
A Factorization-Based Framework for
Passivity-Preserving Model Reduction of RLC Systems�

Q. Su
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN

qsu@ecn.purdue.edu

V. Balakrishnan
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN

ragu@ecn.purdue.edu

C.-K. Koh
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN

chengkok@ecn.purdue.edu

ABSTRACT
We present a framework for passivity-preserving model reduction
for RLC systems that includes, as a special case, the well-known
PRIMA model reduction algorithm. This framework provides a
new interpretation for PRIMA, and offers a qualitative explanation
as to why PRIMA performs remarkably well in practice. In addi-
tion, the framework enables the derivation of new error bounds for
PRIMA-like methods. We also show how the framework offers a
systematic approach to computing reduced-order models that better
approximate the original system than PRIMA, while still preserv-
ing passivity.

Categories and Subject Descriptors
G.1.3 [NUMERICAL ANALYSIS ]: Numerical Linear Algebra—
linear systems; F.2.1 [ANALYSIS OF ALGORITHMS AND
PROBLEM COMPLEXITY ]: Numerical Algorithms and Prob-
lems—computations on matrices

General Terms
Algorithms

Keywords
Model Reduction, Large Scale Systems, RLC interconnect, Passiv-
ity Preserving, Factorization

1. INTRODUCTION
As VLSI technology advances, integrated circuits are designed

with ever-decreasing sizes, and ever-increasing speeds of operation,
with a consequence that RLC interconnect effects have an increas-
ing impact on many critical design criteria [5]. Therefore, accurate
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modeling of RLC interconnect has become very important. A typi-
cal interconnect model usually involves thousands or even millions
of tightly coupled RLC components, whose direct simulation can
stretch the limit of computing resources. A standard practice that
addresses such issues is that of model reduction, i.e., finding an ap-
proximate model of the original system with far fewer variables. It
is highly desirable that this approximate model inherit many of the
properties of the original system such as stability and passivity.

Model reduction of linear time-invariant systems is a well-studied
topic. Some well-known techniques are moment-matching and pro-
jection methods. While these methods are well understood in the-
ory, the challenges in the context of model reduction of VLSI inter-
connect have arisen from the large-scale nature of these models.
Some work towards addressing these challenges are the asymp-
totic waveform evaluation (AWE) technique due to Huang, Pillage,
and Rohrer [14, 20], and Pad´e approximations through moment
matching [6]. For state-space models, Krylov subspace computa-
tion techniques such as the Arnoldi and the Lanczos iterations have
proved to be very attractive; see for example Pad´e approximation
via Lanczos iterations in [7, 10], and via Arnoldi iterations in [21].
Krylov methods have also been used to efficiently compute a ba-
sis for the principal controllable and observable subspaces; see [9].
The reduced-order model then can be obtained by projecting the
state-space on these subspaces [12, 13]. Another model reduc-
tion technique whose implementation for VLSI interconnect has
been recently studied is the balance-and-truncate method (see for
example, [18, 11]). The underlying numerical problem with this
techniques is the solution of two large-scale Lyapunov equations.
Efficient implementation of the balance-and-truncate method is the
subject of [17, 2].

The drawback with some (but not all) of the methods described
above is that the reduced-order models obtained through them do
not inherit the important property ofpassivityof the original model.
It has been recognized that when orthogonal projections are em-
ployed prior to model reduction, passivity is indeed inherited by the
reduced-order model, and methods based on this observations have
found favor with the VLSI community. Perhaps the best known
method in this class is PRIMA [19], which is based on orthogonal
projection of the state vector onto a lower dimensional subspace.
It has been recognized that in practice, PRIMA offers excellent
time and frequency domain approximation properties. However,
there exist no error bounds for PRIMA in the spirit of the system-
theoretic error bounds such as those for the balance-and-truncate
method.

