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ABSTRACT 

Hardware/software co-design methodologies generally focus on 
the prediction of system performance or co-verification of system 
functionality.  This study extends this conventional focus through 
the development of a methodology and software tool that 
evaluates system (hardware and software) development, 
fabrication, and testing costs (dollar costs) concurrent with 
hardware/software partitioning in a co-design environment. 

Based on the determination of key metrics such as gate count 
and lines of software, a new tool called Ghost, evaluates software 
and hardware development, fabrication, packaging and testing 
costs. Ghost enables optimization of hardware/software 
partitioning as a function of specific combinations of hardware 
foundries and software development environments. 

Categories and Subject Descriptors   
E3 [HW/SW co-design]: specification, model., co-simulation and 
performance analysis, system-level scheduling and partitioning. 

General Terms    Design, Economics. 

Keywords    Cost Modeling, Cost-Performance Trade-off. 

1. INTRODUCTION 
Hardware/software co-design leads to accelerated system 

design and performance improvement through dynamic trade-off 
analysis.  Co-design has been a popular topic during the past dec-
ade in electronics because designers perceive that performance, 
reliability, size, and cost can be improved through judicious 
partitioning of functionality between hardware and software. 

System requirements include constraints on functionality, 
performance, task scheduling, packaging, cost, size, weight, 
volume, power, reliability, and software and hardware modularity.  
A variety of alternative architectures may exist that meet both 
functional and performance standards.  Meeting constraints while 
attempting to optimize the design brings about a number of 
challenges.  One significant gap in co-design methodology is the 
automation of detailed concurrent cost evaluation.  In fact, the 
majority of system design work categorizing itself as “cost-
performance trade-off” is dominated by performance with either 

very simplistic or purely qualitative cost treatments. 
No matter what methodology is used when making system 

design decisions, dollar cost is often a dominant factor.  While 
cost can be the easiest to measure, it may be the hardest to 
predict.  This is because there is never a simple bottom line; 
behind the final system cost are a multiplicity of other cost 
factors, including software and hardware design, hardware 
manufacturing, software development, software and hardware 
testing, time-to-market factors, yield, and a host of life cycle costs 
including reliability, maintenance, and disposal.  Ideally, all of 
these costs should be visible and considered during system design, 
and especially when design-partitioning decisions are made. 

The next section in this paper discusses existing work on the 
concurrent evaluation of performance and cost during 
hardware/software co-design.  Section 3 summarizes the cost 
modeling methodology developed in this work.  Section 4 
presents a case study of the JPEG encoder in a digital camera. 

2. EXISTING WORK 
The majority of existing work on hardware/software co-design 

focuses on resource utilization (processor, memory, size, power 
consumption, timing, etc.).  Very few studies have attempted to 
examine the cost impacts of co-design decisions.  

In the DARPA RASSP program, DeBardelaben et al [1] 
developed a design methodology that involved the development 
of executable specifications, cost-driven architecture selection, 
task assignment, task scheduling, and performance modeling.  For 
software cost models, they used COCOMO [2] and REVIC [3].  
These models allowed the prediction of software development and 
maintenance effort, and software development schedule.  In order 
to utilize these models, they estimated software size, using a non-
linear reuse technique, [4].  For hardware, DeBardelaben et al 
assume only COTS hardware is used and thereby hardware 
production costs were obtained from vendor quotes. In related 
work by Egolf [5], a more detailed analysis of ASIC 
design/redesign, and testing costs was developed.  

Also in the DARPA RASSP program, PRICE Systems in 
collaboration with Ascent Logic built a general design 
requirements capture and tracking tool called RDD-100.  This 
tool was integrated with PRICE’s parametric cost estimating 
tools.  PRICE built software to read the RDD-100 architecture 
and constructed an integrated hardware/software work breakdown 
structure of the candidate architecture.   Using the work 
breakdown structure, PRICE returned the cost to RDD-100, where 
it was assigned to the corresponding architecture blocks.   

Other synthesis approaches either factor in only hardware costs, 
[6]-[9], or only software costs, [10] during the system design 
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Figure 1:  Software cost analysis process. 

process.  In [11], both hardware and software costs are determined 
from libraries consisting of functional units with their 
corresponding performance, and dollar costs.  

