Uncertainty-Aware Circuit Optimization

Xiaoliang Bai
ECE Dept. UC San Diego
La Jolla, CA 92037
xibailece.ucsd.edu

ABSTRACT

Almost by definition, well-tuned digital circuits have a large num-
ber of equally critical paths, which form a so-called “wall” in the
slack histogram. However, by the time the design has been through
manufacturing, many uncertainties cause these carefully aligned
delays to spread out. Inaccuracies in parasitic predictions, clock
slew, model-to-hardware correlation, static timing assumptions and
manufacturing variations all cause the performance to vary from
prediction. Simple statistical principles tell us that the variation of
the limiting slack is larger when the height of the wall is greater.
Although the wall may be the optimum solution if the static tim-
ing predictions were perfect, in the presence of uncertainty in tim-
ing and manufacturing, it may no longer be the best choice. The
application of formal mathematical optimization in transistor siz-
ing increases the height of the wall, thus exacerbating the problem.
There is also a practical matter that schematic restructuring down-
stream in the design methodology is easier to conceive when there
are fewer equally critical paths. This paper describes a method
that gives formal mathematical optimizers the incentive to avoid
the wall of equally critical paths, while giving up as little as pos-
sible in nominal performance. Surprisingly, such a formulation re-
duces the degeneracy of the optimization problem and can render
the optimizer more effective. This “uncertainty-aware” mode has
been implemented and applied to several high-performance micro-
processor macros. Numerical results are included.

1. INTRODUCTION AND MOTIVATION

In the quest for high performance, much research effort has gone
into using optimization methods to solve the transistor sizing prob-
lem [2, 1, 10, 12, 4, 3]. It has long been speculated that aggressive
optimization of a circuit drives the design into a corner of the pro-
cess space, causing its yield to suffer. One approach to solve this
problem is to model the random and systematic effects that impact
yield and use them to estimate and/or maximize yield. This task
is obviously an important but daunting one. Another approach is
to change the design so that it is as insensitive as possible to vari-
ations and uncertainties. Instead of attacking the slack of just the
most critical path or paths to the exclusion of all other considera-
tions, what is required is an optimization strategy that targets the
entire distribution of slacks.

A well-tuned circuit has a large number of equally critical paths,
which manifests itself as a wall in the slack histogram. Fig. 1 shows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC2002, June 10-14, 2002, New Orleans, Louisiana, USA.

Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

Chandu Visweswariah Philip N. Strenski
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598
{chandu, strensk}@watson.ibm.com

David J. Hathaway

IBM Microelectronics
Essex Junction, VT 05452
dhathawaQus.ibm.com

igrals
1300000 v T v v v v T v v I B

Fost-tiring
1200000
110,000
100.0000]
90,0000
80,0000 -
70.0000:
60,0000
50,0000}
40,0000
30,0000
20,0000

10,0000

0.0000
slack(ps)

~500000 -40.0000 -30.0000 -200000 100000 00000 100000 200000 30.0000 400000 S00000 600000 700000 80.0000

Figure 1: Pre- and post-tuning slack histogram.

a slack histogram of a S/390 microprocessor execution-unit macro
before and after tuning. A point (x,y) in the histogram implies that
there are y signals with a slack of x or worse. The process of opti-
mizing the circuit typically involves stealing transistor width from
the off-critical paths and speeding up the critical path. The obvious
outcome is a large number of equally critical paths, as shown in
Fig. 1. The slack of the circuit has improved from -51 ps to +24 ps
in this example, but 95 signals are now equally critical.
Unfortunately, the basis upon which the circuit is optimized has
its limitations. Static timing makes a number of simplifying as-
sumptions. The prediction of parasitics may be less than perfect.
Model-to-hardware correlation problems often arise. The design
may undergo further downstream tweaking and restructuring. Clock
skew may not be correctly taken into account. Unpredictable pro-
cess variations may cause delays to change from their nominal val-
ues. In the face of all this uncertainty, having a wall of critical paths
is undesirable. In [14], the authors list all the sources of uncert-
ainty and advocate defining a “window of uncertainty” in the slack
histogram. As long as the slack of any signal is in the window,
there is no guarantee that the circuit will operate at the required
frequency. Hashimoto et al. [11] go further and show that it is pos-
sible for careful optimization of a circuit to actually degrade the
performance due to manufacturing variations. The impact of the
height of the wall is demonstrated in a dramatic fashion in [11].
Consider an example of a mathematical optimizer tuning a cir-
cuit. To begin with, assume two paths are equally critical. As these
paths are speeded up, their slacks become equal to the third crit-
ical path; now the optimizer must simultaneously work on three
equally critical paths. As this process continues and optimality is
approached, there are diminishing returns. Nonetheless the opti-
mizer will not hesitate to make the number of equally critical paths
larger even to gain a fraction of a pico-second. In fact, the less