The main contributions of the this paper are a framework for
passivity-preserving model reduction of RLC systems that includes



PRIMA as a special case. The underlying idea is that in order to
preserve passivity, the order reduction must be performed not on the
original model, but on a “factor”, which is analogous to a square
root of the real part of the transfer function. This framework of-
fers a number of advantages: It provides a new interpretation for
PRIMA, and offers a qualitative explanation as to why PRIMA
performs remarkably well in practice. In addition, the framework
enables the derivation of new error bounds for PRIMA-like meth-
ods. Perhaps most important, the framework offers a systematic
approach to computing reduced-order models that better approxi-
mate the original system than PRIMA, while still preserving pas-
sivity. This improvement comes at the expense of additional com-
putational cost.

2. A FACTORIZATION-BASED MODEL RE-
DUCTION FRAMEWORK FOR PASSIVE
SYSTEMS

Given an RLC circuit comprising only passive linear elements,
we can extract the time-domain equations as follows:

Eẋ = Ax+Bu;
y = Cx+Du;

(1)

wherex(t) 2 IRN, u(t) 2 IR andy(t) 2 IR. HenceE 2 IRN�N, A 2
IRN�N, B2 IRN�1, C 2 IR1�N andD 2 IR. We will consider only
single-input single-output systems in this paper; the extension of
the results presented herein to multi-input multi-output systems is
straightforward. We also assume in the sequel thatE is invertible;
this assumption is made purely for ease of exposition, in [23] it was
shown that a general RLC system with noninvertibleE in (1) can
be transformed to an equivalent state space realization where this
assumption holds. SinceE is assumed to be invertible, without loss
of generality, we assumeE = I .

As (1) describe a stable linear time-invariant system, all the eigen-
values ofA have negative real parts. Moreover, as system (1) is
passive, we must have

H( jω)+H�( jω)� 0 for all ω;

whereH(s)=C(sI�A)�1B is the transfer function. It turns out that
from system theory [1, 3], stability and passivity are equivalent to
the existence of a symmetric, positive-definite matrixP such that

M
∆
=

�
ATP+PA PB�CT

BTP�C �(D+DT)

�
� 0: (2)

The matrixP can be interpreted as representing the energy stored
in the system: It is readily verified that as a consequence of (2), we
have

d
dt

(x(t)TPx(t))

= x(t)T(ATP+PA)x(t)+2x(t)TPBu(t)

=

�
x(t)
u(t)

�T

M

�
x(t)
u(t)

�
+2u(t)y(t)

� 2u(t)y(t);

so that for everyT � 0, we have

x(T)TPx(T)� x(0)TPx(0)+2
Z T

0
u(t)y(t)dt: (3)

For VLSI systems,u(t)y(t) has the interpretation of the instanta-
neous power input to the system, so that (3) means that the energy
stored in the system never exceeds the initial energy plus the energy
input to the system, i.e., it is passive.

Another consequence of (2) is that we have a factorization of
H(s)+H(�s). Let

M = �
�

LT

DT
v

�
[ L Dv ];

where[L Dv] hasr linearly independent rows (r � N). Then, it is
readily verified that

H(s)+H(�s)=V(�s)TV(s);

whereV(s) = L(sI�A)�1B+Dv. We will refer toV(s) as a gen-
eralized factor ofH(s). Note that althoughH(s) is a scalar transfer
function, the generalized factorV(s) is a column vector withr en-
tries.

The generalized factorV suggests a model reduction scheme that
preserves passivity and stability for the system (1).

Factorization-based model-reduction algorithm (FMR)

Step 1.Find anyP satisfying (2).

Step 2.FormV(s), and find a stable reduced-order approxi-
mantVr.

Step 3. Form Hr so that it is stable and satisfiesHr(s)+
Hr(�s) =Vr(�s)TVr(s).

Note that Hr(s) is guaranteed to be stable and passive.In Step
2 above, the reduced-order model can be obtained by any model
reduction technique. However, the balanced-truncation method ap-
pears to be the natural one for a number of reasons:

1. AlthoughV(s) is a single-input multi-output transfer func-
tion, its model reduction via balanced-truncation is particu-
larly simple. LetWc be the controllability Gramian of the
realization(A;B;L;Dv) of V, given by

AWc+WcAT +BBT = 0:

The observability Gramian of the realization(A;B;L;Dv) of
V is simply the matrixP. Then, withWc = XXT andP =
YYT being square root decompositions, let the singular value
decomposition (SVD) ofXTY satisfy

XTY =UΣVT �UkΣkV
T
k ;

where the diagonal entries ofΣk contain the significant Han-
kel singular values ofV(s). Then, it can be shown that a
realization ofHr derived from a balanced truncation ofV to
Vr is

(TlATr ;Tl B;CTr ;D)

where

Tl = Σ�
1
2

k VT
k YT

k ; Tr = XkUkΣ�
1
2

k :

We make the important observation that the matrixL andDv
need not be explicitly computed in order to obtainHr. All we
need are square root decompositions ofWc andP.

