
A Detailed Cost Model for Concurrent Use With
Hardware/Software Co-Design

Daniel Ragan
Elect. Systems Cost Modeling Lab.

University of Maryland
College Park, MD 20742

danragan@wam.umd.edu

Peter Sandborn
Elect. Systems Cost Modeling Lab.

University of Maryland
College Park, MD 20742

sandborn@eng.umd.edu

Paul Stoaks
Foresight-Systems, Inc.

8217 Shoal Creek Blvd, Suite 100
Austin, Texas 78757

paul@foresight-systems.com

ABSTRACT

Hardware/software co-design methodologies generally focus on
the prediction of system performance or co-verification of system
functionality. This study extends this conventional focus through
the development of a methodology and software tool that
evaluates system (hardware and software) development,
fabrication, and testing costs (dollar costs) concurrent with
hardware/software partitioning in a co-design environment.

Based on the determination of key metrics such as gate count
and lines of software, a new tool called Ghost, evaluates software
and hardware development, fabrication, packaging and testing
costs. Ghost enables optimization of hardware/software
partitioning as a function of specific combinations of hardware
foundries and software development environments.

Categories and Subject Descriptors
E3 [HW/SW co-design]: specification, model., co-simulation and
performance analysis, system-level scheduling and partitioning.

General Terms Design, Economics.

Keywords Cost Modeling, Cost-Performance Trade-off.

1. INTRODUCTION
Hardware/software co-design leads to accelerated system

design and performance improvement through dynamic trade-off
analysis. Co-design has been a popular topic during the past dec-
ade in electronics because designers perceive that performance,
reliability, size, and cost can be improved through judicious
partitioning of functionality between hardware and software.

System requirements include constraints on functionality,
performance, task scheduling, packaging, cost, size, weight,
volume, power, reliability, and software and hardware modularity.
A variety of alternative architectures may exist that meet both
functional and performance standards. Meeting constraints while
attempting to optimize the design brings about a number of
challenges. One significant gap in co-design methodology is the
automation of detailed concurrent cost evaluation. In fact, the
majority of system design work categorizing itself as “cost-
performance trade-off” is dominated by performance with either

very simplistic or purely qualitative cost treatments.
No matter what methodology is used when making system

design decisions, dollar cost is often a dominant factor. While
cost can be the easiest to measure, it may be the hardest to
predict. This is because there is never a simple bottom line;
behind the final system cost are a multiplicity of other cost
factors, including software and hardware design, hardware
manufacturing, software development, software and hardware
testing, time-to-market factors, yield, and a host of life cycle costs
including reliability, maintenance, and disposal. Ideally, all of
these costs should be visible and considered during system design,
and especially when design-partitioning decisions are made.

The next section in this paper discusses existing work on the
concurrent evaluation of performance and cost during
hardware/software co-design. Section 3 summarizes the cost
modeling methodology developed in this work. Section 4
presents a case study of the JPEG encoder in a digital camera.

2. EXISTING WORK
The majority of existing work on hardware/software co-design

focuses on resource utilization (processor, memory, size, power
consumption, timing, etc.). Very few studies have attempted to
examine the cost impacts of co-design decisions.

In the DARPA RASSP program, DeBardelaben et al [1]
developed a design methodology that involved the development
of executable specifications, cost-driven architecture selection,
task assignment, task scheduling, and performance modeling. For
software cost models, they used COCOMO [2] and REVIC [3].
These models allowed the prediction of software development and
maintenance effort, and software development schedule. In order
to utilize these models, they estimated software size, using a non-
linear reuse technique, [4]. For hardware, DeBardelaben et al
assume only COTS hardware is used and thereby hardware
production costs were obtained from vendor quotes. In related
work by Egolf [5], a more detailed analysis of ASIC
design/redesign, and testing costs was developed.

Also in the DARPA RASSP program, PRICE Systems in
collaboration with Ascent Logic built a general design
requirements capture and tracking tool called RDD-100. This
tool was integrated with PRICE’s parametric cost estimating
tools. PRICE built software to read the RDD-100 architecture
and constructed an integrated hardware/software work breakdown
structure of the candidate architecture. Using the work
breakdown structure, PRICE returned the cost to RDD-100, where
it was assigned to the corresponding architecture blocks.