critical paths which are being down sized to provide device width
(and perhaps reduced loading) for critical paths are more exposed to
process variations because of small devices and large slews. Thus
the quest for optimality in the limiting slack while excluding other
considerations can be dangerous.

Without attempting to model the actual uncertainties, this paper
proposes a method to avoid the wall of equally critical paths during
optimization. A penalty is added to the objective function to give
the optimizer an incentive to avoid a tall wall. The chosen form
of the penalty has several good properties that are crucial to imple-
menting a working solution to this problem. The resulting circuits
have more appealing slack histograms, while paying a negligible
price for the better slack distribution. In the face of uncertainty, the
circuit with the better slack distribution offers both better perfor-
mance and better insensitivity to variations. After optimization, if
the required slack is still not met, restructuring is much easier when
the number of equally critical paths is manageable. An interesting
by-product of the new formulation is that the inherent degeneracy
in the problem formulation is reduced, causing the optimizer to be
more effective.

The outline of the rest of the paper is as follows. Section 2
presents the penalty function to implement uncertainty-aware tun-
ing. Properties of the penalty function and choice of parameters
are discussed. Section 3 extends this formulation to accommodate
arrival time pruning. Numerical results and slack histograms are
shown in Section 4. Alternative formulations of the optimization
problem are discussed in Section 5 before the paper concludes with
Section 6.

2. UNCERTAINTY-AWARE TUNING
2.1 Background

Assuming delay minimization, the optimization problem is formu-
lated as

minimize z
S.t. z > AT;+RAT; i€ PO
s.t. AT; > AT, —|—dij(x,s,') Jj € (INUPO),
i € fanin(j)
s.t. s; > s;j(x,si) Jj € (INUPO),
i € fanin(j)
st YierAily) < Atarget (1)
S.t. ZjeTLij Xj) < Luarger, iepPl
s.t. lower;, < smallest (X) i€G
S.t. Brargest () < Bupper, i€G
s.t. Xiower;, < X ieT
S.t. x < X,,,ppe,-i ieT
s.t. si < Supper, i€ (INUPO)
where the following notation is employed.
z = auxiliary variable that represents cycle time
AT = arrival time variables after launching
clock edge
RAT = required arrival times at POs be fore
capturing clock edge!
s = slew variables
x = transistor widths
d;j = nonlinear delays of timing graph edges
s;j = nonlinear slews of timing graph edges
A; = contribution of transistor i to circuit area

L;; = contribution of transistor j to loading of PI i
set of primary outputs

set of primary inputs

IN = setofinternal nodes

set of tunable transistors

set of tunable gates

Bsmatiess: = smallest P to N path—strength ratio
largest = largest P to N path—strength ratio
target = areatarget
Ligrger = input loading limits on PIs
Jower = lower bounds on P ratio)
upper = upper bounds on B ratio
Xiower = lower bounds on x
Xupper = upper bounds on x
Supper = upper bounds on slews.

The above formulation has some interesting properties [4]. Note
that the arrival times and slews are variables of the problem. The
delays and slews of each arc, the [ratios, the input loading and the
contribution of each transistor’s width to the total area are the non-
linear elements of the formulation. At the solution, the arrival times
and slews on the critical path will have the “timing-correct” value,
all others may not (they can take one of several equally correct val-
ues). Thus off-critical delay and slew constraints and variables are
often redundant or degenerate. The formulation as shown above
assumes downstream propagation of the largest slew of any input
edge incident on a timing point, i.e., what is commonly referred to
as “max-slew propagation.”

The above formulation typically creates the situation where a
tuned circuit has a large number of equally critical signals, as shown
in the post-tuning slack histogram of Fig. 1. The reason is that the
optimizer will strive to decrease the effective cycle time z until no
further improvement is possible, thus causing a large number of
paths to be equally critical.

