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ABSTRACT modeling of RLC interconnect has become very important. A typi-

cal interconnect model usually involves thousands or eviions

of tightly coupled RLC components, whose direct simulation can
stretch the limit of computing resources. A standard practice that
addresses such issues is that of model reduction, i.e., finding an ap-

We present a framework for passivity-preserving model reduction
for RLC systems that includes, as a special case, the well-known
PRIMA model reduction algorithm. This framework provides a

new interpretation for PRIMA, and offers a qualitative explanation ) o ) :
as to why PRIMA performs remarkably well in practice. In addi- proximate model of the original system with far fewer variables. It

tion, the framework enables the derivation of new error bounds for is highly desirable t_h‘?‘t this approximate mode_l_inherit many Qf the
PRIMA-like methods. We also show how the framework offers a Properties of the original system such as stability and passivity.

systematic approach to computing reduced-order models that better M0del reductiI?E oflinear E]m_e-invariant systemsis a;]/\_/ell-studdied
approximate the original system than PRIMA, while still preserv- topic. Some well- nown techniques are moment-matching and pro-
jection methods. While these methods are well understood in the-

ng passiviy. ory, the challenges in the context of model reduction of VLSI inter-

. . . connect have arisen from the large-scale nature of these models.
Categoriesand Subject Descriptors Some work towards addressing these challenges are the asymp-
G.1.3 NUMERICAL ANALYSIS ]: Numerical Linear Algebra— totic waveform evaluation (AWE) technique due to Huang, Pillage,
linear systemsF.2.1 JANALYSIS OF ALGORITHMS AND and Rohrer [14, 20], and Padipproximations through moment
PROBLEM COMPLEXITY ]: Numerical Algorithms and Prob- ~ matching [6]. For state-space models, Krylov subspace computa-
lems—computations on matrices tion techniques such as the Arnoldi and the Lanczos iterations have

proved to be very attractive; see for example @agproximation
via Lanczos iterations in [7, 10], and via Arnoldi iterations in [21].

General Terms Krylov methods have also been used to efficiently compute a ba-

Algorithms sis for the principal controllable and observable subspaces; see [9].
The reduced-order model then can be obtained by projecting the
Keywords state-space on these subspaces [12, 13]. Another model reduc-

) ) _ tion technique whose implementation for VLSI interconnect has
Model Reduction, Large Scale Systems, RLC interconnect, Passiv-peen recently studied is the balance-and-truncate method (see for

ity Preserving, Factorization example, [18, 11]). The underlying numerical problem with this
techniques is the solution of two large-scale Lyapunov equations.
1. INTRODUCTION Efficient implementation of the balance-and-truncate method is the

i P ; bjectof [17, 2].
As VLSI technology advances, integrated circuits are designed SY . .
with ever-decreasing sizes, and ever-increasing speeds of operation, The drawback with some (but not all) of the methods described

with a consequence that RLC interconnect effects have an increas-above is that the reduced-order models obtained through them do

ing impact on many critical design criteria [5]. Therefore, accurate notinherit the important property phssiviof the orlglna_l model.
It has been recognized that when orthogonal projections are em-
*This work was supported in part by NSF under contract number Ployed prior to model reduction, passivity is indeed inherited by the
CCR-9984553, SRC under contract number 99-TJ-689, and Purdugeduced-order model, and methods based on this observations have
Research Foundation. found favor with the VLSI community. Perhaps the best known
method in this class is PRIMA [19], which is based on orthogonal
projection of the state vector onto a lower dimensional subspace.
It has been recognized that in practice, PRIMA offers excellent
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PRIMA as a special case. The underlying idea is that in order to
preserve passivity, the order reduction must be performed not on the
original model, but on a “factor”, which is analogous to a square
root of the real part of the transfer function. This framework of-
fers a number of advantages: It provides a new interpretation for
PRIMA, and offers a qualitative explanation as to why PRIMA
performs remarkably well in practice. In addition, the framework
enables the derivation of new error bounds for PRIMA-like meth-
ods. Perhaps most important, the framework offers a systematic
approach to computing reduced-order models that better approxi-
mate the original system than PRIMA, while still preserving pas-
sivity. This improvement comes at the expense of additional com-
putational cost.

