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Abstract
We present a compositional approach to analyze timing behavior of
complex platforms with different scheduling strategies. The approach
uses event interfacing in order to couple previously incompatible anal-
ysis techniques which provide subsystem and component behavior.
Based on these interfaces, event propagation using abstract models
is used to derive global system timing properties.

1. INTRODUCTION
Embedded system platforms consist of a combination of different

processor types, specialized memories, and weakly programmable or
fixed function components with a communication infrastructure con-
sisting of busses, switches or point-to-point connections. Programma-
bility and configurable software architectures are key to adapt plat-
forms to a variety of applications. The verification of such platforms
faces two main problems, verification of the system function and ver-
ification of the platform implementation, i.e. the adherence to system
timing constraints, memory requirements, or power consumption. In
this paper, we will focus on timing verification.

In traditional hardware design, system timing can usually be derived
by hierarchical composition of individual component timing. This is
possible since in most cases, component control is single threaded fol-
lowing a fixed control sequence which only depends on input patterns.
Optimization is concerned with an optimal static schedule of opera-
tions. Behavioral synthesis closely follows this approach [7].

Embedded software adds process preemption to enable another class
of scheduling strategies. Preemptive and time-driven scheduling in-
troduces timing dependencies between functionally independent pro-
cesses.

Heterogeneous platforms take the next step of target system com-
plexity combining several preemptive and non-preemptive scheduling
strategies in one system, e. g. a static schedule on a DSP and a priority-
driven schedule on a microcontroller. Communication adds to behav-
ioral complexity by introducing additional resource sharing strategies.
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Buffering changes the memory requirements and can lead to internal
event bursts.

The analysis of such a platform is a major challenge and is cur-
rently limited to simulation approaches, such as in VCC [1], or Seam-
less [11]. The known limitations of simulation such as incomplete
coverage and corner case identification are aggravated since many of
the design errors only result from system integration requiring detailed
knowledge which is often not available to the integrator. As a result,
simulation does not provide conservative system properties, in partic-
ular timing. In case certain timing properties have to be guaranteed,
static formal analysis is the only option.

Target system timing analysis can be divided in two parts: analysis
of a single process executed on a target system component (i. e. the
core execution time), and analysis of resource sharing effects on the
response time of a process based on given core execution times. For
the first part, there are many recent contributions combining implicit
or explicit program path analysis and cycle-true processor modeling,
such as [9, 3, 17, 5]. In addition, process communication can be de-
termined to analyze communication channel load and timing [17]. For
the second part, there is a huge amount of work, mainly in the do-
main of real-time operating systems [10, 6]. These approaches cap-
ture system timing using equations and provide appropriate solution
algorithms. Unfortunately, a single coherent scheduling strategy for a
given system, whether single or multiprocessor, is assumed in litera-
ture. There are very few exceptions which consider special cases of
more complex architectures, such as [13] analyzing response times for
static-priority process scheduling combined with a TDMA bus proto-
col. However, it is doubtful that a general approach to a self-contained
solution for arbitrarily complex platform architectures can be found,
mainly because of the highly complex dependencies in such systems.

The approach presented in this paper is based on analysis coupling
rather than finding self-contained solutions. We identify architecture
components for which an appropriate analysis exists. Then, we com-
bine these analysis approaches in order to obtain a compositional de-
scription of the complex system-level timing behavior. This is not an
easy task, mainly because of the incompatibilities of the used event
models. Most of the analysis approaches in literature assume certain
input event models that lead to process or communication execution.
In effect, the input events determine the system workload. In dis-
tributed platforms, the input events of one component result from the
output events of the connected components. For our compositional ap-
proach, it is required that the output event models of one architecture
component are compatible with the input event models of the con-
nected components. Otherwise, they can not be reasonably coupled.
Interestingly, the importance of output event models has been widely
neglected. In this paper, we will first present ways to derive output
event models from the existing analysis approaches. We will see that
these output event models are usually different from the input event
models. To overcome the problem of incompatible models at inputs
and outputs, we use transformation functions to adapt event models.
Finally, we show the actual composition of analysis approaches. We
introduce the concept of analysis domains as the key entities for the
composition process. These analysis domains are represented by ab-
stract timing characteristics rather than detailed behavior.