The majority of codesign and synthesis approaches that address 
dollar cost do not derive a cost, but rather only accumulate the 
costs of predefined functional units (hardware and/or software) 
ignoring many critical economic effects such as production 
volume, testing, development, and yield.  The few studies that do 
include detailed cost modeling, e.g, [1], are more focused on 
software development costs than non-recurring or recurring 
hardware costs.  In this paper we show how the best partitioning 
choice can be made based on both performance and detailed cost 
calculations by presenting a method of incorporating 
comprehensive hardware and software cost modeling into the 
architecture selection and partitioning process to minimize system 
cost while maintaining system performance standards. 

3. COST MODELING APPROACH 
In this section, we describe the composition of the software and 

hardware cost models that are utilized to estimate chip costs and 
discuss the implementation of the software and hardware cost 
models in a software tool called Ghost. 

3.1 Software Cost Modeling 
For costing software development, several tools exist including 

COCOMO, REVIC and commercial tools.  These software cost 
estimators use nominal effort equations derived from labor effort 
required for developing software as related to the size of the 
software system measured in source lines of code or delivered 
source instructions. 

In this study, software size was estimated using a form of 
function point analysis [12] known as feature point counting [13].  
Based on software language, any feature point count can be 
converted to the number of source lines of code (SLOC) using a 
conversion factor.  One Feature Point is equivalent to 10 to 320 
SLOC depending on the language.  For this work, the language of 
interest, Java, is considered a level six language and converts each 
Feature Point to 53 SLOC, [14].  Once a SLOC count is known, 
effort and scheduling equations are derived.  In particular, the 
embedded mode of COCOMO and REVIC are the most 
applicable for the software costing of an embedded digital system, 

e.g., the digital camera considered in this paper (Section 4).  
Adjustments made by DeBardelaben aimed at COTS-based 
embedded DSP systems were also utilized [15].  The software 
cost analysis process is summarized in Figure 1. 

The converted SLOC counts from the function/feature point 
counting process are entered into software cost estimating 
equations based on COCOMO.  The methodology developed in 
this paper computes software size with reuse taken into account, 
software development effort, software maintenance effort, and the 
software schedule.  The software schedule is based on REVIC 
development time [4] with the multiplicative effects on time with 
projects of increasing effort set to 6.2 [15]. 

The level of accuracy of the estimate provided by this software 
cost model is proportional to the user’s confidence in the software 
size estimate and the description of the software development 
environment.  Through calibration, the risks associated with 
estimating software development have been reduced.   

3.2 Hardware Cost Modeling 
The hardware cost modeling process is shown in Figure 2.  The 

key metric, gate count, allows the calculation of values for I/O 
count, core area, die size, etc.  These factors are coupled with 
others such as number-up, chip design costs, wafer fabrication, 
packaging, automatic test pattern generation, and manual test 
pattern generation, to obtain the final cost. 

The number of die I/O is determined using Rent’s rule, which 
relates the chip functionality and number of gates to the number 
of signal and control I/O on the die.  The core area of the die is 
determined using Donath’s formulation of average 
interconnections length from Rent’s rule [16].  Based on the 
number of gates on the chip, Ng, the average interconnection 
length in units of gate pitch, R , can be determined from the 
interconnection pitch, pw, number of interconnection layers, nw, 
utilization efficiency of interconnections, ew, and the fan-out of 
gates, fg.  Using the average interconnection length, the gate 
dimension dg, and the die core dimension Dc, can be obtained by 
setting the supply and demand for wiring equal. 
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Figure 2.  Hardware cost analysis process. 
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For peripherally bonded die with a single row of bond pads on all 
sides, the die area is given by the maximum of two limits [17]: 

  ( )2ppadpad 4Npitchlength 21 area peripheral +=  (2) 

 ( ) 2
ppadpadp DkN1lengthwidthN2 area peripheral c++=  (3) 

lengthpad and widthpad = length and width of a die bond pad; 
pitchpad = minimum center-to-center pitch of die bond pads; 
Np = total number of die I/O; 
k = the fractional increase in the core die area necessary to 
accommodate redistribution of I/O to the periphery of the die, 
approximately constant in the range 0.00074-0.00079 [18]. 

