
Transformation Based Communication and Clock Domain
Refinement for System Design

Ingo Sander
Royal Institute of Technology

Stockholm, Sweden

ingo@imit.kth.se

Axel Jantsch
Royal Institute of Technology

Stockholm, Sweden

axel@imit.kth.se

ABSTRACT
The ForSyDe methodology has been developed for system level de-
sign. In this paper we present formal transformation methods for
the refinement of an abstract and formal system model into an im-
plementation model. The methodology defines two classes of de-
sign transformations: (1) semantic-preserving transformations and
(2) design decisions. In particular we present and illustrate commu-
nication and clock domain refinement by way of a digital equalizer
system.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design-Aids; J.6 [Computer-Aided
Engineering]: Computer-Aided Design (CAD)

General Terms
Design, Theory

Keywords
System Design, System Modeling, Design Refinement

1. INTRODUCTION
The increasing capacity of integrated circuits makes it possible

to integrate more and more functionality on a single chip. A SoC
(System-on-a-Chip) architecture can include a variety of compo-
nents, such as analog parts, micro controller cores, digital signal
processor cores, memories, IP blocks and custom hardware. Soft-
ware, running on a number of different processors, has to be de-
signed to coordinate these components. While such architectures
allow for totally new application areas, it is not obvious how to
design such applications.

Keutzer et al. discuss system-level design in [7]. They point out,
that “to be effective a design methodology that addresses complex
systems must start at high levels of abstraction” and underline that
an “essential component of a new system design paradigm is the
orthogonalization of concerns, i.e. the separation of various as-
pects of design to allow more effective exploration of alternative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

solutions”. In particular, a design methodology should separate
(1) function (what the system is supposed to do) from architecture
(how it does it) and (2) communication from computation.

They “promote to use formal models and transformations in sys-
tem design so that verification and synthesis can be applied to the
advantage of the design methodology” and believe that “the most
important point for functional specification is the underlying math-
ematical model of computation”.

These arguments strongly support the ForSyDe (Formal System
Design) methodology as many of their main requirements on a sys-
tem design methodology are not only part of our methodology, but
establish the foundations of ForSyDe.

The ForSyDe methodology addresses the design of SoC appli-
cations. Starting with a formal system model, that captures the
functionality of the system at a high abstraction level, it provides
formal design transformation methods for a transparent refinement
process of the system model into an implementation model, which
serves as a starting point for synthesis into hardware and software.

In this paper we present the refinement process in our method-
ology. We discuss semantic-preserving transformations and design
decisions and illustrate them by the refinement of an equalizer sys-
tem.

2. RELATED WORK
Edwards et al. [5] use the tagged signal model, which is further

elaborated by Lee and Sangiovanni-Vincentelli in [8], to classify
and analyze several models of computation, in particular discrete
event models, communicating finite state machines, synchronous
models and data flow process networks. It appears, that different
models fundamentally have different strength and weaknesses, and
that attempts to find their common features result in models that are
very low level and difficult to use.

According to the tagged signal model our system model can
be classified as synchronous computational model. The ForSyDe
system model is based on the perfect synchrony hypothesis, that
also forms the base for the family of the synchronous languages.
According to Benveniste and Berry ”the synchronous approach is
based on a relatively small variety of concepts and methods based
on deep, elegant, but simple mathematical principles” [2]. The syn-
chronous assumption implies a total order of events and leads to
a clean separation between computation and communication and
gives a solid base for formal methods.

Balarin et al. [1] argue, that the synchronous assumption, though
very convenient from the analyzing point of view, imposes a too
strong restriction on the implementation, as it has to be ”fast enough”.
They advocate a GALS (globally asynchronous locally synchronous)
approach and implement it in their methodology as a network of
Codesign FSM’s communicating via events. Each CFSM is a syn-

chronous FSM, but the communication is done with events that can
occur at any time and independently. The CFSM network is in-
herently nondeterministic. Balarin et al. argue, that this enables
them to easily model the unpredictability of the reaction delay of
a CFSM both at the specification and at the implementation level,
while they admit, that nondeterminism makes the design and veri-
fication process more complex.