2.2 Penalty function

To prevent this situation, we propose addition of a penalty term
corresponding to each primary output. As the arrival time of the
signal approaches criticality, we would like this penalty to grow in
size. In delay minimization, we unfortunately cannot judge criti-
cality in an absolute sense, since the effective cycle time (z) of the
circuit changes as the optimization progresses. Hence, we formu-
late the penalty for each primary output arrival time in relation to
the effective cycle time z. Define a separation

di=7—AT; —RAT;i€ 1,2,--- N (3)

where N is the cardinality of the set PO. This separation represents
the criticality of each primary output as the optimization evolves,
and is relative to the most critical path at any stage of the optimiza-
tion. We would like this separation to be as large as possible for all
primary outputs. Of course, at least one of the primary outputs will
define the effective cycle time, and the separation for that one will
be zero.
The basic idea is to change the objective function from z to

N
z+k Z P(d;))

i=1

where k is a weighting constant and P a suitably chosen penalty
function such that the optimizer strives to balance reduction in z
with increase in desirable separation.

2.3 Choice of penalty function

There are several requirements on the penalty function. First, since
it will be used in a numerical optimizer, it is required to be contin-
uous and smooth. Second, the penalty should be a monotonically
decreasing function of d;, reducing to a negligibly small value af-
ter a “required” separation is achieved. Third, its value should be
well defined at both zero and negative values of separation (this

By convention, required arrival times are either expressed before
a capturing clock edge or after a launching clock edge.

rules out, for example P = 1/d;). Finally, we would like to con-
trol the rate at which the penalty function drops oft as the separa-
tion increases, since this will provide a knob to adjust for expected
amounts of uncertainty.

A simple choice that satisfies all these criteria is

P(d;) = e 4/° (5)

leading to an objective function which is
N -
24k e EAT-RAT) o, (©)
i=1

Of course, several other choices of the penalty function are possi-
ble, but this simple choice works well in practice. The penalty starts
at k for the most critical primary output and reduces by a factor e
for each ¢ of separation that a primary output obtains relative to
the most critical path. Beyond about 36 or 40, relatively speaking,
further separation is no longer valuable.

2.4 Choice of ¥ and ¢

The purpose of the penalty function is to introduce downward pres-
sure on all primary output arrival times relative to z. Unfortunately,
this results in upward pressure on z. Thus the parameters of the
penalty function must be chosen in such a way as to make sure that
there is overall downward pressure on z. In other words, the opti-
mizer should not artificially increase z to be higher than the actual
cycle time of the circuit just to obtain a reduction in the separation
penalty terms. We term this situation “lift-off” of z.

One (conservative) way to ensure this criterion is to make sure
the gradient of the penalty function with respect to z is always pos-
itive. Differentiating (6) with respect to z, we obtain

k N
1— =Y e /o5, 7
O =1

1

The biggest possible value of the summation is N (all primary out-
puts equally critical) and the smallest value is 1 (one primary output
critical, all others separated by a lot). Thus we will be safe provided

kN c
l-—>00rk< —. 8
c$> or <N ®)

Therefore if k is less than 6/N, lift-off is impossible. If it is more
than o, lift-off is guaranteed. In between these two extremal values,
the behavior depends on the relative arrival times in a particular test
case.

For a circuit with 50 primary outputs, considering both rising and
falling arrival times, we have 100 timing points. Thus, if we choose
6 = 10 ps, k should be less than 0.1. In practice, k can be chosen
slightly larger without deleterious effects. However, satisfying (8)
guarantees us that z will not lift off.

It turns out that lift-off is not really harmful since as soon as z
artificially increases, the separation term for the most critical signal
is smaller than k£ and all the other separation terms also decrese,
so the gradient of the objective function with respect to z quickly
increases till z will not increase further. Suppose the amount of
lift-off in z at optimality is /, then the objective function can be
rewritten as

N
I+7 4K Z e—(:’—Aﬂ—RAT,)/G)

i=1

where 7 = z— [and k' = ke™'/% and therefore we obtain a solution
to a different problem with a smaller & but no lift-off.