Equation (2) is the I/O limited chip area, and (3) is the peripheral 
redistribution limited area.  For an area array bonded die, the die 
area is given by the maximum of two limits [17], 

  ( )2ppad Npitch1 areaarray =  (4) 

 2
cpadpadp DwidthlengthN2 areaarray +=  (5) 

Equation (4) is the I/O limited chip area, and (5) is the bond 
pad area limitation, assuming that active circuitry cannot be 
placed under the bond pads.  

Using the die area and the wafer characteristics, the individual 
un-yielded die cost can be determined.  Yield is calculated using 
Poisson, Murphy, or Seeds models depending on the die area and 
defect distribution assumed.   

For peripheral I/O single chip package costs are calculated 
using a price versus pin count assumption for plastic or ceramic 
packages.  The forms of these models are shown in (6) and (7).  

 Plastic packages: ( )( ) 2.09Nlog1.16
scp

pe01.0cost −=  (6) 

 Ceramic QFP:  ( )( ) 0.912Nlog1.157
scp

pe01.0cost −=  (7) 

 BGA:  )0.13(Ncost pscp =  (8) 

The chip yield after packaging and test is computed from the fault 
coverage (fraction of the total defects that are identified in the 
test) and the actual yield of the die on the wafer, 

 ( )coveragefault 1
wdchip yieldyield −=  (9) 

The fraction of chips that are available for board assembly is, 

 coveragefault 
wdyieldfraction pass =  (10) 

The chip cost after the functional test in Figure 3 is given by, 

 
fraction pass

costcost
cost steptest steps previous

cumulative
+

=  (11) 

where costprevious steps is the accumulated cost of all steps up to but 
not including the test step.  Note, all costs prior to sawing the 
wafer into separate die must be allocated over the die that 
continue through the process after sawing.  

Chip design costs are calculated using the model in [19], which 
describes a financial model for the design of system-on-chip ICs 
based on engineering productivity.  It examines the impact of 
design reuse on productivity, and the resulting effect on the cost 
of design.  The model assumes that reusable blocks (intellectual 
property) are designed and added to a central repository or 

library.  New chips are designed using a combination of custom 
circuit design and previously designed blocks from the library.  
Design costs, therefore, are made up of a combination of 
intellectual property costs and new chip development costs. 

Using the model, chip design costs can be explored by varying 
the level of reuse, the amount of IP developed in a given year, 
engineering productivity, the reuse cost factor, and the reuse 
integration factor. 

Test pattern generation costs depend on each block in the 
system, the fault coverage desired, the test pattern generator, and 
the type of test pattern generation, [20]. Total test development 
costs are calculated as the combination of the automatic test 
pattern generation cost, manual test pattern generation costs 
(when required fault coverage is not achieved through automatic 
generation), and test application cost. 

Tooling (masking) cost at low volumes of production has a 
large impact on the total per chip cost.  The tooling cost is based 
on the chosen wafer fabrication process.  In this study two 
processes are utilized as examples, a 0.18 µm process and a 0.35 
µm process, (Table 3, hardware foundries 1 and 2 respectively).  
Typical masking costs for the 0.18 µm process run between 
$300k-$340k, independent of die size and production quantity.  
Masking costs for the 0.35 µm process are less expensive due to 
the larger feature size, ranging from $80k-$100k. 

3.3 Implementation and Usage – Ghost 
The cost modeling discussed in this section is implemented in a 

tool called Ghost.  Ghost is intended to be used during conceptual 
design (trade-off analysis).  Because of Ghost’s positioning as a 
trade-off analysis tool it intentionally operates at a general level.  
Partitioning options identified by Ghost as viable can be subjected 
to more detailed analysis.  The usage model for Ghost is shown in 
Figure 3.  Ghost implements the cost models described in 
Sections 3.1 and 3.2 and combines them with the  user’s choice of 
software development environment (“software foundry”) and the 
particular fabricator/process used to fabricate the hardware 
(“hardware foundry”); see Tables 3 and 4 for examples.  Ghost 
allows the optimum hardware/software partitioning to be chosen 
for a specific combination of wafer fabricator and software 
development environment. 

4. DIGITAL CAMERA CASE STUDY 
In this section, we present a detailed case study for a JPEG 

encoder chip used in a special-purpose digital camera focusing on 
estimating performance and cost of the chip when the chip’s 
functionality is partitioned into different HW/SW combinations. 
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The functional requirements list for a digital camera is long, 
and many requirements are outside the scope of this example, 
however, the refresh rate is a currently identifiable bottleneck for 
digital cameras, therefore, when evaluating system performance 
for the example in this paper, the critical constraint will be that 
the camera should maintain a 30 frames-per-second (FPS) or 
higher refresh rate on the viewfinder during JPEG encoding. 

