Transformation Based Communication and Clock Domain
Refinement for System Design

Ingo Sander
Royal Institute of Technology
Stockholm, Sweden

ingo@imit.kth.se

ABSTRACT

The ForSyDe methodology has been developed for system level de
sign. In this paper we present formal transformation methods for
the refinement of an abstract and formal system model into an im-

lementation model. The methodology defines two classes of de-
P a9y dadvantage of the design methodology” and believe that “the most

sign transformations: (1) semantic-preserving transformations an
(2) design decisions. In particular we present and illustrate commu-
nication and clock domain refinement by way of a digital equalizer
system.

Categories and Subject Descriptors

B.7.2 Integrated Circuits]: Design-Aids; J.6 Computer-Aided
Engineering: Computer-Aided Design (CAD)

General Terms
Design, Theory

Keywords

System Design, System Modeling, Design Refinement

1. INTRODUCTION

The increasing capacity of integrated circuits makes it possible
to integrate more and more functionality on a single chip. A SoC
(System-on-a-Chip) architecture can include a variety of compo-
nents, such as analog parts, micro controller cores, digital signa

Axel Jantsch
Royal Institute of Technology
Stockholm, Sweden

axel@imit.kth.se

solutions”. In particular, a design methodology should separate
(1) function (what the system is supposed to do) from architecture
(how it does it) and (2) communication from computation.

They “promote to use formal models and transformations in sys-
tem design so that verification and synthesis can be applied to the

important point for functional specification is the underlying math-
ematical model of computation”.

These arguments strongly support the ForSyDe (Formal System
Design) methodology as many of their main requirements on a sys-
tem design methodology are not only part of our methodology, but
establish the foundations of ForSyDe.

The ForSyDe methodology addresses the design of SoC appli-
cations. Starting with a formal system model, that captures the
functionality of the system at a high abstraction level, it provides
formal design transformation methods for a transparent refinement
process of the system model into an implementation model, which
serves as a starting point for synthesis into hardware and software.

In this paper we present the refinement process in our method-
ology. We discuss semantic-preserving transformations and design
decisions and illustrate them by the refinement of an equalizer sys-
tem.

2. RELATED WORK

Edwards et al. [5] use the tagged signal model, which is further
elaborated by Lee and Sangiovanni-Vincentelli in [8], to classify

jand analyze several models of computation, in particular discrete

processor cores, memories, IP blocks and custom hardware Soft.event models, communicating finite state machines, synchronous

ware, running on a humber of different processors, has to be de- h
Jdnodels fundamentally have different strength and weaknesses, and

signed to coordinate these components. While such architecture
allow for totally new application areas, it is not obvious how to
design such applications.

Keutzer et al. discuss system-level design in [7]. They point out,

that “to be effective a design methodology that addresses complex > :
tSystem model is based on the perfect synchrony hypothesis, that

galso forms the base for the family of the synchronous languages.

systems must start at high levels of abstraction” and underline tha
an “essential component of a new system design paradigm is th
orthogonalization of concerns, i.e. the separation of various as-
pects of design to allow more effective exploration of alternative

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2002June 10-14, 2002, New Orleans, Louisiana, USA.

Copyright 2002 ACM 1-58113-461-4/02/000655.00.

models and data flow process networks. It appears, that different

that attempts to find their common features result in models that are
very low level and difficult to use.

According to the tagged signal model our system model can
be classified as synchronous computational model. The ForSyDe

According to Benveniste and Berry "the synchronous approach is
based on a relatively small variety of concepts and methods based
on deep, elegant, but simple mathematical principles” [2]. The syn-
chronous assumption implies a total order of events and leads to
a clean separation between computation and communication and
gives a solid base for formal methods.