The paper is organized as follows. The next section reviews exist-
ing work in the area of real-time scheduling analysis and event models.
Section3 contains some preliminaries: the derivation of output event
models and further analysis assumptions. In Section4, we show how
analyzable subsystems (analysis domains) can be identified and rep-
resented. The actual composition is explained in Section5. After an
example of a complex analysis problem in Section6, we conclude the
paper with an outlook on future work.

2. STATE OF THE ART
2.1 Analyzing Scheduling Strategies

In the area of real-time operating systems, there are several substan-
tially different resource sharing (scheduling) strategies. Preemptive
scheduling based on static priorities (e. g. rate-monotonic), dynamic
priorities (e. g. earliest deadline first), and time-slicing (e. g. time divi-
sion multiple access and round robin) are among the most important
strategies. For each of the mentioned strategies, a set of analysis ap-
proaches exist. The approaches take the scheduling strategy and the
core execution times as input to a self-contained mathematical descrip-
tion in order to calculate conservative bounds on the response times of
processes.

In the early 70s, Liu and Layland proposed a preemptive priority-
driven scheduling to guarantee deadlines for periodic hard real-time
processes [10]. They considered a static (Rate Monotonic) and a dy-
namic (Earliest Deadline First) priority assignment and provided a for-
mal analysis framework for both. In [6], Kopetz and Gruensteindl
proposed TTP (time triggered protocol) for communication schedul-
ing in distributed systems and presented an analysis. TTP imple-
ments the TDMA (time division multiple access) scheduling strategy.
Both contributions assume a periodic activation of processes. Recent
extensions of the mentioned work allow periodic activation with jit-
ter, e. g. [15], and arbitrary deadlines and burst [8] for static-priority
scheduling. Sprunt et. al. [16] analyze the influence of sporadic pro-
cess activation. Unfortunately, all mentioned approaches assume a
single coherent scheduling strategy for a given system, whether single
or multiprocessor. Very few exceptions consider special cases of more
complex architectures, such as [13] analyzing response times for static
priority process scheduling combined with a TDMA bus protocol.

So far, there is no general approach to a self-contained solution for
arbitrarily complex systems. In contrast, we propose a compositional
approach. Currently, this is not possible due to incompatible assump-
tions on the type of process activation, e. g. periodic, jitter, burst. In
the existing analysis approaches, the activation of processes is usually
captured using abstract event models.

2.2 Event Models
In the literature on real-time analysis, there are four event models

of major importance. A simple and efficient assumption is a stream of
periodic input events. Here, the arrival of events can be captured by a
single parameter, the periodT. Often, periodic events are allowed to
deviate with respect to their period. This adds another parameter to the
periodic model, thejitter (J). Other models captureburstsof events.
A burst is characterized by a number of events (burst lengthb) within
a given time interval (the outer periodT). This outer period may also
jitter (J). If known, a minimum time distance (the inter-arrival timet)
between two successive events within a burst can be specified.Spo-
radic events are captured by the minimum inter-arrival timet, only.
Gresser [4] provides a more general model. It introduces vectors of se-
quential time intervals. However, the model is not applicable to most
of the analysis approaches.

In a recent publication [14], we have presented an approach toin-
terfacebetween different event models. Table1 shows simple trans-
formation functions, which we call event model interfaces (EMIFs),
between these models. An EMIF transforms the representation of an
event stream from one event model into the abstract parameters of
another event model. For instance, a periodic event stream with the
periodTX can be captured by the burst event model, when we set the
burst length tobY = 1, the outer burst period toTY = TX , and the min-
imum inter-arrival time totY = TX .