Other synthesis approaches either factor in only hardware costs,
[6]-[9], or only software costs, [10] during the system design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC ’02, June 10-14, 2002, New Orleans, LA.
Copyright 2000 ACM 1-58113-297-2/01/0006…$5.00.

Functional
Blocks

Feature
Points

Source Lines of
Code (SLOC)

Software Development
and Testing Cost

Calibration
Factor

Language
Conversion

Equivalent SLOC
including reuse

Software development
effort

Software maintenance
effort

Software scheduleCOCOMO (REVIC)

Functional
Blocks

Feature
Points

Source Lines of
Code (SLOC)

Software Development
and Testing Cost

Calibration
Factor

Language
Conversion

Equivalent SLOC
including reuse

Software development
effort

Software maintenance
effort

Software scheduleCOCOMO (REVIC)

Figure 1: Software cost analysis process.

process. In [11], both hardware and software costs are determined
from libraries consisting of functional units with their
corresponding performance, and dollar costs.

The majority of codesign and synthesis approaches that address
dollar cost do not derive a cost, but rather only accumulate the
costs of predefined functional units (hardware and/or software)
ignoring many critical economic effects such as production
volume, testing, development, and yield. The few studies that do
include detailed cost modeling, e.g, [1], are more focused on
software development costs than non-recurring or recurring
hardware costs. In this paper we show how the best partitioning
choice can be made based on both performance and detailed cost
calculations by presenting a method of incorporating
comprehensive hardware and software cost modeling into the
architecture selection and partitioning process to minimize system
cost while maintaining system performance standards.

3. COST MODELING APPROACH
In this section, we describe the composition of the software and

hardware cost models that are utilized to estimate chip costs and
discuss the implementation of the software and hardware cost
models in a software tool called Ghost.

3.1 Software Cost Modeling
For costing software development, several tools exist including

COCOMO, REVIC and commercial tools. These software cost
estimators use nominal effort equations derived from labor effort
required for developing software as related to the size of the
software system measured in source lines of code or delivered
source instructions.

In this study, software size was estimated using a form of
function point analysis [12] known as feature point counting [13].
Based on software language, any feature point count can be
converted to the number of source lines of code (SLOC) using a
conversion factor. One Feature Point is equivalent to 10 to 320
SLOC depending on the language. For this work, the language of
interest, Java, is considered a level six language and converts each
Feature Point to 53 SLOC, [14]. Once a SLOC count is known,
effort and scheduling equations are derived. In particular, the
embedded mode of COCOMO and REVIC are the most
applicable for the software costing of an embedded digital system,

e.g., the digital camera considered in this paper (Section 4).
Adjustments made by DeBardelaben aimed at COTS-based
embedded DSP systems were also utilized [15]. The software
cost analysis process is summarized in Figure 1.

The converted SLOC counts from the function/feature point
counting process are entered into software cost estimating
equations based on COCOMO. The methodology developed in
this paper computes software size with reuse taken into account,
software development effort, software maintenance effort, and the
software schedule. The software schedule is based on REVIC
development time [4] with the multiplicative effects on time with
projects of increasing effort set to 6.2 [15].

The level of accuracy of the estimate provided by this software
cost model is proportional to the user’s confidence in the software
size estimate and the description of the software development
environment. Through calibration, the risks associated with
estimating software development have been reduced.

3.2 Hardware Cost Modeling
The hardware cost modeling process is shown in Figure 2. The

key metric, gate count, allows the calculation of values for I/O
count, core area, die size, etc. These factors are coupled with
others such as number-up, chip design costs, wafer fabrication,
packaging, automatic test pattern generation, and manual test
pattern generation, to obtain the final cost.

The number of die I/O is determined using Rent’s rule, which
relates the chip functionality and number of gates to the number
of signal and control I/O on the die. The core area of the die is
determined using Donath’s formulation of average
interconnections length from Rent’s rule [16]. Based on the
number of gates on the chip, Ng, the average interconnection
length in units of gate pitch, R , can be determined from the
interconnection pitch, pw, number of interconnection layers, nw,
utilization efficiency of interconnections, ew, and the fan-out of
gates, fg. Using the average interconnection length, the gate
dimension dg, and the die core dimension Dc, can be obtained by
setting the supply and demand for wiring equal.