2. AFACTORIZATION-BASED MODEL RE-
DUCTION FRAMEWORK FOR PASSIVE

W

Another consequence of (2) is that we have a factorization of
H(s)+H(-s). Let

o

LT

5|t ol

where[L Dy] hasr linearly independent rows & N). Then, it is

readily verified that
H(s)+H(-s)=V(-5)TV(s),

hereV(s) = L(sl — A)~!B+ Dy. We will refer toV(s) as a gen-
eralized factor oH(s). Note that althoughi (s) is a scalar transfer

function, the generalized factdfi(s) is a column vector withr en-
tries.

The generalized fact®# suggests a model reduction scheme that
preserves passivity and stability for the system (1).

SYSTEMS

‘ Factorization-based model-reduction algorithm (FMR)

Given an RLC circuit comprising only passive linear elements,
we can extract the time-domain equations as follows:

Ex
y

wherex(t) € RN, u(t) € R andy(t) € R. HenceE ¢ RN*N, A ¢
RNVN B e RNX1 Cc e RN andD € R. We will consider only
single-input single-output systems in this paper; the extension of
the results presented herein to mutiput muti-output systems is
straightforward. We also assume in the sequelEhistinvertible;

this assumption is made purely for ease of exjms in [23] it was
shown that a general RLC system with noninvertiBlén (1) can

Ax+ Bu,
Cx+Du,

@)

be transformed to an equivalent state space realization where this

assumption holds. Sindeis assumed to be invertible, without loss
of generality, we assunte=1I.

As (1) describe a stable linear time-invariant system, all the eigen-
values ofA have negative real parts. Moreover, as system (1) is
passive, we must have

H(jw)+H*(jw) > 0 for all ,

whereH (s) = C(sl—A)~!Bis the transfer function. It turns out that
from system theory [1, 3], stability and passivity are equivalent to
the existence of a symmetric, positive-definite mafiguch that

PB—CT
—(D+D")

a [ ATP+PA

M= BTP-C

<0. @)

The matrixP can be interpreted as representing the energy stored
in the system: It is readily verified that as a consequence of (2), we
have

X(t)TPX(t))

T(AT1I_3—I— PA)X(t) + 2x(t) TPBUt)
0] [ ]+ 2o
u(t)y(t),

so that for everyl’ > 0, we have

<

X(T)TPX(T) < X(0)TPX(0) +2 /0 ! u(t)y(t)dt. 3)

For VLSI systemsu(t)y(t) has the interpretation of the instanta-

neous power input to the system, so that (3) means that the energy

stored in the system never exceeds tlitairenergy plus the energy
input to the system, i.e., it is passive.

Step 1.Find anyP satisfying (2).

Step 2.FormV(s), and find a stable reduced-order approxi-
mantV,.

Step 3. Form H, so that it is stable and satisfiéh(s) +
He(=8) = Vi (—9)TVi(s).

Note that H(s) is guaranteed to be stable and passive. Step

2 above, the reduced-order model can be obtained by any model
reduction technique. However, the balanced-truncation method ap-
pears to be the natural one for a number of reasons:

1. AlthoughV(s) is a single-input miti-output transfer func-
tion, its model reduction via balanced-truncation is particu-
larly simple. LetW; be the controllability Gramian of the
realization(A, B,L,Dy) of V, given by

AN +WeAT +BBT = 0.

The observability Gramian of the realizatiof,B, L, Dy) of

V is simply the matrixP. Then, withW, = XXT andP =

YYT being square root decompositions, let the singular value
decomposition (SVD) oXTY satisfy

XY =UusvT = U/

where the diagonal entries Bf contain the significant Han-
kel singular values o¥/(s). Then, it can be shown that a
realization ofH; derived from a balanced truncation\éfto
Vs is

(AT, TiB,CT;,D)
where
_1 _1
M=% WY, Tr=XUE,

We make the important observation that the mdtrandD,,
need not be explicitly computed in order to obtgin All we
need are square root decompositiongpandpP.

. When the balanced-truncation method is used, we have a
bound on the approximation error [25, 4]:

|[H = Hrll.

4
< 3(AN+1)25Y, 0i(43K0; + 25 0i), “)

whereg; are the Hankel singular values\éfs).