2.5 Area minimization and tradeoff modes

The formulation in (1) can easily be modified to create a tradeoff
mode which minimizes a weighted sum of area and effective cycle
time or an area mode which minimizes area subject to timing con-
straints. In the tradeoff mode, the area constraint is just moved into

the objective function with an appropriate weight factor. In area
mode, area is the objective function. In this case, z is replaced by
the actual desired cycle time of the circuit being optimized (option-
ally offset by a desired positive slack), and therefore is a constant.
Nonetheless, all of the above analysis and the choice of the penalty
function for these two additional modes are unchanged.

3. ARRIVAL TIME PRUNING

As was mentioned earlier, the formulation in (1) suffers from a high
degree of redundancy and degeneracy. Off-critical arrival time and
slew constraints can be tight, yet have zero Lagrange multipliers
since they do not influence the objective function. One way in
which this problem is addressed is by arrival time pruning [15].
Arrival time pruning results in a mixed path/block formulation. In
fact, for small circuits and “non-bushy” circuits, every arrival time
variable is often pruned, leading to a completely path-oriented for-
mulation. From an uncertainty-awareness point of view, this prun-
ing has benefits, but raises new problems.

The benefit is that the “separation” is not just forced at the pri-
mary outputs, but at the source of all sub-paths from unpruned in-
ternal arrival times to the primary outputs. The disadvantage is
that the separation variable d; of (3) can no longer be defined in a
straightforward manner since the arrival time at the primary out-
put might have been eliminated due to pruning. Indeed, a typical
primary output arrival time constraint will be of the form

2> AT\ +dip+dos+- - +dio1,i + RAT; (10)

where the d values are the delays along the sub-path from the in-
ternal node 1 to the primary output i. Hence the separation variable
for this minimax constraint is

d=z—ATi —dip—dr3—--—di—1,; — RAT; (11)

which is not only nonlinear unlike (3), but a function of a large
number of variables. This does not lend itself to a penalty function
as described in the previous section.

‘We make the observation that most optimizers convert inequali-
ties to equalities by the addition of a slack variable. Although this
is not to be confused with slack as defined by a static timing analy-
sis tool, the conceptual meaning of the two slacks is similar. Thus
(10) would become

—AN —dip—do3——di—1; —RAT,—u=0
>0 (12)
where u is an auxiliary slack variable introduced by the optimizer.
In this case, we can define the penalty function in terms of this slack
variable as P(u). The procedure would be simply to keep track of
the slack variables of all the minimax constraints (of the form z >
something) and then add a penalty to the objective function which is

kZﬁ\'zl e~"/% where N is the number of minimax constraints. Since
u; is always positive, each penalty term is at most k when u; = 0 and
then decays quickly as the slack variable increases in value. The
key difference is that the number of penalty terms in this method
can be much larger than the method of the previous section, so the
same care must be taken in the choice of k and 6 to make sure that
there is eventually sufficient downward pressure on z. Also note
that two-step updating [8] which takes advantage of the fact that
slack variables appear in the merit function in a particular analytic
form is no longer applicable to the slack variables that serve this
second purpose as separation variables.

With this new formulation, there is downward pressure on the
arrival times in every subpath feeding a primary output, since the
critical ones need to reduce to allow reduction of z, and the oth-
ers need to decrease to allow increased separation. The downward
pressure is transitively passed along the worst path feeding each of
these subpaths, thus reducing the arrival time and slew degeneracy
of the formulation.

4. RESULTS

The methods described in both the previous sections have been
implemented in a circuit optimization package called EinsTuner,
which has been applied to several generations of PowerPC and
S/390 microprocessors. The main components of EinsTuner are
a static, transistor-level timer EinsTLT [13], a fast time-domain
simulator and gradient calculator SPECS [16, 9] and a general-
purpose nonlinear optimization package LANCELOT [7, 5, 6]. The
problem is formulated as in (1), including arrival time pruning [15].
The delays and slews of individual logic blocks are computed by
running a time-domain simulation under the covers; gradients with
respect to transistor widths, input slews and output loads are ob-
tained by the adjoint method. The resulting optimization problems
can be very large and the resulting run time quite long. Recently,
a circuit with 47,000 transistors was tuned. The optimization prob-
lem had 140,000 variables and 110,000 constraints and took over 4
days of CPU time to solve.

The straightforward implementation of uncertainty-aware tuning
in EinsTuner was achieved by modifying the pruning algorithm to
leave the primary outputs unpruned and adding a penalty function
as in (4). The group function facility of LANCELOT [7] was ex-
ploited to express the penalty function. This method will be re-
ferred to as method 1.