We argue, that the advantages of a deterministic synchronous
system model outweigh the disadvantages. Nondeterminism in the
system model implies, that all possible solutions have to be consid-
ered, which is a heavy burden put on the designer’s shoulders. The
task of developing and verifying a system model for a SoC appli-
cation is so complex, that a system model has to be deterministic,
thus avoiding the unnecessary complexity of nondeterminism. The
fact, that SoC applications will be implemented on at least partly
asynchronous architectures does not justify a nondeterministic ap-
proach. We think, that the synthesis of the system model into a
partly asynchronous implementation should be part of the synthe-
sis process and not already be decided at the system level.

Approaches like the MASCOT methodology [4] which integrates
data and control flow at the system specification level, using the two
languages Matlab and SDL, are successful in that they provide an
integrated simulation environment. They fail with respect to full in-
tegration because they cannot provide an integrated formal analysis
and synthesis. For instance, all heterogeneous approaches advocate
separate synthesis and design flows for the different domains.

To overcome this difficulty internal representations like FunState
[14] have been developed to integrate a heterogeneous system model
into one internal representation. However, when compiling high
level, abstract and application oriented models into a combined in-
ternal representation based on common, low level primitives, most
application oriented features are lost and with them optimization
opportunities that rely on the meaning of these application oriented
concepts.

Functional languages have been used in other research projects
in electronic design. The parallel programming community has
used functional languages to derive parallel programs from a func-
tional specification [13]. They use skeletons to structure a prob-
lem. This formulation is then transformed using cost measures
into an efficient implementation for a chosen computer architec-
ture. Reekie [11] has used Haskell to model digital signal process-
ing applications. Similarly to us he modeled streams as infinite
lists and used higher-order functions to operate on them. Finally,
semantic-preserving methods were applied to transform a model
into a more efficient representation. This representation was not
synthesized to hardware or software. Lava [3] is a hardware de-
scription language based on Haskell. It focuses on the structural
representation of hardware and offers a variety of powerful con-
nection patterns. Lava descriptions can be translated into VHDL
and there exist interfaces to formal method tools. Hardware ML
(HML) [9] is a hardware description language, that is based on
the functional programming language Standard ML. Though HML
uses some features of Standard ML, such as polymorphic functions
and its type system, it is mainly an improvement of VHDL - there
is a direct mapping from HML constructs into the corresponding
VHDL constructs.

3. THE FORSYDE METHODOLOGY

3.1 The Design Process
The ForSyDe design process starts with the development of a

formal abstract functional system model, written in the functional
language Haskell. This model is then refined inside the functional

domain by a stepwise application of well defined design transfor-
mations into an implementation model, which is discussed in Sec-
tion 4. As the implementation model is a refined version of the
system model, the same validation and verification methods can
be applied to both models. In the partitioning phase, the imple-
mentation model is partitioned into hardware and software blocks,
which are mapped on architectural components. Only now, in the
code generation phase, we leave the functional domain to produce
VHDL or C/C++ for the hardware and software parts. Code gener-
ation in our methodology is discussed in [12].

3.2 The System Model
The system model reflects the design principles of the ForSyDe

methodology. In order to allow for formal design on a high abstrac-
tion level, the system model has the following characteristics:

� It is based on asynchronous computational model, which
cleanly separates computation from communication.

� It is purely functionalanddeterministic.

� It usesideal data typessuch as lists with infinite size

� It uses the concept of well defined process construction tem-
plates, calledskeletons, which implement the synchronous
computational model.

� It is expressed in the executable functional language Haskell,
with a well definedformal semantics.

The system model abstracts from implementation details, such as
buffer sizes and low-level communication mechanisms. This en-
ables the designer to focus on the functional behavior on the system
rather than structure and architecture. This abstract nature leaves
a wide design space for further design exploration and design re-
finement, which is supported by our transformational refinement
techniques (Section 4).

In order to formally describe our computational model, we fol-
low the denotational framework of Lee and Sangiovanni-Vincentelli
[8]. They define signals as a set of events, where each eventehas a
tagt and a valuev, i.e.e= (t;v) 2 T�V. As our system model is
synchronous,T is the set of natural numbers, and all signals have
the same set of tags. In order to model the absence of an event, a
data typeD can be extended into a data typeD? by adding the spe-
cial value?, which is used to model the absence of a value. Absent
values are used to establish a total order of events when dealing
with signals with different or aperiodic event rates.

