
Object Oriented Hardware Synthesis and Verification

T. Kuhn, T. Oppold,
C. Schulz-Key,
M. Winterholer,
W. Rosenstiel

Univ. of Tuebingen, Sand 13
72076 Tuebingen, Germany

oase,rosen@informatik.
uni-tuebingen.de

M. Edwards
Cisco Systems, Inc.
7025 Kit Creek Road

RTP, NC 27709

jme@cisco.com

Y. Kashai
Verisity Design, Inc.
2041 Landings Drive

Mountain View, CA 94043

yaron@verisity.com

ABSTRACT
The synthesis of hardware from object oriented specifications is
presented. Our approach utilizes the e language that has been
proven to be highly efficient for the verification of hardware. The
e language is similar to Java and provides additional constructs for
specification and verification of hardware. We describe an auto-
mated design flow for the synthesis of object oriented descriptions
that tightly integrates simulation based verification. The usability
of our approach is demonstrated by real-world examples.

Keywords
Object oriented hardware modeling, verification, high-level synthe-
sis.

1. INTRODUCTION
There is a growing gap between the number of gates that can

be implemented on a single chip and the number of gates that can
be designed by one person in one day. Additionally, short product
life cycles, time to market, and changing standards require shorter
design times. Therefore, new design methodologies must be ap-
plied. By specifying on a higher level of abstraction the produc-
tivity can be increased enormously. Commercial tools for synthe-
sizing algorithmic descriptions are available already and gain more
and more acceptance. Newer approaches raise the abstraction level
even more by synthesizing object oriented descriptions. The ob-
ject oriented paradigm can be applied in order to cope with the
complexity of system-level designs. This paradigm also simplifies
re-use of IP.

Since hardware description languages like VHDL and Verilog
are more suitable for RT level design than for higher levels of ab-
straction, software languages like C/C++ or Java are recently de-
ployed for synthesis. These languages are already widely used for
specifications that can be executed. Furthermore, hardware/soft-
ware co-design can be simplified by using a single language for
both domains.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

Verification typically consumes over half of the design effort.
The languages currently used for synthesis provide only insuffi-
cient support for verification. Therefore languages like Verisity’s
e (www.verisity.com) or Synopsys’ Vera (www. open-vera.com)
hardware verification language are deployed within a dedicated en-
vironment to improve the verification task. The e language is sim-
ilar to Java enhanced by various verification and hardware related
constructs. e provides all basic object oriented constructs, sup-
ports multi-threading, and it can be executed in the SpecmanTM en-
vironment. Therefore it is also well suited for specification.

Synthesis on the system-level requires support for multi-threaded
descriptions. Due to the complexity of such designs, we want to
support verification appropriately in our approach. The powerful
verification features of e and its capability for object oriented spec-
ification, encouraged us to investigate the applicability of the e
language for synthesis. By making the synthesis of e descriptions
possible, we allow to use one single language for specification, ver-
ification, and synthesis.

The remainder of the paper is organized as follows: In Section
2, we will present an overview of related work. Section 3 describes
object oriented synthesis and details of the synthesis from e de-
scriptions. In Section 4, we present verification within the Specman
environment and the integration of this environment in our design
flow. Section 5 presents examples and discusses the results. Sec-
tion 6 concludes this paper and gives an outlook on further work.

2. PREVIOUS WORK
In the past, various approaches have been made to specify hard-

ware and hardware/software systems on the basis of objects. Ob-
ject oriented VHDL [1, 2] enhances VHDL with object oriented
concepts. SystemC [3] is based on C++ class libraries and is in-
tended for design at the system/algorithmic and register-transfer
levels. Recently, successful efforts have been made to specify [4,
5, 6] and to synthesize [7, 8] from Java.

For validation, simulation and formal verification have a long
tradition and various commercial tools are provided by major EDA
companies, e. g., Cadence, Mentor Graphics, and Synopsys.

3. OBJECT ORIENTED SYNTHESIS
The object oriented design paradigm has already gained broad

acceptance in software engineering for the design of large systems.
Object oriented synthesis allows hardware modeling on an abstrac-
tion level above the behavioral level. Designers can express their
ideas in a very natural way by thinking of classes rather than of
data and procedures. Encapsulating things that belong together and

189

having data and behavior within one entity also simplifies re-use.
We developed an object oriented analysis system (OOAS) that

allows to synthesize object oriented hardware descriptions. Our
OOAS can be used to read in descriptions written in different lan-
guages. Currently we support Java, SystemC, and e as input lan-
guages. In this paper we describe the synthesis from e.