Note that such EMIFs do not modify the actual event streams, rather
they transform the abstract representation of a single event stream. The

transformations are uni-directional, and can not be found for all com-
binations of event models. For instance, an event stream with burst can
not be captured by the parameters of a purely periodic event model. In
this case, we need to adapt the event stream itself. This can be done by
adding functionality to the system, the so called event adaptation func-
tions (EAF). A periodic event stream with jitter can be re-synchronized
by means of a buffer with a periodic output issue rate. The same ap-
plies to the re-synchronization of event streams with burst. For de-
tailed information about EMIFs and EAFs and the corresponding for-
malisms, we refer to [14]. There, we also derive worst-case buffer
sizes for the EAFs and additional event delays which result from re-
synchronization.

3. PRELIMINARIES
For our proposed composition of existing analysis approaches, the

output event models of one architecture component have to be compat-
ible to the assumed input event models of the connected components.
However, output event models have been widely neglected in litera-
ture, and the analysis approaches do not characterize them by them-
selves. Instead of going into the details of the analysis approaches,
we rather use their abstract characteristics (input event models and re-
sponse times) to derive the output event models.

3.1 Output Event Models
The basic idea of deriving output event models is simply based on

abstract event propagation through architecture components. An in-
put event activates a dedicated function inside the component. A cor-
responding output event will occur after the function is completed,
i. e. after the corresponding response time. When having a constant re-
sponse time, each event experiences the same propagation delay. Thus,
the output model is identical to the input model. However, in complex
software systems only upper and lower bounds for the response time
will be given, e. g. due to data dependent process execution times or
a varying number of preemptions by other processes. For a periodic
input model, the output is not purely periodic anymore, but will ex-
perience a jitter that equals the difference between the upper (t+

resp)
and the lower (t−resp)response time bound. If the input events already
arrive with a certain jitter, this jitter is additionally propagated to the
output. In other words, both jitters –the internal and the external– are
superposed:

Jout = Jin + t+
resp− t−resp︸ ︷︷ ︸
internal jitter

A more complicated situation can be found for input event models with
burst. An overview of how output event models can be derived from
the analysis characteristics (input event model and response time) is
given in Table2.

Input Event Model Output Event Model
sporadic: sporadic:

tin tout = max
(
t−resp, tin− (t+

resp− t−resp)
)

periodic: periodic with jitter:
Tin Tout = Tin, Jout = t+

resp− t−resp
periodic with jitter: periodic with jitter:

Tin, Jin Tout = Tin
Jout = Jin + t+

resp− t−resp
periodic with burst: periodic with burst and jitter:

Tin, bin, tin Tout = Tin
bout = bin
tout = max

(
t−resp, t− (t+

resp− t−resp)
)

Jout = t+
resp− t−resp

Table 2: Deriving Output Event Models

3.2 Input Event Interfaces
Above, we have shown how output event models can be derived.

In our compositional approach, we will use the output event models
of one component as the input event model of the connected compo-
nents, possibly incorporating model transformations. In Section2, we
mentioned that the assumed input event models of the existing anal-
ysis approaches can be categorized into four classes. Additionally,
some of the analysis approaches require a few more properties. For



EMIFX→Y Y=periodic Y=jitter Y=burst Y=sporadic
X=periodic TY = TX (identity) TY = TX , JY = 0 TY = TX , bY = 1, tY = TX tY = TX
X=jitter — TY = TX , JY = JX (identity) — tY = TX−JX
X=burst — — TY = TX , bY = bX , tY = tX (identity) tY = tX
X=sporadic — — — tY = tX (identity)

Table 1: Event Model Interfaces for the Transformation of Event Models

example, the analysis of Liu and Layland [10] requires that the pro-
cess response times do not exceed the corresponding activation peri-
ods. Lehoczky [8] provides an analysis assuming the same input event
model (periodic) but without the additional constraint. In general, as-
suming a certain model is not enough to analyze scheduling. We will
therefore use the term “input event interface” to describe an “input
event model” together with additional assumptions. Correspondingly,
we use the term “output event interface”. We assume these “input
event interfaces” to be provided by the analysis techniques employed.