Balarin et al. [1] argue, that the synchronous assumption, though
very convenient from the analyzing point of view, imposes a too
strong restriction on the implementation, as it has to be "fast enough”.
They advocate a GALS (globally asynchronous locally synchronous)
approach and implement it in their methodology as a network of
Codesign FSM’s communicating via events. Each CFSM is a syn-

chronous FSM, but the communication is done with events that can domain by a stepwise application of well defined design transfor-
occur at any time and independently. The CFSM network is in- mations into an implementation model, which is discussed in Sec-
herently nondeterministic. Balarin et al. argue, that this enables tion 4. As the implementation model is a refined version of the
them to easily model the unpredictability of the reaction delay of system model, the same validation and verification methods can
a CFSM both at the specification and at the implementation level, be applied to both models. In the partitioning phase, the imple-
while they admit, that nondeterminism makes the design and veri- mentation model is partitioned into hardware and software blocks,
fication process more complex. which are mapped on architectural components. Only now, in the
We argue, that the advantages of a deterministic synchronouscode generation phase, we leave the functional domain to produce
system model outweigh the disadvantages. Nondeterminism in theVHDL or C/C++ for the hardware and software parts. Code gener-
system model implies, that all possible solutions have to be consid- ation in our methodology is discussed in [12].
ered, which is a heavy burden put on the designer’s shoulders. The
task of developing a\:wyd verifyian)] a system mo%el for a SoC appli- 3.2 The SyStem Model
cation is so complex, that a system model has to be deterministic, The system model reflects the design principles of the ForSyDe
thus avoiding the unnecessary complexity of nondeterminism. The methodology. In order to allow for formal design on a high abstrac-
fact, that SoC applications will be implemented on at least partly tion level, the system model has the following characteristics:
asynchronous architectures does not justify a nondeterministic ap-) .)
proach. We think, that the synthesis of the system model into a ® It is based on asynchronou_s, computational r_nop_lavhmh
partly asynchronous implementation should be part of the synthe- cleanly separates computation from communication.
sis process and not already be decided at the system level.
Approaches like the MASCOT methodology [4] which integrates
data and control flow at the system specification level, using the two o It usesideal data typesuch as lists with infinite size
languages Matlab and SDL, are successful in that they provide an
integrated simulation environment. They fail with respect to full in- e It uses the concept of well defined process construction tem-
tegration because they cannot provide an integrated formal analysis plates, callecskeletonswhich implement the synchronous
and synthesis. For instance, all heterogeneous approaches advocate ~ computational model.
separate synthesis and design flows for the different domains.
To overcome this difficulty internal representations like FunState
[14] have been developed to integrate a heterogeneous system model

into one internal representation. However, when compiling high The system model abstracts from implementation details, such as

|eVe|, abstract and application oriented models into a combined in- buffer sizes and low-level communication mechanisms. This en-

ternal representation based on common, low level primitives, most gples the designer to focus on the functional behavior on the system

application oriented features are lost and with them optimization rather than structure and architecture. This abstract nature leaves

opportunities that rely on the meaning of these application oriented 3 \ide design space for further design exploration and design re-

concepts. finement, which is supported by our transformational refinement
Functional languages have been used in other research project%chniques (Section 4).

in electronic design. The parallel programming community has |n order to formally describe our computational model, we fol-

used functional languages to derive parallel programs from a func- |ow the denotational framework of Lee and Sangiovanni-Vincentelli

tional specification [13]. They use skeletons to structure a prob- [g]. They define signals as a set of events, where each eversta

lem. This formulation is then transformed using cost measures tagt and a valuey, i.e.e = (t,v) € T x V. As our system model is

into an efficient implementation for a chosen computer architec- synchronousT is the set of natural numbers, and all signals have

ture. Reekie [11] has used Haskell to model digital signal process- the same set of tags. In order to model the absence of an event, a

ing applications. Similarly to us he modeled streams as infinite gatg typeD can be extended into a data tyPe by adding the spe-

lists and used higher-order functions to operate on them. Finally, cjal value L, which is used to model the absence of a value. Absent

semantic-preserving methods were applied to transform a modelyalues are used to establish a total order of events when dealing
into a more efficient repl’esentatlon. This representatlon was nOtW|th signals with different or aperiodic event rates.

synthesized to hardware or software. Lava [3] is a hardware de-
scription language based on Haskell. It focuses on the structural Absent Value Value

e |tis purely functionalanddeterministic

e |tis expressed in the executable functional language Haskell,
with a well definedormal semantics

representation of hardware and offers a variety of powerful con- il

nection patterns. Lava descriptions can be translated into VHDL 6 L1312 71 1132] 3

and there exist interfaces to formal method tools. Hardware ML T [7Tel504 i T 7161514 i
(HML) [9] is a hardware description language, that is based on

the functional programming language Standard ML. Though HML Event/ Tag Signal

uses some features of Standard ML, such as polymorphic functions
and its type system, it is mainly an improvement of VHDL - there
is a direct mapping from HML constructs into the corresponding
VHDL constructs.