In the second method, all arrival times were allowed to be pruned.
The slack variables of the resulting minimax constraints were used
as separation variables to form the penalty function, again expressed
as a group function. Minimax constraints were submitted to the
optimizer as equality constraints and the slack variables and their
bounds were explicitly managed by EinsTuner. Thus LANCELOT
did not know that these were indeed slack variables, and did not at-
tempt to apply two-step updating to them. This method will be
referred to as method 2.

This section presents three different types of results. First, slack
histograms are shown to demonstrate the avoidance of the “wall,”
and the effect of varying k and ¢ are shown. Second, the perfor-
mance of a circuit with and without uncertainty-aware tuning is
compared in the face of variations. Third, numerical results are
presented which show that uncertainty-aware tuning can be accom-
plished with little to no loss of circuit performance.

4.1 Slack histograms

A 38-bit PowerPC incrementer was tuned with and without uncertainty-

aware tuning. This is a difficult circuit on which to achieve sepa-
ration because of the symmetry and regularity of the critical paths.
The resulting slack histograms are shown in Fig. 2. The slack his-
tograms in this section were produced using method 1 of uncert-
ainty awareness; method 2 results look qualitatively similar. Al-
though the uncertainty-aware tuning has a limiting slack that is 8
ps worse than the nominally tuned circuit, the height of the wall has
been reduced in more than half.

As k and © are changed, the amount of separation can be con-
trolled, but at progressively higher cost in the limiting slack. Fig. 3
shows the effect of varying k£ at a fixed ¢ and slack histograms
obtained by varying ¢ while holding k fixed are shown in Fig. 4.
These experiments were performed on the same S/390 execution-
unit macro as Fig. 1.

4.2 Degradation due to variations

It is clear that “separation” can be obtained at a relatively small
cost in the limiting slack. In many cases, there is almost no price
to pay in terms of the limiting slack, as will be shown in the subse-
quent section. But is the uncertainty-aware circuit really better? A
simple Monte Carlo experiment was fashioned to gain insight into
this question. Ideally, the nominally tuned circuit and uncertainty-
aware circuit would be manufactured and the parametric yields of
the two chips compared. Obviously, such an experiment is imprac-
tical.

Instead, each point in the slack histograms of the 38-bit PowerPC
incrementer (Fig. 2) was randomly perturbed according to a 6G-

Bt
Nl i

15,0000+

100000+

i sack(ps)
-500000 00000 500000 100.0000 150.0000 2000000

Figure 2: Slack histogram for nominal and uncertainty-aware
tuning.

gy

1300000

1200000,

11000005

100.0000]

00000

00000

700000,

00000

50.0000)

00000

30.0000)

200000

100000

00000

k()

0000 “200000 0000 200000 ‘0,000, 500000 500000

Figure 3: Effect of varying k.

truncated Gaussian distribution of the form
sample = u+6v/2g(K(2r—1)) (13)

where u is the mean of the distribution (the mean arrival time was
left unchanged), 62 is the variance, g is the inverse erf function, K

is erf(3/+/2) and r is a random number between 0 and 1. In other
words, the arrival time of each primary output was assumed to have
a truncated Gaussian distribution with no correlation to other pri-
mary outputs. While this is clearly untrue in real life, the crude ex-
periment serves to capture the intent of uncertainty-aware tuning.
For the nominally tuned circuit, 10,000 circuits were “manufac-
tured” by means of a Monte Carlo analysis whereby each primary
output arrival time was randomly perturbed. The resulting circuits
were “sorted” in order of increasing performance and the resulting
distribution in the performance of the chips is shown in Fig. 5. The
same analysis was repeated for the uncertainty-aware circuit, with
the same random number seeds for each new “chip.” The results are
superposed in Fig. 5. The perturbation caused both results to per-
form worse than the nominal circuit, which is the well-known be-
havior of the max function in the face of variations [11]. Nonethe-
less, the reduction of the steepness of the wall in the uncertainty-
aware circuit made it the better circuit in the face of variations. It
can be seen that for a given performance, the uncertainty-aware cir-
cuit has a higher parametric yield, and for a given parametric yield,
the uncertainty-aware circuit allows a higher ship frequency. Even
when the magnitude of the yield improvement is small, it can make
a huge difference in reducing costs and enhancing profitability.