4. ANALYSIS DOMAINS
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+
Pi ,resp<TPi ,in

Response Times: GetResponseMax(), GetResponseMin()

Example forGetResponseMax() for the analysis in [10]:

GetResponseMax() = smallest positive roots of:

t+Pi ,resp=t+Pi ,core+∑∀Pj∈HP(Pi)


t+Pi ,resp
TPj ,in

×t+Pj ,core


Output Event Interface: periodic (TPi ,out ) with jitter (JPi ,out):

TPi ,out=TPi ,in
JPi ,out=t+Pi ,resp−t−Pi ,resp

Figure 1: Representation of Analysis Domain

As described in the introduction, we assume that a platform consists
of disjoint parts that use different scheduling strategies. In the follow-
ing, we will call these parts scheduling domains. In the design, these
scheduling domains are coupled via input and output events between
domains. We have introduced event interfaces to describe the inter-
facing between these domains. We assume that for each scheduling
domain there is an analysis technique that allows to derive the timing
of the domain. As described before, there is a host of solutions in this
field which can directly be employed. This disjoint set of schedul-
ing domains defines a corresponding set of analysis domains. More
precisely, an analysis domain is an architecture component or subsys-
tem for which an analysis technique is available. Figure1 shows an
analysis domain example.

As previously mentioned, the availability of analysis approaches for
an architecture component strongly depends on the scheduling strategy
of the component. If several analysis approaches exist, as it is the case
for preemptive static-priority scheduling, one candidate has to be se-
lected. The input event interface of the component is constrained by
the analysis. If we can find an analysis for the given scheduling strat-
egy, and if the input events are compatible with the assumed interface,
the analysis allows us to calculate conservative response times of pro-
cesses. From these, we can further derive the output event interface, as
explained in Section3.1. The process of analyzing architecture com-
ponents and deriving analysis domains is depicted in Figure2.

5. DOMAIN COUPLING
As previously mentioned, the well known scheduling analysis ap-

proaches assume certain input event interfaces. But as mentioned in
Section2.2, the output event interfaces do not necessarily directly fit
any of the possible input interfaces of the connected analysis domains.

In this section, we explain how such seemingly incompatible analysis
domains can be coupled. We start by finding reasonable ways toadapt
event models for comparatively simple systems without any feed-back
in the process graph as well as in the analysis itself. Then, we will hi-
erarchically compose compatible domains. Finally, we will investigate
several types of feed-back within this analysis process.

5.1 Feed-Forward
We use an example, depicted in Figure3, to demonstrate the cou-

pling of analysis domains. In this example, the analysis domains have
already been selected. The system consists of two analysis domains
consisting of one processor each,CPU1 andCPU2. Either of the pro-
cessors executes two processes. The processesP1 andP2 are activated
by events coming from the systems environment. On completion, they
activate the processesP3 and P4 which themselves produce output
to the environment. From the specification, we know that process
P1 is activated periodically with a fixed periodTP1,in = 40ms. Pro-
cessP2 is also activated periodically (TP2,in = 20ms) but with a jitter
JP2,in = 5ms. The processes onCPU1 are scheduled according to the
rate-monotonic priority assignment [10], while a round robin sched-
uler alternately assignsCPU2 to either of its processes. The time slots
for P3 andP4 aretP3,slot = 5ms andtP4,slot = 3ms, respectively. The
core execution time intervals of the processes are[15,17]ms for P1,
and [8,11]ms, [10,11]ms, and[3,5]ms for the processesP2, P3, and
P4, respectively. We are looking for conservative (upper and lower)
bounds on the response times for each event that is input to the system
until a corresponding event is output to the environment.