Figure 1: Modeling of Signals and Processes

Figure 1 illustrates the modelling of signals and the behavior of
processes. During the event cydea process processes the events
3. THE FORSYDE METHODOLOGY of each signal with the tag and outputs the result at the same tag
. n.
3.1 The Design Process We denote a signa with {x1,Xo,...}, where the tag is given
The ForSyDe design process starts with the development of aby the position in the signal. To model a process we use the con-
formal abstract functional system model, written in the functional cept of skeletons agrocess constructorsA skeleton is a higher-
language Haskell. This model is then refined inside the functional order function likemapSY mapSYtakes a combinatorial function

as argument and produces a process. In this paper, we denote th&akes a functiomsto calculate the next state as first argument, a

processes created gapSYand a functionf as the name of the
function in capital letters, in this case A processF is then cre-
ated bymapSYf) and formally defined by

F mapSYf)
F{Xj_,Xz,...} {f(Xj_),f(Xz),...}

The procesdnc, of Figure 1 is also modeled by means of the
higher-order functiooapSY that maps a functioimc, on all val-
ues of a signal. The functidnc, differs from the increment func-
tion inc as it is able to process absent values. The fundtion
can be generated by the higher-order functiénlt takes a func-
tion f : D — D and generate§, : D, — D, . W is defined by

wif) = fo
f1(x) Loox=L
where L f(x) otherwise
vf:D—D

We use the functional language Haskell as our modeling language.

Haskell fits well in our modeling technique since it is a functional

language, that supports many of our concepts, such as higher-orde;
functions and laziness, and has a formal semantics. Thus the imple

mentation of higher-order functions likeapSYandW is straight
forward. We implement the synchronous computational model with
skeletons, likenapSY A skeleton is a higher-order function, that
takescombinatorial functionsi.e. functions that have no inter-
nal state, andraluesas input and produces a process as output.

Processes consume signals and generate signals as output. Henct®

skeletons can be viewed @socess constructors The ForSyDe
library defines skeletons for more than one computational model,
but for the ForSyDe system model ordynchronous skeletorsse
used.

The concept of skeletons give the following benefits:

e Due to the construction of processes by skeletons and com-

binatorial functions, we get @lean separation between syn-
chronization and computatiorSynchronization is expressed
by skeletons and computation by the supplied combinatorial
functions.

There is a family of skeletons that includéogal state But
there is no global state in the model, which would make it
more difficult to reason about the system model.

Skeletons have structural hardware and software interpre-
tation. This means, that a system model, which is composed
of skeletons also has an interpretation in hardware, software
or a mix of both.

As skeletons are higher-order functions, the worlcorrect-
ness preserving transformatiofi0] can be used to trans-
form a system model inside the functional domain into a
more effective implementation model [15].

The processnc, illustrates the clean separation between synchro-
nization and computation. The skeletmrapSYprocesses an event
in each event cycle, while the functionc; computes the output
value for each input value.

The hardware interpretation of this process is a combinatorial
block implementing the functiomc, with one input and one out-
put. The software interpretation is the implementationnaf, as
a software function taking one value as input and producing one
output value.

The skeletormooreSYis an example for a skeleton with a local
state. It models a finite state machine of Moore type. The skeleton

functionout to calculate the output as second argument and a value
sp for the initial state as last argument. Thus the process

Moore = mooreSYns out, init)

implements a finite state machine. In hardware the prokesse

can be implemented as an FSM, where the next state decoder im-
plements the functions, the output decoder the functiaut and

the memory elements store data based on the data tysg féhe
general hardware interpretation is visualized in Figure 2.