3. PRIMA IN THE CONTEXT OF FMR

In order to implement FMR, we first need to find one generalized
factor. This corresponds to finding somesatisfying (2). While
this is a convex feasibility problem [3], solving it for a large-scale
scenario as that encountered in VLSI CAD models is a daunting

algorithm, with the generalized factor correspondin@ts I, and
with the modified Smith method used to approximately compute
W.

While these comments are true in principle, computational is-
sues will lead to minor numerical differences. One issue is how

task. However, in the case when the system matrices in (1), are@n approximation to the principal eigenspace of the controllabil-

obtained via a modified nodal analysis (MNA), sucP & read-

ity Gramian of the realizatiofA, B, L,Dy) is computed: Practical

ily available. In such cases, the state space equations are as folimplementations of PRIMA obtain this approximation by comput-

lows [19]:
Ex = Ax+Bu,
y = Cx
where the state-space matrices have the following structure.
- | F O 5 AT
E_[O L]zo, B=C',
G N ©)
A_ b A4 AT
A= [ _NT 0o ],WlthA-|—A <0,

As shown in [23], we can always find an equivalent state space
realization(E,A,B,C,D), whereE is invertible. Further, without
loss of generality, we may take= I, and

[ AT+A  B-CT

BT-C —(D+DT)
The mostimportant observation with the inequality (6)
is that P= | satisfies inequality (2), that is, from the
form of the MNA equations, we haviof free” a gen-
eralized factor.

<o ©)

Once again, with

AT+A  B-CT
BT-C —(D+DT)

we have

LT
DJ

-

H(s) +H(=s)=V(-s)V(9),

whereV(s) has a state-space realizatioh, B,L,Dy). Note that

the observability Gramian of this realization is simply the identity
(this follows fromA+ AT + LTL = 0), so that the balanced trun-
cation method corresponds to simply projecting the state vector on
the principal eigenspace of the controllability Gramian, ahagt

onal projection. As the principal eigenspace of the controllability
Gramian coincides with the principal subspace of the matrix

C=[AB A2 ..], Q)

this method is, in principle, the same as PRIMA. In other words:

Jre ol

We can interpret PRIMA as an instance of our FMR
algorithm, when the generalized factor corresponding
to P=1is used.

ing a basis for the first few columns of the mat@ixin (7), while
the FMR algorithm withP = | corresponds to computing the prin-
cipal eigenspace by directly computing an approximation to the
Gramian.
In addition to a new interpretation for PRIMA, the above devel-
opment offers an error bound, in principle, for PRIMA:
1 N K N
IH = HrlL, < 5(4N+1)22,5,0i(4210i +22101),  (8)
whereg; are the square roots of the eigenvalues of the controllabil-
ity GramianW.

4. ANIMPROVEDIMPLEMENTATION OF
FMR

Motivated by the observation that the error bound in (4) depends
crucially on the matrixP that satisfies (2) (specifically, they de-
pend on the square roots of the eigenvalued/d®?, whereW; is
the controllability Gramian ofA, B)), with “smaller” values ofP
being better, we present a systematic procedure for obtaihing,
thereby improving on the performance of PRIMA. We assume that
the system is modeled by equations (5). Without loss of general-
ity, we have the same assumption as in last sectioa:| and the
inequality (6) holds.

We first explore the set d? that satisfy (2) for such systems.
Applying the Schur complementlemma [3], (2) is equivalentto

ATP+PA+(PB-CT)(D+D")"}(BTP-C)<0, (9)
if D is nonzero. In the case wheke= 0, (2) is equivalent to
ATP+PA<0, PB=C', (10)

which can be transformed to an equivalent Riccati indityuaf the
form

AQ+ QAT +QRQ+S<0

with some lower ordenY — 1) matricesA, RandS. For simplicity
of the presentation, we assuez 0. The procedure for obtaining
a smaller solutiorP for (10), or equivalently a smaller solutidp
for (11), for the cas® = 0 is the same as that for the cd3e~ 0.

Note thatP = | is one feasible solution to (9); this is the “natural”
solution obtained from the form of the MNA equations, and the one
corresponding to PRIMA, when it is interpreted in the context of
our FMR algorithm.