For simplicity, we would like to use the approach of Liu and Lay-
land [10] to analyze the processes onCPU1. For the processes on
CPU2, we want to use the analysis from [2]. An interesting point
is that we do not even need to know about the details of the men-
tioned analysis approaches. We only need to know the restrictions on
the input event interfaces and the algorithms to calculate the response
times. In contrast to finding a dedicated self-contained analysis for
the given problem (like e. g. [13] does), the event model interfaces
(EMIFs) from [14] will help us to combine both analysis domains with
only little additional effort.
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Figure 3: Coupling of Analysis Domains

In the example, the selected analysis approaches assume the input
of CPU1 to be purely periodic (this is not a limitation of the approach,
just an example), while only minimum inter-arrival times are required
to analyze the timing ofCPU2. Our first problem is the jitter on the
input events forP2. We can not use a simple model transformation,
but have to transform the event stream itself by means of an appro-
priate event adaptation function. As explained in Section2.2, we
need an event buffer of size “one event” with an output issue rate of
TP2,in = 20ms to adapt the input event stream to the required input in-
terface of the analysis domain ofCPU1. By this, we re-synchronize
the event stream to its period and eliminate the jitter. As can be seen
in Figure4, the EAF is represented the same way as the analysis do-
mains. Although they have no real function, i. e. they just copy input
events to output events, they have a dedicated timing behavior in terms
of input and output event interfaces, and a response time, which in this
case equals the jitter of the input event stream. Now, we can do the
selected analysis. We obtain the response times:

tP1,resp = [23,39]ms
tP2,resp = [8,11]ms

Obviously, the response times are less than the corresponding periods,
and the input interface is met. The output event model can be easily
derived. We obtain two periodic event streams with jitter, as described
in Section3.1:

TP1,out = TP1,in = 40ms
JP1,out = t+

P1,resp− t−P1,resp= 39ms−23ms= 16ms
TP2,out = TP2,in = 20ms
JP2,out = t+

P2,resp− t−P2,resp= 11ms−8ms= 3ms

Now, we have the output interface of the analysis domain ofCPU1.
The next task is to meet the input interface ofCPU2, where minimum
inter-arrival timestP3,int,in andtP4,int,in (known from sporadic process
activation) are required. Again, we use the EMIF supplied by [14]. In
contrast to the timed buffer for the input ofP2, we find out that the
interface ofCPU2 can be met without the need of additional interface
components. The event stream can be directly input. However, to be
able to do the analysis forCPU2, we have to transform the represen-
tation of the event stream. We have periodic event streams with jitter.
We find the appropriate EMIF in Table1 and obtain:

tP3,int,in = TP1,out−JP1,out = 24ms
tP4,int,in = TP2,out−JP2,out = 17ms

In contrast to the re-synchronization ofP2’s input events, no additional
components are needed to transform the event stream, as depicted in
Figure4. We just add some math to the models. The response times
calculated by the analysis in [2] are:

tP3,resp = [13,20]ms
tP4,resp = [3,15]ms

Again, we can compute the output event interface. We again propagate
the input model to the output and account for the above mentioned
“internal” jitter. However, we have tosubtractthe internal jitter, since
we are looking forminimuminter-arrival times:

tP3,int,out = tP3,int,in− (t+
P3,resp− t−P3,resp) = 17ms

tP4,int,out = t−P4,resp= 3ms
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Figure 4: Use of EMIFs and EAFs
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Figure 5: Composition of Analysis Domains

5.2 Composition
Now, after we have successfully added EMIFs and EAFs to the sys-

tem, all output→input event interfaces match. In other words, no more
adaptation is required, and the domains can be directly connected to-
gether, as shown in Figures5(a) and (b). Now, we can eliminate all
internal interfaces in our representation (Figure5(c)) and calculate the
accumulated response times along each path:

tP1→P3,resp = tP1,resp+ tP3,resp
t+
P1→P3,resp = 59ms

t−P1→P3,resp = 36ms
tP2→P4,resp = tP2,resp+ tP4,resp
t+
P2→P4,resp = 26ms

t−P2→P4,resp = 11ms

We obtain a system, that is characterized by an input event interface
(same as obtained for the original analysis domainCPU1), an output
event interface (obtained for domainCPU2), and response times for
the propagation of events. Following the definitions in4, we obtain a
single analysis domain for our entire sub-system (Figure5(d)). This
single domain can be further hierarchically combined with other do-
mains, and so on. By this, we are now able to apply compositional
timing analysis, which is well known from hardware design, to het-
erogeneous and highly dynamic preemptive software systems.