I/O
Count

Die Area

Core Area

Gate Count

Wafer
Characteristics

Design Cost

Tooling Cost

Wafer
Fabrication Cost

Single-Chip-
Package Cost

Feature Size

Interconnect
Length

Die Yield

Number Up

Die Cost

Chip HW Cost

I/O Format

Rent’s Rule

Test Development Cost
Productivity, reuse

I/O
Count

Die Area

Core Area

Gate Count

Wafer
Characteristics

Design Cost

Tooling Cost

Wafer
Fabrication Cost

Single-Chip-
Package Cost

Feature Size

Interconnect
Length

Die Yield

Number Up

Die Cost

Chip HW Cost

I/O Format

Rent’s Rule

Test Development Cost
Productivity, reuse

Figure 2. Hardware cost analysis process.

ww

wg
g ne

pRf
d = and ggc dND = (1)

For peripherally bonded die with a single row of bond pads on all
sides, the die area is given by the maximum of two limits [17]:

  ()2ppadpad 4Npitchlength 21 area peripheral += (2)

 () 2
ppadpadp DkN1lengthwidthN2 area peripheral c++= (3)

lengthpad and widthpad = length and width of a die bond pad;
pitchpad = minimum center-to-center pitch of die bond pads;
Np = total number of die I/O;
k = the fractional increase in the core die area necessary to
accommodate redistribution of I/O to the periphery of the die,
approximately constant in the range 0.00074-0.00079 [18].

Equation (2) is the I/O limited chip area, and (3) is the peripheral
redistribution limited area. For an area array bonded die, the die
area is given by the maximum of two limits [17],

  ()2ppad Npitch1 areaarray = (4)

 2
cpadpadp DwidthlengthN2 areaarray += (5)

Equation (4) is the I/O limited chip area, and (5) is the bond
pad area limitation, assuming that active circuitry cannot be
placed under the bond pads.

Using the die area and the wafer characteristics, the individual
un-yielded die cost can be determined. Yield is calculated using
Poisson, Murphy, or Seeds models depending on the die area and
defect distribution assumed.

For peripheral I/O single chip package costs are calculated
using a price versus pin count assumption for plastic or ceramic
packages. The forms of these models are shown in (6) and (7).

 Plastic packages: ()() 2.09Nlog1.16
scp

pe01.0cost −= (6)

 Ceramic QFP: ()() 0.912Nlog1.157
scp

pe01.0cost −= (7)

 BGA:)0.13(Ncost pscp = (8)

The chip yield after packaging and test is computed from the fault
coverage (fraction of the total defects that are identified in the
test) and the actual yield of the die on the wafer,

 ()coveragefault 1
wdchip yieldyield −= (9)

The fraction of chips that are available for board assembly is,

 coveragefault
wdyieldfraction pass = (10)

The chip cost after the functional test in Figure 3 is given by,

fraction pass

costcost
cost steptest steps previous

cumulative
+

= (11)

where costprevious steps is the accumulated cost of all steps up to but
not including the test step. Note, all costs prior to sawing the
wafer into separate die must be allocated over the die that
continue through the process after sawing.

Chip design costs are calculated using the model in [19], which
describes a financial model for the design of system-on-chip ICs
based on engineering productivity. It examines the impact of
design reuse on productivity, and the resulting effect on the cost
of design. The model assumes that reusable blocks (intellectual
property) are designed and added to a central repository or

library. New chips are designed using a combination of custom
circuit design and previously designed blocks from the library.
Design costs, therefore, are made up of a combination of
intellectual property costs and new chip development costs.

Using the model, chip design costs can be explored by varying
the level of reuse, the amount of IP developed in a given year,
engineering productivity, the reuse cost factor, and the reuse
integration factor.

Test pattern generation costs depend on each block in the
system, the fault coverage desired, the test pattern generator, and
the type of test pattern generation, [20]. Total test development
costs are calculated as the combination of the automatic test
pattern generation cost, manual test pattern generation costs
(when required fault coverage is not achieved through automatic
generation), and test application cost.