We next turn to the problem of finding the “smalleBt’5atisfy-
ing (9). It turns out that there is indeed such a minimal element [24,
15]: There exist®nin > 0 such that any satisfying (9) also satis-

(11)

Indeed, we can demonstrate further connections. Suppose thdiesP > Pyin. This matrixPni, satisfies (9) with equality, i.e.,

Smith method with shifp < 0 is used to calculate the Gramiég
approximately [22, 2]:

W = S 0ALBRBR (AT,

whereA, = (pl+A)~Y(pl — A), B, = /=2p(pl + A)~1B. The
first k eigenvectors of\; in V span the same column space as
Krylov(Ap,Bp,k). Thus, the PRIMA method applied around the
expansion poinp can be interpreted as a special case of the FMR

AT Prmin + PminA

+(PninB—C1)(D+DT)~X(BTPyn—C) =0, 12

It also turns out that the quantiy’ Pmin + PminA is rank one, so
that the corresponding generalized fadfgy, (s) is scalar. This is
referred to as thepectral factoiin the system theory literature [8].
Thus, computindPin exactly requires the solution of the Riccati
equation (12). The corresponding computation is prohibitive even



for moderate-sized problems. Indeed, for moderate-sized prob-can be adapted to compu®gi,. However, each iteration requires
lems, the preferred solution method for solving equation (9) is it- the solution of one Lyapunov equation. As we will demonstrate
erative, with each iteration requiring the exact solution of a Lya- through numerical examples, it suffices to run one iteration to ob-
punov equation. Therefore, computiRg;, directly is impractical tain significantimprovement over PRIMA.

for VLSI systems. .
In summary, the cage= | correspondsto PRIMA, and the opti-  Computational cost over PRIMA

mal Pmin, While it exists, is prohibitively expensive to compute. We  \we now briefly discuss the amount of atitthal computation re-
therefore propose a scheme that finds a “sub-optifatne that quired by the improved FMR scheme over PRIMA. As PRIMA in
satisfies (9), and also has the property fgh < P <1, thereby  principle corresponds to usifRy= I, the additional computational

guaranteeing a better error bound than with PRIMA. costs comes mainly from the evaluation 6fP) which involves
With P denoting the set d® > 0, we define a functior : P — R some matrix multiplications during the search of a smateThis
by is approximately &2,
f(P) = AmadATP+PA
+(PB-CT)(D+D")~1(BTP-C)), 5. NUMERICAL RESULTS

We present two numerical examples that are representative of the
performance of the factorization-based passivity-preserving model
reduction framework presented in this paper.

whereAmax(-) denotes the maximum eigenvalue of a symmetric
matrix. Thus,P > 0 is a solution of (9) if and only iff (P) < 0.

It is easily established thdtis a convex function, that is, for all
Pi,P, € P and for allu € [0, 1], Example 1

F(UPL+ (- p)P2) < pf(P) + (- W) F(P2). (13) We consider a randomly generated passive system with state space
realization(A,B,C), whereA+ AT < 0, andB = CT. There are

50 state components. We apply the passivity preserving model-
reduction algorithm (FMR) to this system to obtain reduced sys-
tems of order 13 using three different symmetric, positive-definite
matrices: ()P =1, (i) 0 < Ppin < P < 1, and (i) P = Pyin. We
computeP in (i) using one step of the technique outlined in Sec-
tion 4. Pyin is obtained by solving the Riccati equation (12). With
these three matrices, we form three different generalized factors for
the original system, and apply the approximate balanced truncation
method on them to obtain three different reduced systems. For pur-
f(P) poses of comparison, we also apply the PRIMA model-reduction
algorithm from [19] on the original system. Figures 2, 3 and 4
show the relative errors and the frequency responses of the four
reduced systems. From these plots, it is evident that the reduced
order system from FMR witlP = P, gives us the most accu-
rate approximation. The reduced order system from FMR with
0 < Pyin < P < | approximates the original system better the one

Note that from the definition of, we have thatf (1) < 0, and
that f (Pnin) = 0. Suppose that we can find some (P, < | with
f(P1) > 0. As shown in Figure reffig:algfig, by convexity of the
function f, and the fact thaf(l) < 0, we can find som = pP +
(1— ! betweerPy andl, suchthatf (P) < pf(Pp)+(1—-p)f(l)=
0. SuchP is guaranteed to be a solution to (9), becafig®) < 0;
and yield a better error bound than PRIMA, becaBse between
Py andl, henceP < I.