31

5 47 6

26 ?

Absent Value Value

TagEvent

32

5 47 6

37 ?

Signal

Inc?

Figure 1: Modeling of Signals and Processes

Figure 1 illustrates the modelling of signals and the behavior of
processes. During the event cyclen a process processes the events
of each signal with the tagn and outputs the result at the same tag
n.

We denote a signals with fx1;x2; : : :g, where the tag is given
by the position in the signal. To model a process we use the con-
cept of skeletons asprocess constructors. A skeleton is a higher-
order function likemapSY. mapSYtakes a combinatorial function

as argument and produces a process. In this paper, we denote the
processes created bymapSYand a functionf as the name of the
function in capital letters, in this caseF . A processF is then cre-
ated bymapSY(f) and formally defined by

F = mapSY(f)
Ffx1;x2; : : :g = f f (x1); f (x2); : : :g

The processInc? of Figure 1 is also modeled by means of the
higher-order functionmapSY, that maps a functioninc? on all val-
ues of a signal. The functioninc? differs from the increment func-
tion inc as it is able to process absent values. The functioninc?
can be generated by the higher-order functionΨ. It takes a func-
tion f : D!D and generatesf? : D?!D?. Ψ is defined by

Ψ(f) = f?

where
f?(x) =

�
? x=?
f (x) otherwise

8 f : D! D

We use the functional language Haskell as our modeling language.
Haskell fits well in our modeling technique since it is a functional
language, that supports many of our concepts, such as higher-order
functions and laziness, and has a formal semantics. Thus the imple-
mentation of higher-order functions likemapSYandΨ is straight
forward. We implement the synchronous computational model with
skeletons, likemapSY. A skeleton is a higher-order function, that
takescombinatorial functions, i.e. functions that have no inter-
nal state, andvaluesas input and produces a process as output.
Processes consume signals and generate signals as output. Hence,
skeletons can be viewed asprocess constructors. The ForSyDe
library defines skeletons for more than one computational model,
but for the ForSyDe system model onlysynchronous skeletonsare
used.

The concept of skeletons give the following benefits:

� Due to the construction of processes by skeletons and com-
binatorial functions, we get aclean separation between syn-
chronization and computation. Synchronization is expressed
by skeletons and computation by the supplied combinatorial
functions.

� There is a family of skeletons that include alocal state. But
there is no global state in the model, which would make it
more difficult to reason about the system model.

� Skeletons have astructural hardware and software interpre-
tation. This means, that a system model, which is composed
of skeletons also has an interpretation in hardware, software
or a mix of both.

� As skeletons are higher-order functions, the work oncorrect-
ness preserving transformations[10] can be used to trans-
form a system model inside the functional domain into a
more effective implementation model [15].

The processInc? illustrates the clean separation between synchro-
nization and computation. The skeletonmapSYprocesses an event
in each event cycle, while the functioninc? computes the output
value for each input value.

The hardware interpretation of this process is a combinatorial
block implementing the functioninc? with one input and one out-
put. The software interpretation is the implementation ofinc? as
a software function taking one value as input and producing one
output value.

The skeletonmooreSYis an example for a skeleton with a local
state. It models a finite state machine of Moore type. The skeleton

takes a functionns to calculate the next state as first argument, a
functionout to calculate the output as second argument and a value
s0 for the initial state as last argument. Thus the process

Moore= mooreSY(ns;out; init)

implements a finite state machine. In hardware the processMoore
can be implemented as an FSM, where the next state decoder im-
plements the functionns, the output decoder the functionout and
the memory elements store data based on the data type fors0. The
general hardware interpretation is visualized in Figure 2.

Input State
Next

Event
Clock

State Output
Next
State

Decoder
Elements
Memory

Output
Decoder

Figure 2: Hardware Interpretation of mooreSY

Functions can be glued together by function composition. A new
functionh is composed of two functionsf andg by application of
the composition operatorÆ according to

h = f Æg
h(x) = f (g(x))

As processes are functions function composition can also be used
for process composition. We can also build a network of processes
by expressing it as a set of equations. Using this technique we can
express a hierarchical system model.