Next
Input Next State Memory Statg Output
- Output =
State Elements
Decoder
Decoder
Event
Clock

Figure 2: Hardware Interpretation of mooreSY

Functions can be glued together by function composition. A new
unctionh is composed of two functiong andg by application of
the composition operateraccording to

h fog
h(x) f(g(x))

As processes are functions function composition can also be used
r process composition. We can also build a network of processes
by expressing it as a set of equations. Using this technique we can
express a hierarchical system model.

4. REFINEMENT OF THESYSTEM MODEL

The system model is stepwise refined through the use of well
defined design transformations from an initial specification model
S to a final implementation modé&}, (Figure 3).

Ol O

Figure 3: Refinement through Design Transformation

There are two classes of transformation techniques:

Semantic Preserving Transformations Semantic preserving trans-
formations do not change the meaning of the model, i.e. the
transformed model behaves in the same way as the original
model. Semantic preserving transformations are mainly used
to optimize the model for synthesis.

Design DecisionsDesign Decisions change the meaning of a model.
Atypical design decision is the refinement of an infinite buffer
into a fixed-size buffer witm elements. While such a de-
sign decision clearly modifies the semantics, the transformed
model may still behave in the same way as the original model.
For instance, if it is possible to prove, that a certain buffer
will never contain more than elements, the ideal buffer can
be replaced by a finite one of sine

Before we illustrate the refinement methodology with the system
model of the equalizer we want to point out, how powerful simple
semantic-preserving transformations can be, as they are performed
on a system model, that is a pure composition of functions. Figure
4 shows the power of the formal and functional approach. (1) Pro-
cesses can easily be move over block borders and (2) two processes

Block 1 Block 2

ook e 1 commands to th&utton Controlsubsystem. In the following we
! Pl ! use the equalizer model to discuss two refinement techniques as
P mapSYg mapSYf) P2 o A0 o ; .
%‘_ — WH 777777)7 S }ﬁ 77777 | indicated in Figure 5. In addition to the transformation techniques
Semantic Preserving Transformation described in the following sections ForSyDe includes data type and
Tt o R memory refinement, which are beyond the scope of this paper.
- A L maps¥(feg) R = . .
Lo __ I S g 4.1 Refinement of the Clock Domain
Figure 4. A Semantic Preserving Transformaton '.D{Q‘.)
G(n) QL(N) RL SL

. . L. . Group | Power Check |
can be combined and possibly optimized by use of function compo- —=7 samples [7=] FFT =1 Spectrum [Low Freq.["=

sition. In this case we use the semantic-preserving transformation

mapSY f)omapSYg) = mapSYf og) @) Figure 6: The AudioAnalyzer
Another useful semantic-preserving transformation is
Figure 6 shows théudio Analyzesubsystem, which includes a
W(f)oW(g) =¥(fog) @ Fast-Fourier Transform (FFT) algorithm. This functifintakes a

To the best of our knowledge optimizations across process and Vector of % samples and produces the corresponding FFT result.
block borders have not been reported for any other system mod- VECtors are denoted as xg,%z,...,Xn >. The FFT algorithm is
eling and design methodology. We believe it is very difficult to used to _determlne the frequency spectrum of a signal. It is imple-
achieve in most other approaches because process boundaries terffgented in the processFT (Q (n)). The proces®ower Spectrum

to be very “hard” and moving a piece of functionality from one (RL) calculates the power spectrum. The prodgbsck Low Fre-
process to another would involve a major redesign of the processesdUenciegS,) analyzes if the power of the low frequencies exceeds
and their interfaces. This is particularly true for heterogeneous & threshold and issues a warning in this case, which is sent to the
approaches when the two processes are in different modeling do-Distortion Control The FFT algorithm takes a vector df gamples
mains. In contrast, in the ForSyDe methodology it is a comparably @nd calculates a frequency spectrum. The proGzesp Samples

easy step because processes are semantically just like any othefG(n)) reads # samples and groups them into a vector of si'Zg 2
function. However since we use a synchronous computational model in the

We illustrate our refinement methodology by means of the sys- SyStem model the grouping process has to produce an output event
tem model of an equalizer which has also been described in [4]. for €ach input eveniG(n) is defined formally as
The main task of the equalizer (Figure 5) is to adjust the audio sig- GN)({Xe, - Xy) =Ly L, < XLy X0 >,)
nal according to th8utton Control In addition, the bass level must
not exceed a predefined threshold to avoid damage to the speak- n-1
ers. This specification is naturally decomposed into four functions As all processe® (n), R;, S, are constructed with the skeleton
shown in Figure 5. mapSYwve can use the equations 1 and 2 to replace these processes

by Py (n).