2. When the balanced-truncation method is used, we have a
bound on the approximation error [25, 4]:

kH�HrkL∞

� 1
2(4N+1)2ΣN

k+1σi(4Σk
1σi +2ΣN

k+1σi);
(4)

whereσi are the Hankel singular values ofV(s).



3. PRIMA IN THE CONTEXT OF FMR
In order to implement FMR, we first need to find one generalized

factor. This corresponds to finding someP satisfying (2). While
this is a convex feasibility problem [3], solving it for a large-scale
scenario as that encountered in VLSI CAD models is a daunting
task. However, in the case when the system matrices in (1), are
obtained via a modified nodal analysis (MNA), such aP is read-
ily available. In such cases, the state space equations are as fol-
lows [19]:

Êẋ = Âx+ B̂u;
y = Ĉx;

where the state-space matrices have the following structure.

Ê =

�
F 0
0 L

�
� 0; B̂= ĈT

;

Â=

�
G N
�NT 0

�
; with Â+ ÂT � 0;

(5)

As shown in [23], we can always find an equivalent state space
realization(E;A;B;C;D), whereE is invertible. Further, without
loss of generality, we may takeE = I , and�

AT +A B�CT

BT �C �(D+DT)

�
� 0: (6)

The most important observation with the inequality (6)
is that P= I satisfies inequality (2), that is, from the
form of the MNA equations, we have “for free” a gen-
eralized factor.

Once again, with�
AT +A B�CT

BT �C �(D+DT)

�
=�

�
LT

DT
v

�
[ L Dv ];

we have

H(s)+H(�s)=V(�s)TV(s);

whereV(s) has a state-space realization(A;B;L;Dv). Note that
the observability Gramian of this realization is simply the identity
(this follows fromA+AT +LTL = 0), so that the balanced trun-
cation method corresponds to simply projecting the state vector on
the principal eigenspace of the controllability Gramian, an orthog-
onal projection. As the principal eigenspace of the controllability
Gramian coincides with the principal subspace of the matrix

C =
�

A�1B A�2B � � � �
; (7)

this method is, in principle, the same as PRIMA. In other words:

We can interpret PRIMA as an instance of our FMR
algorithm, when the generalized factor corresponding
to P= I is used.

Indeed, we can demonstrate further connections. Suppose the
Smith method with shiftp< 0 is used to calculate the GramianWc
approximately [22, 2]:

Wc = Σk
i=0Ai

pBpBT
p(A

i
p)

T
;

whereAp = (pI +A)�1(pI�A), Bp =
p�2p(pI +A)�1B. The

first k eigenvectors ofWc in V span the same column space as
Krylov(Ap;Bp;k). Thus, the PRIMA method applied around the
expansion pointp can be interpreted as a special case of the FMR

algorithm, with the generalized factor corresponding toP = I , and
with the modified Smith method used to approximately compute
Wc.

While these comments are true in principle, computational is-
sues will lead to minor numerical differences. One issue is how
an approximation to the principal eigenspace of the controllabil-
ity Gramian of the realization(A;B;L;Dv) is computed: Practical
implementations of PRIMA obtain this approximation by comput-
ing a basis for the first few columns of the matrixC in (7), while
the FMR algorithm withP= I corresponds to computing the prin-
cipal eigenspace by directly computing an approximation to the
Gramian.

In addition to a new interpretation for PRIMA, the above devel-
opment offers an error bound, in principle, for PRIMA:

kH�HrkL∞ �
1
2
(4N+1)2ΣN

k+1σi(4Σk
1σi +2ΣN

k+1σi); (8)

whereσi are the square roots of the eigenvalues of the controllabil-
ity GramianWc.