4. REFINEMENT OF THE SYSTEM MODEL
The system model is stepwise refined through the use of well

defined design transformations from an initial specification model
S0 to a final implementation modelSn (Figure 3).

T1
S0

T2
S1 SnS1

Tn

Figure 3: Refinement through Design Transformation

There are two classes of transformation techniques:

Semantic Preserving TransformationsSemantic preserving trans-
formations do not change the meaning of the model, i.e. the
transformed model behaves in the same way as the original
model. Semantic preserving transformations are mainly used
to optimize the model for synthesis.

Design DecisionsDesign Decisions change the meaning of a model.
A typical design decision is the refinement of an infinite buffer
into a fixed-size buffer withn elements. While such a de-
sign decision clearly modifies the semantics, the transformed
model may still behave in the same way as the original model.
For instance, if it is possible to prove, that a certain buffer
will never contain more thann elements, the ideal buffer can
be replaced by a finite one of sizen.

Before we illustrate the refinement methodology with the system
model of the equalizer we want to point out, how powerful simple
semantic-preserving transformations can be, as they are performed
on a system model, that is a pure composition of functions. Figure
4 shows the power of the formal and functional approach. (1) Pro-
cesses can easily be move over block borders and (2) two processes

Block 2Block 1

Semantic Preserving Transformation

P1

P1

mapSY(g) mapSY(f)

mapSY(f Æg)

P2

P2

Figure 4: A Semantic Preserving Transformation

can be combined and possibly optimized by use of function compo-
sition. In this case we use the semantic-preserving transformation

mapSY(f)ÆmapSY(g) = mapSY(f Æg) (1)

Another useful semantic-preserving transformation is

Ψ(f)ÆΨ(g) = Ψ(f Æg) (2)

To the best of our knowledge optimizations across process and
block borders have not been reported for any other system mod-
eling and design methodology. We believe it is very difficult to
achieve in most other approaches because process boundaries tend
to be very “hard” and moving a piece of functionality from one
process to another would involve a major redesign of the processes
and their interfaces. This is particularly true for heterogeneous
approaches when the two processes are in different modeling do-
mains. In contrast, in the ForSyDe methodology it is a comparably
easy step because processes are semantically just like any other
function.

We illustrate our refinement methodology by means of the sys-
tem model of an equalizer which has also been described in [4].
The main task of the equalizer (Figure 5) is to adjust the audio sig-
nal according to theButton Control. In addition, the bass level must
not exceed a predefined threshold to avoid damage to the speak-
ers. This specification is naturally decomposed into four functions
shown in Figure 5.

Control

Control
Distortion

2

Distortion

Low Freq.

Ampli�er

Ampli�er

Pass
Band

Low
Pass

Pass
High

Treble

Ampli�er

Sum

FFT

Power
Spectrum

Check

Bass

Dist.

AudioOut

Audio
Analyzer

Group
Samples

Audio
Filter

AudioIn

Flag

Hold Level

Buttons

Levels

Button Control

Level

1

Control
2

Figure 5: Subsystems of the Equalizer

TheButton Controlsubsystem monitors the button inputs and the
override signal from the subsystemDistortion Controland adjusts
the current bass and treble levels. This information is passed to
the subsystemAudio Filter, which receives the audio input signal,
and filters and amplifies it according to the current bass and treble
levels. This signal, the output signal of the equalizer, is analyzed
by theAudio Analyzersubsystem, which determines, whether the
bass exceeds a predefined threshold. The result of this analysis
is passed to the subsystemDistortion Control, which decides, if a
minor or major violation is encountered and issues the necessary

commands to theButton Controlsubsystem. In the following we
use the equalizer model to discuss two refinement techniques as
indicated in Figure 5. In addition to the transformation techniques
described in the following sections ForSyDe includes data type and
memory refinement, which are beyond the scope of this paper.