Buttons 5 3 0
| Distortion | Dist.

Button Control \b Control

Level L \D' torti j
Hold LevelH Co?w\ﬁol h ‘ istor |on% @
@ Levels

p(n) = soroq(n)
Pi(n) = mapSY¥(p(n)))

Power
Spectrum

S1 S S3
— G Pi(n) —

St = {X1,X2,..., Xn,... }
52:{L7"'7L7<X17"'7Xn >7}
R e —

Audioln | Grou

Band " \
P%gs HAmphﬁerH Sum | Sampl%s

Treble Audio

Audi Anal n-1 1
F:Jltel(: n yzer %:{J—7"'7J—7 p(< X17"'7Xn>)7"'}
AudioOut n-1 1

Figure 7: A Mathematical Model of the Audio Analyzer
Figure 5: Subsystems of the Equalizer
We can now model thAudio Analyzeas illustrated in Figure 7.
TheButton Controkubsystem monitors the button inputs and the

override signal from the subsystebistortion Controland adjusts Group Power Check
the current bass and treble levels. This information is passed to Samples FFT Spectrum Low Freq.
the subsystemudio Filter, which receives the audio input signal, c ‘ ‘

and filters and amplifies it according to the current bass and treble
levels. This signal, the output signal of the equalizer, is analyzed

by the Audio Analyzersubsystem, which determines, whether the Figure 8: Direct Implementation of the Audio Analyzer
bass exceeds a predefined threshold. The result of this analysis
is passed to the subsystddistortion Contro| which decides, if a The proces®, (n) has to process all absent values. This is not

minor or major violation is encountered and issues the necessarya drawback for the specification phase, but a direct implementation

as shown in Figure 8 can make no use of the fact, that the FFT has

only to be calculated at eacKk-th clock cycle.

Such an implementation will be very slow, since the computation
of the FFT function is clearly the most time consuming and will
determine the overall system performance.

In order to get a more efficient specification the ForSyDe method-
ology allows to introduce synchronous sub-domains into the sys-
tem model during the refinement process. These synchronous sub
domains use another set of tags. The introduction of a new sub-

domain is done by well defined transformations, which are semantic-

preserving though they introduce an additional timing domain into
the model.

We present four processes, that can be used to introduce a syn-
chronous sub-domain. There are two processeddam-sampling
and two processes fap-sampling Each of these processes comes
in two versions, either wittieador tail synchronization The pro-
cesses are defined formally as

Un (n)({x1,%2,--.}) = {X1,L,..., L%, L,..., L,...}
n-1 n-1
Ut (n)({x1,%2,...}) ={L,...,L,xq, L,...,L,xp,... }
—— ——
n-1 n-1
DH (n)({X17X27 -aXn7Xn+17~ }) = {X17Xﬂ+17" }
D1 (n)({X1,X2,---,Xn,--- Xon,--- }) = {Xn,Xon,--- }

ForSyDe allows only transformations, that useappropriatecom-

Synchronous Sub-Domain

Dri(n)
Down
Sample

Power Check
Spectrum Low Freq.

Group
Samples

AR

G \ \

Figure 10: The Audio Analyzer after Refinement

4.2 Communication Refinement

The system model uses the same synchronous communication
mechanism between all its subsystems. This is a nice feature for
modeling and analyzing, since partitioning issues and special in-
terfaces between subsystems have not to be taken into account in
this phase. However, large systems are usually not implemented
as one single unit, but are partitioned into hardware and software
blocks communicating with each other via a dedicated communi-
cation protocol. The ForSyDe methodology offers transformations
of a synchronous communication into other protocols. Looking at
the equalizer example, we observe, that the aperiodic data rate of
the Button Controland theDistortion Controlsubsystem is much
lower than the data rate of tieudio FilterandAudio AnalyzerWe
decide to implement thButton ControlandDistribution Controlin
software and théudio FilterandAudio Analyzein hardware. For

the communication between these parts we implement a handshak-
ing protocol withSendandReceiveprocesses.

position of up-sample and down-sample processes. These com-

binations are well defined, e.g. the identitidg (n) o Uy (n) and
Dt (n) oUt(n). An example for aon-causaknd thus not allowed
composition is shown in Figure 9.