4. AN IMPROVED IMPLEMENTATION OF
FMR

Motivated by the observation that the error bound in (4) depends
crucially on the matrixP that satisfies (2) (specifically, they de-
pend on the square roots of the eigenvalues ofWcP, whereWc is
the controllability Gramian of(A;B)), with “smaller” values ofP
being better, we present a systematic procedure for obtainingP< I ,
thereby improving on the performance of PRIMA. We assume that
the system is modeled by equations (5). Without loss of general-
ity, we have the same assumption as in last section:E = I and the
inequality (6) holds.

We first explore the set ofP that satisfy (2) for such systems.
Applying the Schur complement lemma [3], (2) is equivalent to

ATP+PA+(PB�CT)(D+DT)�1(BTP�C)� 0; (9)

if D is nonzero. In the case whereD = 0, (2) is equivalent to

ATP+PA� 0; PB=CT
; (10)

which can be transformed to an equivalent Riccati inequality of the
form

ÃQ+QÃT +QRQ+S� 0 (11)

with some lower order (N�1) matricesÃ, R andS. For simplicity
of the presentation, we assumeD 6= 0. The procedure for obtaining
a smaller solutionP for (10), or equivalently a smaller solutionQ
for (11), for the caseD = 0 is the same as that for the caseD 6= 0.

Note thatP= I is one feasible solution to (9); this is the “natural”
solution obtained from the form of the MNA equations, and the one
corresponding to PRIMA, when it is interpreted in the context of
our FMR algorithm.

We next turn to the problem of finding the “smallest”P satisfy-
ing (9). It turns out that there is indeed such a minimal element [24,
15]: There existsPmin > 0 such that anyP satisfying (9) also satis-
fiesP� Pmin. This matrixPmin satisfies (9) with equality, i.e.,

ATPmin+PminA
+(PminB�CT)(D+DT)�1(BTPmin�C) = 0;

(12)

It also turns out that the quantityATPmin +PminA is rank one, so
that the corresponding generalized factorVmin(s) is scalar. This is
referred to as thespectral factorin the system theory literature [8].
Thus, computingPmin exactly requires the solution of the Riccati
equation (12). The corresponding computation is prohibitive even



for moderate-sized problems. Indeed, for moderate-sized prob-
lems, the preferred solution method for solving equation (9) is it-
erative, with each iteration requiring the exact solution of a Lya-
punov equation. Therefore, computingPmin directly is impractical
for VLSI systems.

In summary, the caseP= I corresponds to PRIMA, and the opti-
malPmin, while it exists, is prohibitively expensive to compute. We
therefore propose a scheme that finds a “sub-optimal”P, one that
satisfies (9), and also has the property thatPmin � P� I , thereby
guaranteeing a better error bound than with PRIMA.

With P denoting the set ofP� 0, we define a functionf : P !R
by

f (P) = λmax(ATP+PA
+(PB�CT)(D+DT)�1(BTP�C));

whereλmax(�) denotes the maximum eigenvalue of a symmetric
matrix. Thus,P > 0 is a solution of (9) if and only iff (P)� 0.
It is easily established thatf is a convex function, that is, for all
P1;P2 2 P and for allµ2 [0;1],

f (µP1+(1�µ)P2)� µ f(P1)+(1�µ) f (P2): (13)

Note that from the definition off , we have thatf (I) � 0, and
that f (Pmin) = 0. Suppose that we can find some 0� P1 < I with
f (P1) > 0. As shown in Figure reffig:algfig, by convexity of the
function f , and the fact thatf (I)� 0, we can find someP= µP1+
(1�µ)I betweenP1 andI , such thatf (P)� µ f(P1)+(1�µ) f (I)=
0. SuchP is guaranteed to be a solution to (9), becausef (P)� 0;
and yield a better error bound than PRIMA, becauseP is between
P1 andI , henceP� I .

P

P

f(P)

PminP P = I1 0

f(P )

f(P ) < 0

> 01

0

Figure 1: A systematic procedure for obtainingPwith 0<P� I
and f (P)� 0.