The same experiment was repeated on the execution unit circuit
of Fig. 1 and the resulting performance distributions are shown in
Fig. 6. Thus even for these regular datapath circuits, benefits can
be realized from separation.

)

130.0000)

12000001

1100000

100.0000}

30.0000!

50,0000

70.0000;

50.0000)

50.0000)

40,0000

30,0000

20,0000

10,0000 s

Slack(ps)

~an oooo 200000 00000 20,0000 400000 60,0000 00000

Figure 4: Effect of varying c.

JRe— e

i -iiFio
iiger ity e

10,0001
25000
0000,
65000}
80000
75000,
7.0000,
65000}
60000,
55000,
50000,
45000
40000,
35000,
30000,
25000,
20000

1 5001
10000}
055000,

00000,

slack(ps),

L . . .
~180.0000 -1000000 800000 -60.0000

L
~200,0000

-1600000 1400000 -120,0000

.
-220,0000

Figure 5: Estimated slack histograms after random perturba-
tion for 38-bit PowerPC incrementer.

4.3 Numerical results

A set of 39 test cases ranging in size from 6 to 13,046 transis-
tors were tuned in three different ways: nominal tuning in de-
lay minimization mode, uncertainty-aware tuning method 1 and
uncertainty-aware tuning method 2. All other constraints such as
the area limit, B ratio constraints, slew limits and input loading
constraints were maintained the same in all three cases. Table 1
shows the results. In most cases, the loss of performance due to
uncertainty-aware tuning is very small. As discussed previously,
the new method eliminates some redundancy and degeneracy in
the formulation, causing the optimizer to be more effective as can
be seen in some test cases, particularly the large ones. Thus added
slack separation can be obtained at little or no performance cost.

S. ALTERNATIVE FORMULATIONS

This section proposes two different formulations to make the un-
certainty awareness more effective. It can be argued that the ob-
jective of providing variation tolerance is only important at the
primary outputs and latch points of a circuit. But we can only
achieve this if we have some separation, or positive timing slack,
on all internal points in the fan-in cone of each primary output or
latch point. And if we assume that all delay edges in the design
are equally subject to variation, we can achieve maximum varia-
tion tolerance by ensuring that we have separation at the maximum
number of internal delay edges, where separation on a delay edge
from i to j means that AT; +d;; < RAT;. Here, RAT} is defined rela-
tive to the clock launching edge, unlike the primary output required
arrival time assertions which are defined as times before the captur-

-2200000 -200.0000

-180.0000

1600000

-140.0000 -1200000

1000000 -90.0000

sack(ps)

Figure 6: Estimated slack histograms after random perturba-
tion for S/390 execution unit macro.

Table 1: Comparison of nominal and uncertainty-aware opti-

mization.

Test case # of Slack (ps)

FETs Pre | Nominal | Mth.T | Mth.2
10aareg_3t2n 22 -2.5 7.3 6.9 6.4
inv3 6 720.0 758.0 759.0 | 759.0
ibmTechGates 22 83.3 132.0 132.0 | 131.5
cl7 28 683.0 738.0 738.0 | 738.0
1iiff 26 -161.0 -62.4 -61.1 -60.1
a3_3 34 634.0 718.0 718.0 | 718.0
andy_graph 34 634.0 651.0 654.0 | 650.0
full_adder 46 632.0 687.0 687.0 | 687.0
iqia 72 645.0 668.0 668.0 | 668.0
tgmux 62 -106.5 -65.9 -66.1 -66.4
alulb 102 583.0 618.0 617.0 | 618.0
gain_experiment 162 | -118.5 -41.4 -41.4 | -41.6
rtt_incr321 716 | -129.1 -41.4 -46.5 | -48.0
ibbx_compare 824 514.0 554.0 554.0 | 554.0
exdmsk 882 609.0 683.0 680.0 | 680.0
ioaareg_dl 772 -22.1 39.1 38.0 36.1
c8 584 432.0 590.0 588.0 | 587.0
exdcgn_mac 1270 | -16.5 30.3 31.1 30.8
epdx3p_mac 802 -54.5 -0.8 0.3 1.1
ifti-inc38 880 454.0 530.0 530.0 | 529.0
vadd_byte 1428 | -77.7 6.2 7.3 7.7
epdlzd_mac 1346 | -30.6 101.6 1009 | 99.7
rtincrp 1725 | -221.9 | -1159 | -118.5 | -117.5
exdalmx_mac 1792 -0.5 40.3 40.2 40.2
incrementer 1554 | 447.0 511.0 507.0 | 509.0
ifibreg_ge56 1400 5.0 424.0 422.0 | 417.0
exdcdr_mac 1856 | -407.9 | -325.7 | -329.2 | -320.1
rtbg58cmp 1500 | -42.1 29.9 30.3 29.4
ioperdf_cmpr_al6dp | 2256 | -12.5 164.9 165.6 | 164.8
idopcmp_mac 3448 10.4 50.7 52.5 51.0
idagiqu_smry_gr 2332 -0.5 33.7 33.2 33.0
exdadd_mac2 4258 | -388.3 56.3 58.1 57.0
exdadd_mac 4258 | -265.8 -85.9 -86.6 | -87.4
iooacrd_mac 5184 | -200.7 | -200.1 | -200.1 | -200.1
epdinc_mac 7199 | -46.2 83.9 84.6 84.4
rtoutmx-mac 7805 | -95.1 -10.9 -5.3 0.7
exdblu_mac 8054 | -619.6 | -504.5 | -500.5 | -504.2
idfast_mac 8836 | -480.7 | -473.7 | -473.5 | -479.7
ibbhtdf_rlm 13046 | 11.7 62.6 60.7 64.8