4.1 Refinement of the Clock Domain

FFT
CheckPower

Spectrum Low Freq.Samples
Group

Q?(N) R? S?G(n)

P?(n)

Figure 6: The AudioAnalyzer

Figure 6 shows theAudio Analyzersubsystem, which includes a
Fast-Fourier Transform (FFT) algorithm. This functionfft takes a
vector of 2k samples and produces the corresponding FFT result.
Vectors are denoted as< x1;x2; : : : ;xn >. The FFT algorithm is
used to determine the frequency spectrum of a signal. It is imple-
mented in the processFFT (Q?(n)). The processPower Spectrum
(R?) calculates the power spectrum. The processCheck Low Fre-
quencies(S?) analyzes if the power of the low frequencies exceeds
a threshold and issues a warning in this case, which is sent to the
Distortion Control. The FFT algorithm takes a vector of 2k samples
and calculates a frequency spectrum. The processGroup Samples
(G(n)) reads 2k samples and groups them into a vector of size 2k.
However since we use a synchronous computational model in the
system model the grouping process has to produce an output event
for each input event.G(n) is defined formally as

G(n)(fx1; : : : ;xn; : : :g) = f?; : : : ;?| {z }
n�1

;< x1; : : : ;xn >;: : :g

As all processesQ?(n), R?, S? are constructed with the skeleton
mapSYwe can use the equations 1 and 2 to replace these processes
by P?(n).

p(n) = sÆ r Æq(n)
P?(n) = mapSY(Ψ(p(n)))

-- -G(n)
s3s1 s2

s1 = fx1;x2; : : : ;xn; : : : g

s2 = f?; : : : ;?
| {z }

n�1

;< x1; : : : ;xn >
| {z }

1

; : : : g

s3 = f?; : : : ;?
| {z }

n�1

; p(< x1; : : : ;xn >)
| {z }

1

; : : : g

P?(n)

Figure 7: A Mathematical Model of the Audio Analyzer

We can now model theAudio Analyzeras illustrated in Figure 7.

Low Freq.FFT
CheckPower

SpectrumSamples
Group

C1

Figure 8: Direct Implementation of the Audio Analyzer

The processP?(n) has to process all absent values. This is not
a drawback for the specification phase, but a direct implementation

as shown in Figure 8 can make no use of the fact, that the FFT has
only to be calculated at each 2k-th clock cycle.

Such an implementation will be very slow, since the computation
of the FFT function is clearly the most time consuming and will
determine the overall system performance.

In order to get a more efficient specification the ForSyDe method-
ology allows to introduce synchronous sub-domains into the sys-
tem model during the refinement process. These synchronous sub-
domains use another set of tags. The introduction of a new sub-
domain is done by well defined transformations, which are semantic-
preserving though they introduce an additional timing domain into
the model.

We present four processes, that can be used to introduce a syn-
chronous sub-domain. There are two processes fordown-sampling
and two processes forup-sampling. Each of these processes comes
in two versions, either withheador tail synchronization. The pro-
cesses are defined formally as

UH (n)(fx1;x2; : : :g) = fx1;?; : : : ;?| {z }
n�1

;x2;?; : : : ;?| {z }
n�1

; : : :g

UT (n)(fx1;x2; : : :g) = f?; : : : ;?| {z }
n�1

;x1;?; : : : ;?| {z }
n�1

;x2; : : :g

DH (n)(fx1;x2; : : : ;xn;xn+1; : : :g) = fx1;xn+1; : : :g
DT(n)(fx1;x2; : : : ;xn; : : : x2n; : : :g) = fxn;x2n; : : :g

ForSyDe allows only transformations, that use anappropriatecom-
position of up-sample and down-sample processes. These com-
binations are well defined, e.g. the identitiesDH(n) ÆUH(n) and
DT(n)ÆUT(n). An example for anon-causaland thus not allowed
composition is shown in Figure 9.

-- -DT(n)
s3s1 s2

UH(n)

s1 = fx1;x2; : : : ;xn; : : : x2n; : : : g
s2 = fxn;x2n; : : : g
s3 = fxn;?; : : : ;?

| {z }

n�1

;x2n;?; : : : ;?
| {z }

n�1

; : : : g

Figure 9: Non-Causal Composition of Sampling Processes

Using the special characteristic of the grouping processG(n) we
can derive the identity

G(n) =UT (n)ÆDT (n)ÆG(n):

Using another identity

P? ÆUT (n) =UT(n)ÆP?

it follows that

P?(n)ÆG(n) = P?(n)ÆUT (n)ÆDT (n)ÆG(n)
= UT(n)ÆP?(n)ÆDT (n)ÆG(n)
= UT(n)ÆP(n)ÆDT (n)ÆG(n)

(3)

In the last step we have replacedP?(n) with P(n) sinceDT(n) Æ
G(n) does not produce any absent values. Analyzing equation 3 we
conclude that the processP(n) processes events only at eachn-th
tag and thus can be implemented with a slower clock.