S1 S S3
—* Dr(n) Un(n) —
S1={X1,%2,---,%n,-.- Xon,--- }

S = {Xn, Xn, .- }
S3={*n, L,..., L, Xen, L,..., L,... }
N—— N——
n-1 n-1

Figure 9: Non-Causal Composition of Sampling Processes
Using the special characteristic of the grouping proc&ss we
can derive the identity
G(n) = Ut (n)oDt(n) o G(n).
Using another identity
P, oUt(n) =Ut(n)oPL
it follows that

PL(n)oG(n)

PL(n)oUT(n)oDT(n) G(n)
Ur(n)oPy(n)ODT(n) G(n)
Ur (n) oP(n) o Dt (n) o G(n)

In the last step we have replacBd(n) with P(n) sinceDt(n) o

G(n) does not produce any absent values. Analyzing equation 3 we
conclude that the proce$¥n) processes events only at eaeth

tag and thus can be implemented with a slower clock.

®)

[e] S
\ * Button Control d/
By [L Audi S
Level Hold | NS |
Fllter

Step 1:Move Process Borders
O

\L S
Audio
Filter

\/
B,

N
Level
Control

L
Hold
Level

Step 2: Interface Refinement
OL

d/ S
Audio
Filter

\/

Level
Control

Figure 11: Refinement into a Handshake Protocol

In this paper we focus on the refinement of the synchronous in-
terface between thButton Controland theAudio Filter subsys-
tems, which is shown in Figure 11. The figure also shows the data
types of the signals. Please note, that all the data tgpe®, , L
are extended data types, containing absent values. The Hadk
Level implemented by the synchronous skeletmidSY outputs
the last valid value, when receiving an absent value as shown in
Figure 12. Thus, it can also be viewed as a transformation unit
betweer¥-extended and nok-extended data types.

The refinement is done in two steps. First, we move the block
Hold Levelout of the subsysterButton Controlin order to imple-
ment the interface between the bldc&vel Controland the block
Hold Level The second step is to refine the interface into a hand-
shake protocol.

Based on these considerations we define a semantic-preserving

transformation that introduces a synchronous sub-domain. We im-
plement a synchronous sub-domain with a clock frequédagyhat

is n = 2 times slower than the clock frequendy, of the main
synchronous domain. The result of this transformation ofAbe

dio Analyzeris illustrated in Figure 10.

{x1,L,xs, L, L,...}
=

{X1,%1,%3,%3, %3, - ..
iy

}

Figure 12: The ProcessholdSY

Here we introduce a FIFO,%endand aReceivegrocess. When
Sendis idle, it tries to read data from the FIFO. Then it sends the
messag®ataReady to theReceiverand after receiving the mes-
sageReady, it sends the data. THeeceiversends a messagek,
when the data is received.

The handshake protocol implies a delay of several cycles for each
event, aSendandReceivare synchronous processes. This means,
that the timing behavior of the refined interface is different from the
original interface. This does also mean, that Aulio Filter will
not process exactly the same combination of values in each event
cycle as in the system model.

These consequences have to be taken into account, when inter-
faces are refined. In this case, it can be shown that the refined
interface still behaves in practice as the system model, if we make
two assumptions.

1. The average data rate of the bloickvel Controlis lower
than the data rate of thkudio Filter. If the FIFO is correctly
dimensioned there will be no buffer overflow in the FIFO
and all values reach th&udio Controlafter a small number
of event cycles.

. The output function of thAudio Filter does not change sig-
nificantly, if the input signals of théevel Controlare de-
layed. That is clearly the case, as a small delay of the level
signal only delays the change of the amplitude for the same
small time, but does not effect the signals shape.