ing clock edge. In method 1 described above, we require separation
only on the worst path feeding each primary output. By reusing the
slack variables of the minimax constraints in method 2, we are able
to extend this separation pressure to all sub-paths terminating on
a primary output. This section discusses methods to give the op-
timizer incentive to encourage separation at all timing points of a
circuit.

One way to achieve this goal is to introduce a required arrival
time variable (RAT) at each timing point. These required arrival
times are defined relative to the launching clock edge, as above.
The RAT variables form a parallel set of constraints that are other-
wise identical to those of the arrival time variables. However, these
constraints are “anchored” by the z variable rather than by the ar-
rival time assertions at the primary inputs (no constraints are intro-
duced relating the RAT variables to the AT assertions at the primary
inputs). Thus the AT variables are constrained to grow “up” from
the primary input AT's, while the RAT variables are constrained to
grow “down” from the z variable. The difference between the RAT
and AT variables at a timing point is the timing slack, and by treat-
ing this as a separation variable and adding a corresponding penalty
term to the objective function, we can ensure that downward pres-
sure is applied to every AT variable and upward pressure is applied
to every RAT variable. Along the critical path, the separation will
be zero, and on every off-critical path, the separation will corre-
spond to the positive slack that a static timer would predict, relative
to the most critical path. The only drawback is that this method
would lead to a substantial increase in the number of variables and
constraints.

Another way of achieving the same goal is to define a separa-
tion for every unpruned arrival time in the circuit relative either to
z or to some constant arrival time that is chosen to be larger than z.
Then a penalty term can be introduced to ensure downward pres-
sure on each arrival time such that wherever it is possible to achieve
separation, the optimizer will have incentive to do so.

An advantage of the former (RAT-variable) approach using an
exponential or similarly decaying penalty term is that the maxi-
mum pressure is applied to the timing points with the smallest tim-
ing slack, and thus the optimizer is given more incentive to increase
the slack of the worst paths. In contrast, if we apply a separation
penalty relative to a single common value, a decaying penalty func-
tion is inappropriate, since the natural separation of each AT vari-
able from this common value will vary significantly, leading to un-
even separation pressures. Thus a linear penalty term is used (e.g.,
a simple sum of all AT variables in the problem), and the optimizer
may increase the separation at a number of points with already large
positive timing slacks at the cost of more valuable separation at a
smaller number of nearly-timing-critical points. An advantage for
the optimizer of both of these approaches is that they completely
eliminate degeneracy in the timing and slew constraints.

6. CONCLUSIONS AND FUTURE WORK

Mathematical optimization of digital circuits causes a “wall” of
equally critical paths, which is unsuitable to downstream restruc-
turing in the design methodology and leaves a circuit extremely
vulnerable to manufacturing variations. This paper proposed and
demonstrated a simple yet effective method of avoiding the wall at
little or no cost in circuit performance. In fact, the new method
makes the optimizer more effective by eliminating degeneracy in
the problem. The method was extended to the situations when ar-
rival times are pruned by making the slack variables of the opti-
mizer play a dual role as separation variables. Detailed numeri-
cal results on high-performance microprocessor macros were pre-
sented to show the effectiveness of the method.