Tooling (masking) cost at low volumes of production has a
large impact on the total per chip cost. The tooling cost is based
on the chosen wafer fabrication process. In this study two
processes are utilized as examples, a 0.18 µm process and a 0.35
µm process, (Table 3, hardware foundries 1 and 2 respectively).
Typical masking costs for the 0.18 µm process run between
$300k-$340k, independent of die size and production quantity.
Masking costs for the 0.35 µm process are less expensive due to
the larger feature size, ranging from $80k-$100k.

3.3 Implementation and Usage – Ghost
The cost modeling discussed in this section is implemented in a

tool called Ghost. Ghost is intended to be used during conceptual
design (trade-off analysis). Because of Ghost’s positioning as a
trade-off analysis tool it intentionally operates at a general level.
Partitioning options identified by Ghost as viable can be subjected
to more detailed analysis. The usage model for Ghost is shown in
Figure 3. Ghost implements the cost models described in
Sections 3.1 and 3.2 and combines them with the user’s choice of
software development environment (“software foundry”) and the
particular fabricator/process used to fabricate the hardware
(“hardware foundry”); see Tables 3 and 4 for examples. Ghost
allows the optimum hardware/software partitioning to be chosen
for a specific combination of wafer fabricator and software
development environment.

4. DIGITAL CAMERA CASE STUDY
In this section, we present a detailed case study for a JPEG

encoder chip used in a special-purpose digital camera focusing on
estimating performance and cost of the chip when the chip’s
functionality is partitioned into different HW/SW combinations.

Build virtual prototype
“executable specification”

Run Simulation

Estimate Performance

Estimate Gate Count

Estimate Software
Size

Software
Foundry

(Development
Environment)

Hardware
Foundry

Ghost

Estimate System
Cost

Performance Cost

Build virtual prototype
“executable specification”

Run Simulation

Estimate Performance

Estimate Gate Count

Estimate Software
Size

Software
Foundry

(Development
Environment)

Hardware
Foundry

Ghost

Estimate System
Cost

Performance Cost
Figure 3. Ghost usage model.

The functional requirements list for a digital camera is long,
and many requirements are outside the scope of this example,
however, the refresh rate is a currently identifiable bottleneck for
digital cameras, therefore, when evaluating system performance
for the example in this paper, the critical constraint will be that
the camera should maintain a 30 frames-per-second (FPS) or
higher refresh rate on the viewfinder during JPEG encoding.

Two software tools are utilized to complete the co-design
process. The first, Foresight Co-Design, allows us to examine the
virtual prototype of the digital camera, choose implementations of
the JPEG encoder chip, and assess performance (refresh rate)
changes with different implementations, and Ghost performs the
cost modeling process.

Using Foresight Co-Design’s the components of the system
(both functional and architectural) are specified using a
combination of data flow diagrams, state transition diagrams, and
VHDL-based procedural language. Foresight Co-Design’s
discrete event simulation engine is then used to execute and
evaluate the system specification. By mapping the functional
components to their implementing resources in the architectural
model, system performance can be assessed taking into account
all resource constraints. Tradeoff analysis can be performed for
different possible configurations by changing parameters or
mappings and re-evaluating the system.

For the digital camera, high-level functional and architectural
models of the image processing system were constructed and
three configurations of JPEG encoder implementations were
evaluated; all hardware, all software, and mixed
hardware/software (Table 1).

Table 1. JPEG encoder implementation options
All software

(SW)
• JPEG encoder functionality mapped to threads on

the microprocessor core
• Data loss occurs due to input buffer overflowing
• Refresh rate of 25 FPS
• JPEG encoding time = 80 mS

MIXED • DCT and Quantization functions mapped to the
ASIC, other processes mapped to software threads

• No input buffer overflow
• Refresh rate of 33 FPS
• JPEG encoding time of 40 mS

Semi-custom
ASIC

• JPEG encoder functionality mapped to HW
implemented as semi-custom ASIC blocks

• Bus congestion due to loading by JPEG encoder
• Refresh rate of 35 FPS
• The JPEG encoding time is about 11mS