These assumptions point to obligations on other design activities.
A further formalization of the design decisions will allow to make

all assumptions and obligations explicit. The FIFO buffers have to
be dimensioned sufficiently large based on a separate analysis. This
will imply a further design decision as illustrated in [12]. Assump-
tions about the environment and the application, such as the kind
of expected input signal, have to be validated to justify the applied
design decisions.

We can now synthesize the interface by applying the methods
described in [12]. The sole purpose of our transformation Eee
parefor an asynchronous implementation. Note however, that the
model we have derived is not truly asynchronous in the sense that it
is still completelydeterministicwithout nondeterministic channel
delays. Of course, the channel can be modeled more realistically if
desired. In the ForSyDe methodology we suggest to avoid a non-

[10]

6. REFERENCES

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, A. Sangiovanni-Vincentelli, E. M. Sentovich,
and K. Suzuki. Synthesis of software programs for
embedded control application&EE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
18(6):834—849, June 1999.
[2] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systenfaoceedings of the IEEE
79(9):1270-1282, September 1991.
P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. International Conference on
Functional Programming1998.
P. Bjuréus and A. Jantsch. MASCOT: A specification and
cosimulation method integrating data and control flow. In
Proceedings of the Design and Test Europe Conference
(DATE), 2000.
S. Edwards, L. Lavagno, E. A. Lee, and
A. Sangiovanni-Vincentelli. Design of embedded systems:
Formal models, validation, and synthegtsoceedings of the
IEEE, 85(3):366—390, March 1997.
[6] A.Jantsch, I. Sander, and W. Wu. The usage of stochastic
processes in embedded system specificatiorBrdneedings
of the Ninth International Symposium on Hardware/Software
CodesignApril 2001.
K. Keuzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design:
Orthogonolization of concerns and platform-based design.
IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systemd49(12):1523-1543, December 2000.
E. A. Lee and A. Sangiovanni-Vincentelli. A framework for
comparing models of computatiolEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
17(12):1217-1229, December 1998.
[9] Y. Liand M. Leeser. HML, a novel hardware description
language and its translation to VHDIEEE Transactions on
VLS|, 8(1):1-8, February 2000.
A. Pettorossi and M. Proietti. Rules and strategies for
transforming functional and logic progranfCM
Computing Survey28(2):361-414, June 1996.

(3]

(4]

(5]

(7]

(8]

deterministic model but to use a stochastic channel model instead,[11] H. J. ReekieRealtime Signal Processin§hD thesis,

which ForSyDe supports with stochastic skeletons [6].

5. CONCLUSION

This paper presents the refinement of an abstract system model
into a more detailed implementation model in the ForSyDe method-

[12]

ology. Our main contribution is the development of a method, that [13]

allows the stepwise refinement of a system model into an imple-

mentation model by the application of well defined design trans- [14]

formations without leaving the functional domain. There are two
classes of transformations, semantic-preserving transformations and
design decisions. We have illustrated the use of both types of trans-

formations with a digital equalizer system. By means of well de- [15]

fined transformations we refined by the system model with only one
synchronous domain into a model with an additional synchronous
clock domain. We also presented the formal refinement of a syn-
chronous interface into a handshake protocol, that is used for com-
munication via asynchronous channels.

We have formulated the basic foundations and techniques of the
ForSyDe methodology and have applied them manually for several
designs. We will continue our work with the development of tool
support in order to automate the design flow.

University of Technology at Sydney, Australia, 1995.

I. Sander and A. Jantsch. System synthesis based on a formal
computational model and skeletons Rroceedings IEEE
Workshop on VLSI'99ages 32-39, Orlando, Florida, April
1999. IEEE Computer Society.

D. Skillicorn. Foundations of Parallel Programming
Cambridge University Press, 1994.

K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and
J. Teich. FunState - an internal design representation for
codesignlEEE Transactions on Very Large Scale
Integration (VLSI) System8(4):524-544, August 2001.

W. Wu, I. Sander, and A. Jantsch. Transformational system
design based on a formal computational model and
skeletons. IrfForum on Design Languages 2Q0Mibingen,
Germany, September 2000.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