7. ACKNOWLEDGMENTS

The authors gratefully acknowledge discussions with Sani Nassif,
Jim Warnock and Jochen Jess, and the help of members of the Eins-
Tuner team, particularly Jun Zhou, Mei-Ting Hsu, Cindy Wash-

burn and Andy Conn.

8. REFERENCES

[1] R. K. Brayton, G. D. Hachtel, and A. L.
Sangiovanni-Vincentelli. A survey of optimization techniques
for integrated-circuit design. Proceedings of the IEEE,
69(10):1334-1362, October 1981.

[2] R. K. Brayton and R. Spence. Sensitivity and optimization,
volume 2 of CAD of Electronic Circuits. Elsevier Scientific
Publishing Co., Amsterdam, The Netherlands, 1980.

[3] C.-P.Chen, C. N. Chu, and D. F. Wong. Fast and exact
simultaneous gate and wire sizing by Lagrangian Relaxation.
IEEE Transactions on Computer-Aided Design of ICs and
Systems, 18(7), July 1999.

[4] A.R. Conn, I. M. Elfadel, W. W. Molzen, Jr., P. R. O’Brien,
P. N. Strenski, C. Visweswariah, and C. B. Whan.
Gradient-based optimization of custom circuits using a
static-timing formulation. Proc. 1999 Design Automation
Conference, pages 452-459, June 1999.

[5] A.R.Conn, N. I. M. Gould, and P. L. Toint. Global
convergence of a class of trust region algorithms for
optimization with simple bounds. SIAM Journal on Numerical
Analysis, 25:433-460, 1988. See also same journal, pp.
764-767, volume 26, 1989.

[6] A.R. Conn, N. I. M. Gould, and P. L. Toint. A globally
convergent augmented Lagrangian algorithm for optimization
with general constraints and simple bounds. SIAM Journal on
Numerical Analysis, 28(2):545-572, 1991.

[7]1 A.R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT: A
Fortran Package for Large-Scale Nonlinear Optimization
(Release A). Springer Verlag, 1992.

[8] A.R. Conn, L. N. Vicente, and C. Visweswariah. Two-step
algorithms for nonlinear optimization with structured
applications. SIAM Journal on Optimization, 9(4):924-947,
September 1999.

[9] P. Feldmann, T. V. Nguyen, S. W. Director, and R. A. Rohrer.
Sensitivity computation in piecewise approximate circuit
simulation. IEEFE Transactions on Computer-Aided Design of
ICs and Systems, 10(2):171-183, February 1991.

[10] J. P. Fishburn and A. E. Dunlop. TILOS: A posynomial
programming approach to transistor sizing. I[EEE
International Conference on Computer-Aided Design, pages
326-328, November 1985.

[11] M. Hashimoto and H. Onodera. Increase in delay uncertainty
by performance optimization. Proc. IEEE International
Symposium on Circuits and Systems (ISCAS), pages 379-382,
2001.

[12] W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L.
Tits. DELIGHT.SPICE: An optimization-based system for the
design of integrated circuits. IEEE Transactions on
Computer-Aided Design of ICs and Systems,
CAD-7(4):501-519, April 1988.

[13] V. B. Rao, J. P. Soreff, T. B. Brodnax, and R. E. Mains.
EinsTLT: transistor-level timing with EinsTimer. Proc. TAU,
December 1999.

[14] S. E.Rich, M. J. Parker, and J. Schwartz. Reducing the
frequency gap between ASIC and custom designs: a custom
perspective. Proc. 2001 Design Automation Conference, pages
432-437, June 2001.

[15] C. Visweswariah and A. R. Conn. Formulation of static
circuit optimization with reduced size, degeneracy and
redundancy by timing graph manipulation. /EEE International
Conference on Computer-Aided Design, pages 244-251,
November 1999.

[16] C. Visweswariah and R. A. Rohrer. Piecewise approximate
circuit simulation. IEEE Transactions on Computer-Aided
Design of ICs and Systems, 10(7):861-870, July 1991.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