It now remains to findP1 such that 0� P1 < I with f (P1) > 0.
One possible choice isP1 = 0; this follows from (9). There are
some other choices forP1, for example, takeP1 as the solution of
the Lyapunov equation

(A�B(D+DT)�1C)TP1+P1(A�B(D+DT)�1C)
+CT(D+DT)�1C= 0:

It is easily shown that 0< P1 < I and f (P1)> 0, as desired.
We can run several iterations of the above procedure to obtain

better (i.e., “smaller”) and betterP. Indeed, this iterative procedure

can be adapted to computePmin. However, each iteration requires
the solution of one Lyapunov equation. As we will demonstrate
through numerical examples, it suffices to run one iteration to ob-
tain significant improvement over PRIMA.

Computational cost over PRIMA
We now briefly discuss the amount of additional computation re-
quired by the improved FMR scheme over PRIMA. As PRIMA in
principle corresponds to usingP= I , the additional computational
costs comes mainly from the evaluation off (P) which involves
some matrix multiplications during the search of a smallerP. This
is approximately 4N3.

5. NUMERICAL RESULTS
We present two numerical examples that are representative of the

performance of the factorization-based passivity-preserving model
reduction framework presented in this paper.

Example 1
We consider a randomly generated passive system with state space
realization(A;B;C), whereA+AT < 0, andB = CT . There are
50 state components. We apply the passivity preserving model-
reduction algorithm (FMR) to this system to obtain reduced sys-
tems of order 13 using three different symmetric, positive-definite
matrices: (i)P = I , (ii) 0 < Pmin < P< I , and (iii) P= Pmin. We
computeP in (ii) using one step of the technique outlined in Sec-
tion 4. Pmin is obtained by solving the Riccati equation (12). With
these three matrices, we form three different generalized factors for
the original system, and apply the approximate balanced truncation
method on them to obtain three different reduced systems. For pur-
poses of comparison, we also apply the PRIMA model-reduction
algorithm from [19] on the original system. Figures 2, 3 and 4
show the relative errors and the frequency responses of the four
reduced systems. From these plots, it is evident that the reduced
order system from FMR withP = Pmin gives us the most accu-
rate approximation. The reduced order system from FMR with
0< Pmin < P< I approximates the original system better the one
with P= I . All the reduced systems from FMR have lower peak
errors than the reduced system from PRIMA.
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Figure 2: Relative error of the reduced systems.

The flop counts of these four model reduction methods are sum-
marized in Table 1. We can see that FMR withP = I uses roughly
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Figure 3: Magnitude of the frequency responses of the original
system and the reduced systems.
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Figure 4: Phase of the frequency responses of the original sys-
tem and the reduced systems.

the same amount of flops as PRIMA. As expected, FMR withP=
Pmin costs the most. FMR with 0< Pmin < P< I provides a good
compromise; it improves the performance with some additional
computational cost.

Example 2
The second example is from [16]. This corresponds to an on-chip
planar square spiral inductor suspended over a copper plane. The
original system has 500 states. As before, we apply FMR on the
system with the different solutionsP to (2) (as defined in the first
example) to obtain three reduced systems, order 5. Figures 5 and 6
compare the relative errors and the frequency responses of the three

Table 1: Flop counts comparison.
FMR on FMR on FMR on PRIMA
P= Pmin 0< P< I P= I

flops 41�106 2:4�106 0:7�106 0:5�106

ratio 79 4:7 1:3 1

reduced systems with those of the reduced system generated by
PRIMA. The performance of the three FMR reduced systems fol-
lows the same trends exhibited in the preceding example. More-
over, the FMR reduced systems have lower peak errors than the
PRIMA reduced system. The flop counts of these four model re-
duction methods are summarized in Table 2.
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6. CONCLUSIONS
We have presented a factorization-based framework for passivity-

preserving model reduction that includes PRIMA as a special case.
We have shown that this framework provides a new interpretation
for PRIMA, as well as enabling the derivation of an error bound for
PRIMA in principle. In addition, we have a systematic method for
improving the performance of PRIMA-like methods.
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