So far, we have shown, how analysis domains can be coupled and
composed into larger analysis domains. We did so by selecting appro-
priate EMIFs and EAFs to adapt the event models and streams, respec-
tively. We showed that internal EMIFs can eliminated after domain
composition, since they do neither add functionality nor architecture
to the system. They are just used to couple the analysis approaches.
EAFs have to be treated differently when embedded within a newly
composed analysis domain. First, they add functionality (buffering)
which consumes time. Second, they add architecture (buffers, timers).
These influences have to be considered during the composition pro-
cess.

The pseudo-algorithm for the composition of analysis domains con-
cludes this section. We assume that the scheduling domains (archi-
tecture components including RTOS or bus protocols) and the corre-
sponding available analysis techniques have already been identified.
Then, we can can define the analysis as an iterative process:

1. select scheduling domain for which all input event models are
already determined

2. select analysis approach for scheduling domain (to obtain anal-
ysis domain)

3. if necessary, adapt event models (using EMIFs and EAFs)
4. determine process (or communication) response times and out-

put event interfaces from corresponding analysis domain
5. determine output event interfaces
6. repeat from step 1 until all scheduling domains have been ana-

lyzed

With wisely selected analysis approaches and event interfaces for
the domains, this algorithm will find a solution, if there exists one



with respect to the compositional approach. In practice, one usually
needs to back-track several times and modify these selections. Finally,
the domains can be merged as shown in Figure5.

5.3 Feed-Back
So far, only a simple feed-forward example was investigated. Selec-

tion of analysis methods was straight forward. Often, several analysis
approaches are avaliable for a given problem. As previously men-
tioned, they substantially differ in the restrictions they impose on the
input event interface. And they differ in complexity. Usually, the sim-
pler the analysis, the more limited is the supported input event inter-
face, and, as a result, the higher is the event adaptation overhead in
terms of buffers, timers, etc. A reasonable design flow should balance
between analysis complexity and input interface limitations. However,
in the beginning of the analysis, it is often not clear which analysis
is most suitable. Thus, similar to the actual design, also the analy-
sis might consist of several cycles of selecting, rejecting and back-
tracking of analysis decisions. Even in feed-forward systems, several
analysis methods might be applicable for a given problem. However,
re-analysis becomes really important when we have more complex
systems includingcyclicdependencies.
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Figure 6: Example System with Cyclic Timing Dependencies

An example for a cyclic dependency of process behavior is given in
Figure6. The output ofPL1

(Low priority on component 1) activates
PH2

(High priority on component 2) which itself preemptsPL2
whose

output activatesPH1
. And with PH1

preemptingPL1
, all processes

cyclically depend on each other with respect to timing. Note that this is
a rather artificial example. However, similar but less obvious situations
are likely to be found in large real-world designs. The challenge of
resolving cyclic dependencies will be shown using a very simplified
example.

From the specification, we know that the input events ofPL1
and

PL2
arrive periodically with the periodsTPL1

,in andTPL2
,in. Further-

more, we assume constant core execution times which are small enough
not to violate the input event interface of Liu and Layland’s analysis.
In the feed-forward example from Sec.5.1, we started the analysis
from system inputs to system outputs by propagating event models.
This is not possible here, since there is no dedicated starting point
with all parameters given. Hence, we need to start the analysis with
making assumptions on the unknown events.