Based on these considerations we define a semantic-preserving
transformation that introduces a synchronous sub-domain. We im-
plement a synchronous sub-domain with a clock frequencyfC2 that
is n = 2k times slower than the clock frequencyfC1 of the main
synchronous domain. The result of this transformation of theAu-
dio Analyzeris illustrated in Figure 10.

Low Freq.
CheckPower

SpectrumFFT
Down

Samples Sample

P(n)

Group

G(n)

Up

DT(n)

Sample

UT (n)

C1C2

Synchronous Sub-Domain

C1

Figure 10: The Audio Analyzer after Refinement

4.2 Communication Refinement
The system model uses the same synchronous communication

mechanism between all its subsystems. This is a nice feature for
modeling and analyzing, since partitioning issues and special in-
terfaces between subsystems have not to be taken into account in
this phase. However, large systems are usually not implemented
as one single unit, but are partitioned into hardware and software
blocks communicating with each other via a dedicated communi-
cation protocol. The ForSyDe methodology offers transformations
of a synchronous communication into other protocols. Looking at
the equalizer example, we observe, that the aperiodic data rate of
the Button Controland theDistortion Controlsubsystem is much
lower than the data rate of theAudio FilterandAudio Analyzer. We
decide to implement theButton ControlandDistribution Controlin
software and theAudio FilterandAudio Analyzerin hardware. For
the communication between these parts we implement a handshak-
ing protocol withSendandReceiveprocesses.

Step 1:Move Process Borders

Button Control

Audio

SO?

Filter

S

O?

S

Audio

Filter
Audio

S

Step 2: Interface Refinement

Send Filter

S

S

FIFO Rec

O?

B?

L?

Level

L

L

B?

Control Level

Hold

L

Control
Level

Hold
L?

Level

Level
Hold

B?

Control
Level

L?

Figure 11: Refinement into a Handshake Protocol

In this paper we focus on the refinement of the synchronous in-
terface between theButton Controland theAudio Filter subsys-
tems, which is shown in Figure 11. The figure also shows the data
types of the signals. Please note, that all the data typesB?, O?, L?
are extended data types, containing absent values. The blockHold
Level, implemented by the synchronous skeletonholdSY, outputs
the last valid value, when receiving an absent value as shown in
Figure 12. Thus, it can also be viewed as a transformation unit
betweenΨ-extended and non-Ψ-extended data types.

The refinement is done in two steps. First, we move the block
Hold Levelout of the subsystemButton Controlin order to imple-
ment the interface between the blockLevel Controland the block
Hold Level. The second step is to refine the interface into a hand-
shake protocol.

holdSY
fx1;x1;x3;x3;x3; : : : g

0

fx1;?;x3;?;?; : : :g

Figure 12: The ProcessholdSY

Here we introduce a FIFO, aSendand aReceiveprocess. When
Sendis idle, it tries to read data from the FIFO. Then it sends the
messageDataReady to theReceiverand after receiving the mes-
sageReady, it sends the data. TheReceiversends a messageAck,
when the data is received.

The handshake protocol implies a delay of several cycles for each
event, asSendandReceiveare synchronous processes. This means,
that the timing behavior of the refined interface is different from the
original interface. This does also mean, that theAudio Filter will
not process exactly the same combination of values in each event
cycle as in the system model.

These consequences have to be taken into account, when inter-
faces are refined. In this case, it can be shown that the refined
interface still behaves in practice as the system model, if we make
two assumptions.

1. The average data rate of the blockLevel Control is lower
than the data rate of theAudio Filter. If the FIFO is correctly
dimensioned there will be no buffer overflow in the FIFO
and all values reach theAudio Controlafter a small number
of event cycles.