Two software tools are utilized to complete the co-design 
process.  The first, Foresight Co-Design, allows us to examine the 
virtual prototype of the digital camera, choose implementations of 
the JPEG encoder chip, and assess performance (refresh rate) 
changes with different implementations, and Ghost performs the 
cost modeling process. 

Using Foresight Co-Design’s the components of the system 
(both functional and architectural) are specified using a 
combination of data flow diagrams, state transition diagrams, and 
VHDL-based procedural language.  Foresight Co-Design’s 
discrete event simulation engine is then used to execute and 
evaluate the system specification.  By mapping the functional 
components to their implementing resources in the architectural 
model, system performance can be assessed taking into account 
all resource constraints.  Tradeoff analysis can be performed for 
different possible configurations by changing parameters or 
mappings and re-evaluating the system. 

For the digital camera, high-level functional and architectural 
models of the image processing system were constructed and 
three configurations of JPEG encoder implementations were 
evaluated; all hardware, all software, and mixed 
hardware/software (Table 1). 

Table 1.  JPEG encoder implementation options 
All software 

(SW) 
• JPEG encoder functionality mapped to threads on 

the microprocessor core 
• Data loss occurs due to input buffer overflowing 
• Refresh rate of 25 FPS 
• JPEG encoding time = 80 mS 

MIXED • DCT and Quantization functions mapped to the 
ASIC, other processes mapped to software threads 

• No input buffer overflow 
• Refresh rate of 33 FPS 
• JPEG encoding time of 40 mS 

Semi-custom 
ASIC 

• JPEG encoder functionality mapped to HW 
implemented as semi-custom ASIC blocks 

• Bus congestion due to loading by JPEG encoder 
• Refresh rate of 35 FPS  
• The JPEG encoding time is about 11mS 

For the purpose of this study, several key metrics had to be 
obtained to predict system cost based on each architectural 
implementation.  For a prediction of hardware cost, the most 
important metric to be measured for each block in the system is 
the gate count.  For this example a synthesized reference 
implementation was available and therefore could be used to 
produce the needed gate counts.  However, in actual usage, gate 
count estimates would be obtained from functional information 
such as VHDL RTL descriptions or data flow graphs.  For the 
SW, MIXED and semi-custom ASIC implementations, gate 
counts are zero, 8,000, and 16,000 gates, respectively.  For the 
prediction of software costs, the most important metric is number 
of SLOC or delivered source instructions.  Based on architectural 
blocks and the target characteristics of Feature Point analysis, 
software size is obtained from Foresight Co-Design’s data flow 
diagrams through analysis of each of the JPEG encoder chip’s 
functional blocks, which was then converted to lines of code. 

In order to generate a feature point count that can be converted 
to source lines of code, each block in the JPEG encoder unit was 
analyzed for inputs, outputs, inquires, logic files, interfaces, and 
algorithms.  The data flow diagram provides a good picture of 
inputs and outputs to the block, and the information contained 
within each block provided answers about the four other factors of 
interest.  The ASIC solution is considered to have no feature 
points in software.  To calibrate the feature point estimates to the 
existing Java code for the JPEG encoder [21], another data point 
was desired so that three data points in total were known.  An 
alternative mixed implementation, where the Huffman encoder 
was assigned to hardware as well, was also evaluated to generate 
a feature point count (“Mixed #2” in Table 2). 

Once these three feature point counts are known, they are 
multiplied by the conversion factor of 53 [15], corresponding to 
the conversion from feature points to Java code size, to arrive at a 
source code count.  The results of the feature point analysis on the 
implementations and the corresponding actual code counts are 
shown in Table 2.  When the source lines derived from feature 
points are compared to actual lines, each implementation provides 
a ratio of 2.1 estimated to actual. 

Table 2.  JPEG encoder lines of code comparison 
Implementation Feature Point 

Count 
Lines of 

Code (Est.) 
Lines of Code 

(Actual) 
Ratio 

All software 54 2852 1357 2.102 
Mixed #1 41 2149 1026 2.095 
Mixed #2 27 1447 690 2.097 

Once gate counts and source lines of code are known for the three 
implementations, the data is entered into the Ghost cost model to 
calculate total system cost.  Two sets of foundry data were 
generated for both hardware and software (Tables 3 and 4). 