For the purpose of this study, several key metrics had to be
obtained to predict system cost based on each architectural
implementation. For a prediction of hardware cost, the most
important metric to be measured for each block in the system is
the gate count. For this example a synthesized reference
implementation was available and therefore could be used to
produce the needed gate counts. However, in actual usage, gate
count estimates would be obtained from functional information
such as VHDL RTL descriptions or data flow graphs. For the
SW, MIXED and semi-custom ASIC implementations, gate
counts are zero, 8,000, and 16,000 gates, respectively. For the
prediction of software costs, the most important metric is number
of SLOC or delivered source instructions. Based on architectural
blocks and the target characteristics of Feature Point analysis,
software size is obtained from Foresight Co-Design’s data flow
diagrams through analysis of each of the JPEG encoder chip’s
functional blocks, which was then converted to lines of code.

In order to generate a feature point count that can be converted
to source lines of code, each block in the JPEG encoder unit was
analyzed for inputs, outputs, inquires, logic files, interfaces, and
algorithms. The data flow diagram provides a good picture of
inputs and outputs to the block, and the information contained
within each block provided answers about the four other factors of
interest. The ASIC solution is considered to have no feature
points in software. To calibrate the feature point estimates to the
existing Java code for the JPEG encoder [21], another data point
was desired so that three data points in total were known. An
alternative mixed implementation, where the Huffman encoder
was assigned to hardware as well, was also evaluated to generate
a feature point count (“Mixed #2” in Table 2).

Once these three feature point counts are known, they are
multiplied by the conversion factor of 53 [15], corresponding to
the conversion from feature points to Java code size, to arrive at a
source code count. The results of the feature point analysis on the
implementations and the corresponding actual code counts are
shown in Table 2. When the source lines derived from feature
points are compared to actual lines, each implementation provides
a ratio of 2.1 estimated to actual.

Table 2. JPEG encoder lines of code comparison
Implementation Feature Point

Count
Lines of

Code (Est.)
Lines of Code

(Actual)
Ratio

All software 54 2852 1357 2.102
Mixed #1 41 2149 1026 2.095
Mixed #2 27 1447 690 2.097

Once gate counts and source lines of code are known for the three
implementations, the data is entered into the Ghost cost model to
calculate total system cost. Two sets of foundry data were
generated for both hardware and software (Tables 3 and 4).

4.1 Case Study Results
In this section, we present example cost-performance results for

various foundry combinations, different production quantities and
different levels of reuse. Production quantities ranging from 1000
to 100,000 units were examined. Reuse levels of 0 to 40% were
used. Reuse is included in the cost models for chip design (reuse
of gate library IP) and software development (code reuse).

The first trend that was observed was in the makeup of the
individual cost contributions (design, fabrication, testing,
packaging, tooling, software development) of the total cost.
Figure 4 shows a plot for the MIXED implementation using
hardware foundry 1 (HW1) and software foundry 1 (SW1). At
low production quantities (1000 units), design cost and tooling
(wafer-masking) cost are the largest factors, dominating the total
cost. As production quantity and reuse are increased, both the
design and tooling percentages decrease, and fabrication cost
becomes significant. This is reasonable because design and
tooling costs, are nonrecurring costs, amortized over the entire
production quantity. Fabrication and packaging, are recurring
costs that remain constant independent of production level.
Therefore, the percentage makeup of the total cost for fabrication
increases steadily while design, tooling, and testing will decrease.
The “Recurring” category on the plot indicates the limit as the
production volume approaches infinity.

Similar trends are also observed for hardware foundry 2. Fab-
rication costs are slightly higher while masking costs are lower
due to the change in wafer foundry characteristics (Table 3).

More interesting results were found when the total cost figures
were examined for the implementations based on the partitioning
of hardware and software.