2. The output function of theAudio Filter does not change sig-
nificantly, if the input signals of theLevel Controlare de-
layed. That is clearly the case, as a small delay of the level
signal only delays the change of the amplitude for the same
small time, but does not effect the signals shape.

These assumptions point to obligations on other design activities.
A further formalization of the design decisions will allow to make
all assumptions and obligations explicit. The FIFO buffers have to
be dimensioned sufficiently large based on a separate analysis. This
will imply a further design decision as illustrated in [12]. Assump-
tions about the environment and the application, such as the kind
of expected input signal, have to be validated to justify the applied
design decisions.

We can now synthesize the interface by applying the methods
described in [12]. The sole purpose of our transformation is topre-
pare for an asynchronous implementation. Note however, that the
model we have derived is not truly asynchronous in the sense that it
is still completelydeterministicwithout nondeterministic channel
delays. Of course, the channel can be modeled more realistically if
desired. In the ForSyDe methodology we suggest to avoid a non-
deterministic model but to use a stochastic channel model instead,
which ForSyDe supports with stochastic skeletons [6].

5. CONCLUSION
This paper presents the refinement of an abstract system model

into a more detailed implementation model in the ForSyDe method-
ology. Our main contribution is the development of a method, that
allows the stepwise refinement of a system model into an imple-
mentation model by the application of well defined design trans-
formations without leaving the functional domain. There are two
classes of transformations, semantic-preserving transformations and
design decisions. We have illustrated the use of both types of trans-
formations with a digital equalizer system. By means of well de-
fined transformations we refined by the system model with only one
synchronous domain into a model with an additional synchronous
clock domain. We also presented the formal refinement of a syn-
chronous interface into a handshake protocol, that is used for com-
munication via asynchronous channels.

We have formulated the basic foundations and techniques of the
ForSyDe methodology and have applied them manually for several
designs. We will continue our work with the development of tool
support in order to automate the design flow.

6. REFERENCES
[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,

L. Lavagno, A. Sangiovanni-Vincentelli, E. M. Sentovich,
and K. Suzuki. Synthesis of software programs for
embedded control applications.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
18(6):834–849, June 1999.

[2] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systems.Proceedings of the IEEE,
79(9):1270–1282, September 1991.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. InInternational Conference on
Functional Programming, 1998.

[4] P. Bjuréus and A. Jantsch. MASCOT: A specification and
cosimulation method integrating data and control flow. In
Proceedings of the Design and Test Europe Conference
(DATE), 2000.

[5] S. Edwards, L. Lavagno, E. A. Lee, and
A. Sangiovanni-Vincentelli. Design of embedded systems:
Formal models, validation, and synthesis.Proceedings of the
IEEE, 85(3):366–390, March 1997.

[6] A. Jantsch, I. Sander, and W. Wu. The usage of stochastic
processes in embedded system specifications. InProceedings
of the Ninth International Symposium on Hardware/Software
Codesign, April 2001.

[7] K. Keuzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design:
Orthogonolization of concerns and platform-based design.
IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[8] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for
comparing models of computation.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
17(12):1217–1229, December 1998.

[9] Y. Li and M. Leeser. HML, a novel hardware description
language and its translation to VHDL.IEEE Transactions on
VLSI, 8(1):1–8, February 2000.

[10] A. Pettorossi and M. Proietti. Rules and strategies for
transforming functional and logic programs.ACM
Computing Surveys, 28(2):361–414, June 1996.

[11] H. J. Reekie.Realtime Signal Processing. PhD thesis,
University of Technology at Sydney, Australia, 1995.

[12] I. Sander and A. Jantsch. System synthesis based on a formal
computational model and skeletons. InProceedings IEEE
Workshop on VLSI’99, pages 32–39, Orlando, Florida, April
1999. IEEE Computer Society.

[13] D. Skillicorn.Foundations of Parallel Programming.
Cambridge University Press, 1994.

[14] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and
J. Teich. FunState - an internal design representation for
codesign.IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 9(4):524–544, August 2001.

[15] W. Wu, I. Sander, and A. Jantsch. Transformational system
design based on a formal computational model and
skeletons. InForum on Design Languages 2000, Tübingen,
Germany, September 2000.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