We may start simply by assuming periodic input events forCPU1.
We work fromPL1

. The period ofPH1
is not yet known. Thus, we

just ignorePH1
. As a result,PL1

is not preempted, and its output is
periodic, too. Now, we can analyze the timing behavior ofCPU2. We
know the two input event models (both periodic), and analyze the be-
havior. We find out thatPL2

can be preempted byPH2
, resulting in a

jitter for the output ofPL2
, and our initial assumption about periodic

input models forPH1
is invalidated. Thus, we reject our initial assump-

tion and try again starting with periodic events with jitter. This proce-
dure has to be continued until the input event interfaces converge. This
is not necessarily the case. We carried out two simple experiments. In
both experiments, the input periods of the environmental events are
TPL1

,in = 20ms andTPL2
,in = 30ms. We use a very simplistic response

time analysis for demonstration. At each activation, we iteratively cal-
culate the worst-case number of process preemptions similar to the
approach in [10]. The best-case number of preemptions is set to zero.
Experiment one assumes the core execution times of all four processes
to be 9ms, while these are 11ms in experiment 2. We start atPL1

and
follow the dependencies until we reach a convergence point, i. e. we
meet a previously assumed event interface after one iteration. At each
step, we calculate new internal jitters. The results of experiment 1 can
be seen in Table3. We see, that the algorithm terminates after three
steps, i. e. the input jitters ofPH1

and PH2
do not change anymore.

Experiment 2 (without table) does not converge. The input jitters of
PH1

andPH2
alternatingly increase and can not be bounded. Hence,

the input interface assumed by the selected analysis is not met.

Step JPH2
,in = JPH1

,in = comment
JPL1

,out JPL2
,out comment

INIT 0 — PL1
not preempted

1 0 9 PL2
preempted byPH1

2 9 9 PL1
preempted byPH2

TERM 9 9 PL2
preempted byPH1

Table 3: Experiment 1: tPi,core= 9ms
The two experiments show that, while purely feed-forward event

propagation through properly described local analysis domains will
always lead to a solution, the feedback situation is more complicated
(as it is in practice). There are cases where the feedback approach used
in the example does not lead to a solution (i. e. a convergence), even
though there exists a valid schedule in practice. This can be proved
by analyzing the average processor utilization. With 91,67% (55

60), the
system is in fact schedulable, i. e. there is a point in time where to-
tal system workload will be zero and buffers are empty. However,
response time analysis is more complicated than only guaranteeing
schedulability.
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Figure 7: Cyclic Dependencies Resolved by Re-Synchronization

This effect is known from schedulability analysis and is due to the
abstraction underlying the event propagation. It is often possible to
enforce convergence by inserting buffers for synchronization, as de-
picted in Figure7. Here, analysis domains with periodic input event
interfaces can be used. Trivially, the iterative propagation of event
models terminates after the first cycle. The introduction of buffers
to decouple strong interdependencies is what an experienced designer
would do in a manual design. As a key advantage of our approach,
we can automatically synthesize the required adaptation function for a
given analysis domain.

A similar situation can be found when the processes graph itself
contains cycles, e. g. feed-back loops in control engineering. The same
problems apply. However, cyclic process graphs are much better un-
derstood than cyclic non-functional dependencies. Designers are used
to insert buffers to store events within the cycle in order to avoid dead-
lock. Finding a general theory for the feedback case is part of our
current research.

6. EXAMPLE
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Figure 8: Example of Four Processors and One Bus

Figure8 shows the analysis domains of a complex heterogeneous
platform architecture. It consists of four processors which are con-
nected via a CAN bus [12]. ProcessorCPU1 runs a deterministic static
scheduler.CPU2 runs a round robin scheduler. The other processors
run static-priority schedulers. The arbitration of packets on the CAN
bus is based on static priorities for communicated packets. We have
already select appropriate analysis approaches for each of the five anal-
ysis domains.



ProcessP1, implemented onCPU1, sends data to processP2 on
CPU2 over the communication channelC1. Similarly, processesP3
andP4 exchange data viaC2. The other four processes represent the
resource sharing influences on the processors. However, they do not
use the bus.

