches for each of the five anal-
steps, i.e. the input jitters d?y, and Py, do not change anymore.  ysis domains.



ProcessP;, implemented orCPU;1, sends data to proce®s on analysis domains. As a result, we were able to formally analyze the
CPU, over the communication chann€y. Similarly, processeBs timing behavior of complex platforms, combining several preemptive
andP, exchange data vi@,. The other four processes represent the and non preemptive scheduling strategies in one system. The variety
resource sharing influences on the processors. However, they do noof avaliable event model interfaces and adaptation functions shows the
use the bus. generality of our approach.

From the environment (indicated by the dashed lines) we know  Our contribution provides a new quality of timing verification in
that Py is activated periodicallyTp, j» = 10ms). The timing behav- platform design. Conservative bounds on system response times can
ior of CPU; is completely determinate, e.g. periodic execution of be provided for highly complex, heterogeneous platforms. We are cur-
simple digital signal processing functions with a fixed response time rently implementing the analysis procedure presented in this paper, in-

(tp, resp= 4ms). Thus, the output is purely periodic, tofp (out = cluding a repository for efficiently storing, identifying, and executing
10ms).P3 is also activated periodically¢, i, = 10ms). However, is the existing analysis approaches.

has a low priority onrCPU3 and is heavily preempted By resulting Our current research in this area includes but is not limited to finding
in a bursty output behaviollg, oyt = 100Mstp, int out = 2MSbp, jn = heuristics to resolve cyclic analysis domain dependencies, and extend-

10). On the bus, the chann@} has high priority, whileC; has low ing the set of event adaptation functions.
priority. We are interested in the timing behavior of the pRAth—
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