In Figure 5 a medium level of production is assumed (10,000
units). The software foundry remains a smaller factor in total cost
than hardware, and combinations utilizing software foundry 2 are
slightly less expensive. Software foundry 1 combinations peak
between 25% and 50% custom hardware, making the minimum
cost the 0% hardware or the software implementation. The
software foundry 2 combinations peak similarly, and minimized
cost is at 0% hardware. The software implementation does not
meet performance standards so the ASIC implementation is the
best choice for all foundry combinations. It is important to
observe on this plot that the foundry combinations meet at 0%
hardware and 100% hardware. This happens because at 100%
hardware, the software foundry is irrelevant, causing the
combinations HW1/SW1 and HW1/SW2 to end in the same place
because only hardware costs are included. The same effect
happens for hardware foundry 2. At 0% hardware, this effect is
reversed, and the hardware foundry is irrelevant. Therefore,

HW1/SW1 and HW2/SW1 will meet and HW1/SW2 and
HW2/SW2 will meet. When the production volume is increased
there is no longer a peak in cost between 25% and 50% hardware
and the optimal costs to fall at 0% hardware. Now, the MIXED
implementations must be chosen due to performance constraints.
It is interesting to note that although the combination of
HW1/SW2 starts out less expensive than that of HW2/SW1, it
becomes more expensive at approximately 5% hardware.

Hardware and software reuse was also examined at all levels of
production. As the level of reuse increases, cost decreases due to
design costs and software development costs decreasing. At low
levels of production, reuse affects costs more because design cost
and software development cost are both non-recurring and have
fewer units to be amortized over. A change in those cost values
has a greater affect on total cost values than at larger production
rates. The effect of reuse at a medium level of production is
shown in Figure 6. We can observe, for instance, that although
the MIXED implementation may not be less expensive than the
ASIC implementation with no reuse, if the JPEG encoder
producer could increase levels of reuse to 40%, the MIXED
implementation at 40% reuse could be less expensive than the
ASIC implementation with no reuse. However, reuse of IP and
software is effectively coupled in this approximation (which
would not be the case in reality) so that 20% reuse in the ASIC

Table 3. Hardware foundries
Input HW1 HW2
Wafer diameter 8" 6"
Die-to-die spacing 0.05" 0.05"
Edge scrap 0.4" 0.4"
Wafer format No centerline cuts No centerline cuts
Technology CMOS CMOS
Min. feature size 0.18 (µm) 0.35 (µm)
Defect density 3 (defects/in2) 3 (defects/in2)
Utilization efficiency 0.5 0.5
Metal layers 6 4
Fab. wafer cost 1600 ($) 1600 ($)
Wafer probing cost 0.003 ($/IO) 0.003 ($/IO)
Probe coverage 0.75 0.75
Sawing cost 0.1 ($) 0.1 ($)
Sawing yield 0.999 0.999
Bonding format Peripheral Peripheral
Bond pad width 63.5 (µm) 63.5 (µm)
Bond pad length 76.2 (µm) 76.2 (µm)
Bond pad pitch 0.1016 mm 0.1016 mm

0%

20%

40%

60%

80%

100%

10
00

, N
o

10
00

, 2
0%

10
00

, 4
0%

10
00

0,
 N

o

10
00

0,
 2

0%

10
00

0,
 4

0%

10
00

00
, N

o

10
00

00
, 2

0%

10
00

00
, 4

0%

R
ec

ur
rin

g

Production Quantity and Level of Reuse

Pe
rc

en
t o

f T
ot

al
 C

os
t

Software development

Packaging
Fabrication

Tooling
Design

Testing

0%

20%

40%

60%

80%

100%

10
00

, N
o

10
00

, 2
0%

10
00

, 4
0%

10
00

0,
 N

o

10
00

0,
 2

0%

10
00

0,
 4

0%

10
00

00
, N

o

10
00

00
, 2

0%

10
00

00
, 4

0%

R
ec

ur
rin

g

Production Quantity and Level of Reuse

Pe
rc

en
t o

f T
ot

al
 C

os
t

Software development

Packaging
Fabrication

Tooling
Design

Testing

Figure 4. Cost breakdown for MIXED implementation
using hardware foundry 1 (HW1) and software foundry 1

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100
Percent Custom Hardware

To
ta

l C
os

t (
$/

ch
ip

)

HW1/SW1 HW1/SW2

HW2/SW1 HW2/SW2
0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100
Percent Custom Hardware

To
ta

l C
os

t (
$/

ch
ip

)