From the environment (indicated by the dashed lines) we know
that P1 is activated periodically (TP1,in = 10ms). The timing behav-
ior of CPU1 is completely determinate, e. g. periodic execution of
simple digital signal processing functions with a fixed response time
(tP1,resp= 4ms). Thus, the output is purely periodic, too (TP1,out =
10ms).P3 is also activated periodically (TP3,in = 10ms). However, is
has a low priority onCPU3 and is heavily preempted byP7 resulting
in a bursty output behavior (TP3,out = 100ms, tP3,int,out = 2ms,bP3,in =
10). On the bus, the channelC2 has high priority, whileC1 has low
priority. We are interested in the timing behavior of the pathP1 →
C1→ P2.

In general, two corner-case situations on the bus can be distinguished:

• P3 outputs a burst of packets to the bus. Since the correspond-
ing channelC2 has a higher priority, the (lower-priority) packets
from P1 are blocked until the end of the burst. The communi-
cation delay of channelC1, and thus, the overall latency of the
path under consideration is high.

• P3 does not output any packets for some time between two
bursts (because it is preempted byP7). Packets coming from
P1 are not blocked, communication delay onC1 is low, and the
path latency will be low, too.

First, we have to analyze the bus before we can analyze the behavior
of P2. We apply our event model interfacing technique to adapt the
event models betweenP1 andC1. From Table1, we obtain the burst
representation ofP1’s output:TC1,in = 10ms, tC1,int,in = 10ms,bC1,in =
1. The transmission of each packet over the bus constantly requires
5ms. For the analysis, we can directly use Lehoczky’s [8] approach.
The fact that single bus packets can not be preempted regardless of the
priority is considered assuming semaphore locking. As a result, we
obtain:

tC1,resp = [5ms,30ms]
tC2,resp = [5ms,28ms]

We see that, although theC1-packets are to be sent over the bus peri-
odically, the packet response time heavily varies. The best- and worst-
case packet response times correspond to the above distinguished situ-
ations. From the analysis, we also obtainC1’s output behavior. There
arebC1,out = 10 packets within an outer period ofTC1,out = 100ms.
This results from the influence ofC2-bursts. The minimum inter-
arrival time of communicated packets equals the packet transmission
delay (tC1,int = 5ms). In other words, the bursty behavior onC2 turns
the periodic send-requests onC1 into burst communication with simi-
lar characteristics.

Now, we can analyze the behavior ofP2. The event model interface
(EMIF) betweenC1 andP2 is taken from Table1, and the analysis
of the round robin scheduled processes onCPU2 results in a response
time interval forP2:

tP2,resp= [7ms,15ms]

It remains to determine the overall event propagation delay along the
pathP1→ C1→ P2:

tP1→C1→P2,resp = tP1,resp+ tC1,resp+ tP2,resp
= 4ms+[5ms,30ms]+ [7ms,15ms]
= [16ms,49ms]

7. CONCLUSION
We have presented a novel compositional approach for scheduling

analysis in platform design. We identified analysis domains, i. e. ar-
chitecture components, scheduling strategies, and appropriate analy-
sis approaches. Using the concept of abstract event adaptation and
propagation, we were able to couple initially incompatible scheduling
analysis approaches. After coupling, we hierarchically combined the

analysis domains. As a result, we were able to formally analyze the
timing behavior of complex platforms, combining several preemptive
and non preemptive scheduling strategies in one system. The variety
of avaliable event model interfaces and adaptation functions shows the
generality of our approach.

Our contribution provides a new quality of timing verification in
platform design. Conservative bounds on system response times can
be provided for highly complex, heterogeneous platforms. We are cur-
rently implementing the analysis procedure presented in this paper, in-
cluding a repository for efficiently storing, identifying, and executing
the existing analysis approaches.

Our current research in this area includes but is not limited to finding
heuristics to resolve cyclic analysis domain dependencies, and extend-
ing the set of event adaptation functions.
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