4.1 Case Study Results 
In this section, we present example cost-performance results for 

various foundry combinations, different production quantities and 
different levels of reuse.  Production quantities ranging from 1000 
to 100,000 units were examined.  Reuse levels of 0 to 40% were 
used.  Reuse is included in the cost models for chip design (reuse 
of gate library IP) and software development (code reuse). 

The first trend that was observed was in the makeup of the 
individual cost contributions (design, fabrication, testing, 
packaging, tooling, software development) of the total cost.  
Figure 4 shows a plot for the MIXED implementation using 
hardware foundry 1 (HW1) and software foundry 1 (SW1). At 
low production quantities (1000 units), design cost and tooling 
(wafer-masking) cost are the largest factors, dominating the total 
cost.  As production quantity and reuse are increased, both the 
design and tooling percentages decrease, and fabrication cost 
becomes significant.  This is reasonable because design and 
tooling costs, are nonrecurring costs, amortized over the entire 
production quantity.  Fabrication and packaging, are recurring 
costs that remain constant independent of production level.  
Therefore, the percentage makeup of the total cost for fabrication 
increases steadily while design, tooling, and testing will decrease.  
The “Recurring” category on the plot indicates the limit as the 
production volume approaches infinity. 

Similar trends are also observed for hardware foundry 2.  Fab- 
rication costs are slightly higher while masking costs are lower 
due to the change in wafer foundry characteristics (Table 3). 

More interesting results were found when the total cost figures 
were examined for the implementations based on the partitioning 
of hardware and software. 



In Figure 5 a medium level of production is assumed (10,000 
units).  The software foundry remains a smaller factor in total cost 
than hardware, and combinations utilizing software foundry 2 are 
slightly less expensive.  Software foundry 1 combinations peak 
between 25% and 50% custom hardware, making the minimum 
cost the 0% hardware or the software implementation.  The 
software foundry 2 combinations peak similarly, and minimized 
cost is at 0% hardware.  The software implementation does not 
meet performance standards so the ASIC implementation is the 
best choice for all foundry combinations.  It is important to 
observe on this plot that the foundry combinations meet at 0% 
hardware and 100% hardware.  This happens because at 100% 
hardware, the software foundry is irrelevant, causing the 
combinations HW1/SW1 and HW1/SW2 to end in the same place 
because only hardware costs are included.  The same effect 
happens for hardware foundry 2.  At 0% hardware, this effect is 
reversed, and the hardware foundry is irrelevant.  Therefore, 

HW1/SW1 and HW2/SW1 will meet and HW1/SW2 and 
HW2/SW2 will meet.  When the production volume is increased 
there is no longer a peak in cost between 25% and 50% hardware 
and the optimal costs to fall at 0% hardware.  Now, the MIXED 
implementations must be chosen due to performance constraints.  
It is interesting to note that although the combination of 
HW1/SW2 starts out less expensive than that of HW2/SW1, it 
becomes more expensive at approximately 5% hardware. 

Hardware and software reuse was also examined at all levels of 
production.  As the level of reuse increases, cost decreases due to 
design costs and software development costs decreasing.  At low 
levels of production, reuse affects costs more because design cost 
and software development cost are both non-recurring and have 
fewer units to be amortized over.  A change in those cost values 
has a greater affect on total cost values than at larger production 
rates.  The effect of reuse at a medium level of production is 
shown in Figure 6.  We can observe, for instance, that although 
the MIXED implementation may not be less expensive than the 
ASIC implementation with no reuse, if the JPEG encoder 
producer could increase levels of reuse to 40%, the MIXED 
implementation at 40% reuse could be less expensive than the 
ASIC implementation with no reuse.  However, reuse of IP and 
software is effectively coupled in this approximation (which 
would not be the case in reality) so that 20% reuse in the ASIC 