with P = 1. All the reduced systems from FMR have lower peak
f(P,) >0 errors than the reduced system from PRIMA.
3 N Relative error of the reduced systems
I 0.8 T T
Pl | P 07F T il
osr FMR with P=I 4 )
——  FEMR with 0<P<I ¥l
== FMR with P = Prin P
f(Py) <O 05F 1+ — % PRIMA I 1
Figure 1: A systematic procedure for obtainingP with 0 < P < | ® P
and f(P) < 0. 03t L A
* ! N %Zg?‘e
It now remains to findPy such that 0< Py < | with f(Py) > 0. il ; Ltk 1
One possible choice B, = 0; this follows from (9). There are ol * o |
some other choices fd?, for example, také; as the solution of 7
the Lyapunov equation , IS -
107 10" 10° 10 10° 10°
(A— B(D + DT)_lC)TP]_ + Pl(A_ B(D + DT)_lC) frequency

T T\—1~ _
+C(D+D7)7C=0. Figure 2: Relative error of the reduced systems.
It is easily shown that & Py < | andf(Py) > 0, as desired.

We can run several iterations of the above procedure to obtain  The flop counts of these four model reduction methods are sum-
better (i.e., “smaller”) and bett&. Indeed, this iterative procedure  marized in Table 1. We can see that FMR whthk= | uses roughly



016 Magnitude D‘Hhefrequencyresp?nses cftheoriginal‘syslem and the red\‘iced systems reduced Systems W|th those Of the reduced SyStem generated by
# PRIMA. The performance of the three FMR reduced systems fol-
014 h . lows the same trends exhibited in the preceding example. More-
over, the FMR reduced systems have lower peak errors than the
] PRIMA reduced system. The flop counts of these four model re-

duction methods are summarized in Table 2.

0121

Relative errors of the reduced systems

g
Eo08f | 10 T T :
£

0.06 - -

0.041 +——+ original system 4

FMR with P=| - af
——  FMRwith 0<P<I w0 4 1
002l | ———  FMRwith P=Pin i X
*—-—% PRIMA 5 P
5} *
g *
o s s s s 2
107 10" 10° 10" 10* 10° . J
frequency #
10+ j |
FMR with P=|
Figure 3: Magnitude of the frequency responses of the original N TTT EMRwith0<Pel
- - with P=Rnin
system and the reduced systems. J = — % PRIMA
* * *
e 1
Phase of the frequency responses of the original system and the reduced systems f* * #*
0.4 T T . T T 1078 ! L L L L
# 10° 10" 10° 10° 10 10" 10*
0.2

\
* 1 frequency
|

Figure 5: Relative error of the reduced systems.

Frequency response of the original system and the reduced systems
T T T T

10 T

phase
s
>
T

B P original system . 3
FMR with P=| ¥ %
-1 --- FMR with 0<P<I . 2
FMR with P=P min E
_12kF *—-—-%  PRIMA %
*
-14r 107‘4 6 ‘7 ‘E ‘9 ‘m ‘11 12
10 10 10 10 10 10 10
frequency
-16' - - - - ‘63
10 10 10 10 10 10 0 :
frequency
+——+  original
. L. -0.51 FMR with P=| q
Figure 4: Phase of the frequency responses of the original sys- Y vy
tem and the reduced systems. £ PRIMA
L5 ek ket e
the same amount of flops as PRIMA. As expected, FMR With 25 e - e e P s
Prin costs the most. FMR with @ Pyin < P < | provides a good frequency
compromise; it improves the performance with some additional o
computational cost. Figure 6: Frequency responses of the original system and the

reduced systems.
Example 2

The second example is from [16]. This corresponds to an on-chip
planar square spiral inductor suspended over a copper plane. Theg. CONCLUSIONS

original system has 500 states. As before, we apply FMR on the We have presented a factorization-based framework for passivity-

system with the different solutioridto (2) (as defined in the first i del reduction that includes PRIMA ol
example) to obtain three reduced systems, order 5. Figures 5 and reserving modei reduction thatincludes | as aspecial case.
e have shown that this framework provides a new interpretation

compare the relative errors and the frequency responses of the thre or PRIMA, as well as enabling the derivation of an error bound for
PRIMA in principle. In addition, we have a systematic method for
improving the performance of PRIMA-like methods.
Table 1: Flop counts comparison.

FMRon | FMRon FMR on PRIMA
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