HW1/SW1 HW1/SW2

HW2/SW1 HW2/SW2

Figure 5. Total cost per chip for 10,000 units based on

foundry combination.
Table 4. Software foundries

Input SW1 SW2
Assessment/assimilation 0.04 0.04
Software understanding 0.3 0.3
COTS components modified 0 0
COTS code modified 0 0
COTS integration modified 0 0
Annual change traffic 0.15 0.15
Sched. compression/expan. 1 1
All labor rates 80 ($/hr) 80 ($/hr)
Application complexity 1 1
Requirements volatility 1 0.91
Required reliability 1 0.88
Database size 1 0.94
Product complexity 1 0.85
Required reusability 1.1 1
Execution-time constraint 1.11 1
Main-storage constraint 1 1
Virtual-machine volatility 1 0.87
Computer turnaround time 1 0.87
Analyst capability 1 1.19
Application experience 0.91 1
Prog. team capability 0.86 1
Virtual-machine experience 1 1.1
Language experience 0.96 1
Modern prog. pract. (use) 0.91 1
Use of software tools 1 1.1
Classified security appl. 1.1 1
Platform 1.1 1
Req. development schedule 1.04 1
Req. maintenance reliability 1 0.98
Modern maint. prog. pract. (use) 1 1

100

Percent Custom
Hardware

Refresh Rate
Specification

100

Percent Custom
Hardware

Refresh Rate
Specification

Figure 7. Chip cost and performance based on implementation
at 10,000 units.

implementation could allow 20% reuse in the MIXED
implementation; this cost improvement is assumed to be present
across implementations. Therefore, reuse acts as an improvement
only within each implementation. Figure 7 examines the
expected cost and implementation based on trend-lines drawn
through known data points. The plane drawn on the plot is set at
the throughput constraint of 30 FPS. The points where the trend-
lines for the different foundry combinations intersect the plan are
denoted by stars, and are plotted to the corresponding percent
custom hardware and cost. Because we have only considered
performance ratings for the three implementations (ASIC,
MIXED, and SW), we cannot draw conclusions about points in
between. In many cases, at large production quantities the
optimized partitioning would be between 0% and 50% hardware.
Because the MIXED implementation’s refresh rate of 33 FPS
(Table 1) still exceeds the refresh rate specification of 30 FPS, it
may be concluded that a partition can be found that just meets the
specification and is less expensive than the MIXED
implementation. Figure 7 shows that while we have stated for
hardware foundry 1 combinations at 10,000 units that the 100%
custom hardware implementation would be optimal, an
implementation exactly at the throughput constraint (if one exists)

would, in fact, be less expensive. This point falls between 0%
and 50% custom hardware, hardware foundry 2 combinations
remain less expensive at 100% custom hardware. Despite this
demonstration, we cannot conclude as to whether points falling
exactly at the 30 FPS throughput constraint could be met by a
realizable implementation of hardware and software.

5. SUMMARY AND CONCLUSIONS
In this paper, we have shown that modern hardware/software

co-design methodologies can benefit from the use of
comprehensive cost models early in the design process. The
ability to view the effects of hardware/software partitioning
choices on overall system performance and cost, may prove
indispensable in future design methodologies. This paper
presented a cost versus performance trade-off-based
hardware/software co-design approach that enhances design space
exploration early in the system development phase, allowing
designers to make educated partitioning choices to meet cost and
performance goals and standards. It must, however, be noted that
the methodology discussed in this paper ignores the economic
impact of several important system attributes, such as flexibility
and upgradeability provided by software solutions.

6. REFERENCES
[1] DeBardelaben, J. Madisetti, V. and Gadient, A. J. Incorporating cost

modeling in embedded-system design. IEEE Design & Test of Computers 14,
3, (July-Sept 1997), 24-35.

[2] Boehm, B. Software Engineering Economics. Prentice-Hall, Inc., 1981.
[3] REVIC Software Cost Estimating Model User’s Manual Version 9.2. U.S. Air

Force Analysis Agency, 1994.
[4] Boehm, B., Clark, B.K., Horowitz, E., Madachy, R., Selby, R.W., and

Westland, C. Cost models for future software processes: COCOMO 2.0.
Annals of Software Eng (1995).