Table 3. Hardware foundries 
Input HW1 HW2
Wafer diameter 8" 6"
Die-to-die spacing 0.05" 0.05"
Edge scrap 0.4" 0.4"
Wafer format No centerline cuts No centerline cuts
Technology CMOS CMOS
Min. feature size 0.18 (µm) 0.35 (µm)
Defect density 3 (defects/in2) 3 (defects/in2)
Utilization efficiency 0.5 0.5
Metal layers 6 4
Fab. wafer cost 1600 ($) 1600 ($)
Wafer probing cost 0.003 ($/IO) 0.003 ($/IO)
Probe coverage 0.75 0.75
Sawing cost 0.1 ($) 0.1 ($)
Sawing yield 0.999 0.999
Bonding format Peripheral Peripheral
Bond pad width 63.5 (µm) 63.5 (µm)
Bond pad length 76.2 (µm) 76.2 (µm)
Bond pad pitch 0.1016 mm 0.1016 mm
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Figure 4.  Cost breakdown for MIXED implementation 
using hardware foundry 1 (HW1) and software foundry 1 
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Figure 5.  Total cost per chip for 10,000 units based on 

foundry combination. 
Table 4. Software foundries 

Input SW1 SW2
Assessment/assimilation 0.04 0.04
Software understanding 0.3 0.3
COTS components modified 0 0
COTS code modified 0 0
COTS integration modified 0 0
Annual change traffic 0.15 0.15
Sched. compression/expan. 1 1
All labor rates 80 ($/hr) 80 ($/hr)
Application complexity 1 1
Requirements volatility 1 0.91
Required reliability 1 0.88
Database size 1 0.94
Product complexity 1 0.85
Required reusability 1.1 1
Execution-time constraint 1.11 1
Main-storage constraint 1 1
Virtual-machine volatility 1 0.87
Computer turnaround time 1 0.87
Analyst capability 1 1.19
Application experience 0.91 1
Prog. team capability 0.86 1
Virtual-machine experience 1 1.1
Language experience 0.96 1
Modern prog. pract. (use) 0.91 1
Use of software tools 1 1.1
Classified security appl. 1.1 1
Platform 1.1 1
Req. development schedule 1.04 1
Req. maintenance reliability 1 0.98
Modern maint. prog. pract. (use) 1 1  
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Figure 7.  Chip cost and performance based on implementation 
at 10,000 units.

implementation could allow 20% reuse in the MIXED 
implementation; this cost improvement is assumed to be present 
across implementations.  Therefore, reuse acts as an improvement 
only within each implementation.  Figure 7 examines the 
expected cost and implementation based on trend-lines drawn 
through known data points.  The plane drawn on the plot is set at 
the throughput constraint of 30 FPS.  The points where the trend-
lines for the different foundry combinations intersect the plan are 
denoted by stars, and are plotted to the corresponding percent 
custom hardware and cost.  Because we have only considered 
performance ratings for the three implementations (ASIC, 
MIXED, and SW), we cannot draw conclusions about points in 
between.  In many cases, at large production quantities the 
optimized partitioning would be between 0% and 50% hardware.  
Because the MIXED implementation’s refresh rate of 33 FPS 
(Table 1) still exceeds the refresh rate specification of 30 FPS, it 
may be concluded that a partition can be found that just meets the 
specification and is less expensive than the MIXED 
implementation.  Figure 7 shows that while we have stated for 
hardware foundry 1 combinations at 10,000 units that the 100% 
custom hardware implementation would be optimal, an 
implementation exactly at the throughput constraint (if one exists) 

would, in fact, be less expensive.  This point falls between 0% 
and 50% custom hardware, hardware foundry 2 combinations 
remain less expensive at 100% custom hardware.  Despite this 
demonstration, we cannot conclude as to whether points falling 
exactly at the 30 FPS throughput constraint could be met by a 
realizable implementation of hardware and software.  

5. SUMMARY AND CONCLUSIONS 
In this paper, we have shown that modern hardware/software 

co-design methodologies can benefit from the use of 
comprehensive cost models early in the design process.  The 
ability to view the effects of hardware/software partitioning 
choices on overall system performance and cost, may prove 
indispensable in future design methodologies.  This paper 
presented a cost versus performance trade-off-based 
hardware/software co-design approach that enhances design space 
exploration early in the system development phase, allowing 
designers to make educated partitioning choices to meet cost and 
performance goals and standards.  It must, however, be noted that 
the methodology discussed in this paper ignores the economic 
impact of several important system attributes, such as flexibility 
and upgradeability provided by software solutions. 
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Figure 6.  Total cost per chip for 10,000 units based on 

foundry combinations with reuse. 
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