[5] Egolf, T. W. Virtual Prototyping of Embedded Digitial Systems:
Hardware/Software Codesign, Integration, and Test. Ph.D. Dissertation,
Georgia Inst. of Tech., (Dec. 1997).

[6] Gajski, D., Vahid, F., Narayan, S. and Gong, J. Specification and Design of
Embedded Systems. Prentice-Hall, Inc., NJ, 1994.

[7] Ernst, R., Henkel, J. and Benner, T. Hardware-software cosynthesis for
micorcontrollers,” IEEE Design & Test of Comp. 10, 4, (Dec 1993), 64-75.

[8] Gupta, R. and De Micheli, G. Hardware-software cosynthesis for digital
systems. IEEE Design & Test of Computers 10, 3, (Sept 1993), 29-41.

[9] Kalavade, A. and Lee, E. A Hardware-software codesign methodology for
DSP applications. IEEE Design & Test of Comp. 10, 3, (Sept 1993), 16-28.

[10] Fornaciari, W., Salice, F, and Bondi, U. Development cost and size estimation
starting from high-level specifications. Proc. Int. Symposium on
Hardware/Software Codesign (April 2001), 86-91.

[11] Bakshi, S. and Gajski, D. Hardware/software partitioning and pipelining. in
Proceedings Design Automation Conference (June 1997), 713-716.

[12] Albrecht, A. Measuring Application Development Productivity. Programming
Productivity: Issues for the Eighties. IEEE Comp Society Press. (1981).

[13] Jones, T.C. Programming Productivity. McGraw-Hill, Inc., 1986.
[14] Jones, T.C. Table of Programming Languages and Levels – Version 8.2.

Software Productivity Research, Burlington MA, 2001.
[15] DeBardelaben, J. An Optimization-Based Approach for Cost-Effective

Embedded DSP System Design. Ph.D. Dissertation, Georgia Institute of
Technology (May 1998).

[16] Donath, W. Equivalence of memory to random logic. IBM J. of Res. and Dev.
58, 5, (Sept 1974), 401-407.

[17] Sandborn, P., Abadir, M., and Murphy, C. The tradeoff between peripheral
and area array bonding of components in multichip modules. IEEE Trans.
CPMT, Part A 17, 2, (June 1994), 249-256.

[18] Dehkordi, P.H. and Bouldin, D.W. Design for packagability: The impact of
bonding technology on the size and layout of VLSI dies. Proc. IEEE MCM
Conf. (1993), 153-159.

[19] Keating, M. A Financial Model for Design Reuse. Design Reuse Group,
Synopsis, Inc., 1998.

[20] Dislis, C., Dick, J.H., Dear, I.D. and Ambler, A.P. Test Economics and Design
for Testability, Ellis Horwood, New York NY, 1995.

[21] Weeks, J.R. JPEG Encoder, BioElectroMech and the Independent JPEG
Group, www.obrador.com /essentialjpeg/jpeg.htm, 1998.

0

5

10

15

20

25

30

35

40
To

ta
l C

os
t (

$/
ch

ip
)

A
SI

C
, N

o

A
SI

C
, 2

0%

A
SI

C
, 4

0%

M
IX

ED
, N

o

M
IX

ED
, 2

0%

M
IX

ED
, 4

0%

SW
, N

o

SW
, 2

0%

SW
, 4

0%
Implementation and Level of Reuse

HW1/SW1
HW1/SW2
HW2/SW1
HW2/SW2

HW1/SW1
HW1/SW2
HW2/SW1
HW2/SW2

0

5

10

15

20

25

30

35

40
To

ta
l C

os
t (

$/
ch

ip
)

A
SI

C
, N

o

A
SI

C
, 2

0%

A
SI

C
, 4

0%

M
IX

ED
, N

o

M
IX

ED
, 2

0%

M
IX

ED
, 4

0%

SW
, N

o

SW
, 2

0%

SW
, 4

0%
Implementation and Level of Reuse

HW1/SW1
HW1/SW2
HW2/SW1
HW2/SW2

HW1/SW1
HW1/SW2
HW2/SW1
HW2/SW2

Figure 6. Total cost per chip for 10,000 units based on

foundry combinations with reuse.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