There is already a variety of good synthesis tools on the market.
These tools provide an automated design flow for RT and algorith-
mic descriptions, but they do not support object oriented concepts
like object references, inheritance, or polymorphism. We utilize
the algorithms deployed by these tools for the synthesis of object
oriented descriptions by transforming such descriptions into equiv-
alent descriptions on a lower level of abstraction that can be han-
dled by commercial tools. The formats that we generate for those
descriptions are VHDL, Verilog, and SystemC (figure 1). For the
sake of simplicity this paper refers only to the output of Verilog.

3.1 Synthesis from e
Using one single object oriented language for specification, ver-

ification, and synthesis simplifies the design process. There is a va-
riety of languages that could be used as such an unified language,
each of them having advantages and disadvantages. Most of the
languages do not support verification adequately. Verification of
multi-threaded descriptions is mandatory for hardware design and
particularly challenging. The e language is therefore especially
suited as an unified language for hardware design. Today e is not
only used for verifying hardware descriptions written in VHDL or
Verilog, it is already used for writing a golden model of the hard-
ware in an object oriented high-level language. This model is then
manually translated into a synthesizable HDL description. The ad-
vantage of e over software languages like C/C++ or Java is that
hardware related constructs like bit accurate data types, clocks, etc.
are part of the language.

For the transformation from an object oriented description in e
into an equivalent description in Verilog, the meta data that de-
scribe the object oriented structure is generated. The number and
structure of objects have to be static in the realization in hardware.
This should be considered in the description and is checked by pre-
allocation during the analysis. Objects have to be allocated for vari-
ables and parameters of methods which reference sets of objects.
The identification of such sets of static references is done during an
alias analysis, which is part of the OOAS.

In e concurrent threads of control are described by so called
Time Consuming Methods (TCMs). TCMs are similar to Threads
in Java. TCMs are triggered by events. Events can be defined by
temporal expressions that are part of the e language. TCMs have to
be handled separately from the regular methods (non-TCMs) dur-

Object Oriented

Procedural
VerilogVHDL SystemC

Procedural

High Level and RTL Synthesis

e SystemCJava

OOAS

Object Oriented

Figure 1: Languages supported by OOAS

ing the transformation process. Conflicts resulting from concurrent
access to variables by different TCMs must be detected by a con-
currency analysis and then be resolved. We now describe the con-
trol data flow analysis that is performed for the sequential case and
the concurrency analysis that is performed for the parallel case.

3.2 Control Data Flow Analysis
The control data flow analysis applies techniques known from

software compiler design [9] to the synthesis of hardware.
After the lexical and semantical analysis done by the scanner and

parser for e, a static control and data flow analysis is performed on
the set of syntax trees for each e object. The result of the analysis
is a control flow graph (CFG) where the data flow information is
stored in a scope table within each node of the graph. Because of
the combination of data and control flow information, no separate
data flow graph has to be generated and the analysis traverses the
syntax tree only once. The CFG has two different types of nodes.
The control flow nodes divide the CFG in multiple sub-trees if a
node has multiple children. This is the case for nodes representing,
e.g., while loops or if statements. The second type of nodes in the
CFG are the data flow nodes, which do not change the control flow,
like arithmetic operations or assignments.

The main problem of the transformation is the usage of refer-
ences. Deciding which object is accessed when a method is called
on a variable can only be done at runtime. Objects may have sev-
eral references, or aliases at the same time, so it is hard to tell which
statements affect which object.

The analysis determines a set of possible objects for each vari-
able within the scope of a statement. Each node of the CFG has
one scope table, where all variables in the scope of the node are
stored together with a set of objects that may be referenced by this
variable. The scope tables are built together with the whole CFG.
When a new node is created, the scope table of the parent node is
cloned and the set of references (‘reference set’) of each variable
changed by the statement is updated.

A reference set Rs(a) is the maximal set of all references on
objects, which can be hidden by the alias a after the execution of
statement s under consideration of the type of the variable and the
preceding control flow. All reference sets Rs(a) of variables ac-
cessible in a CFG node n, build the scope table S(n).

Figure 2 shows an example of a hardware component written in
e. Classes are described using the keyword struct. A struct de-
clares data fields and methods. Inheritance is supported by the key-
word like. The init method is similar to the constructor in Java. In-
stances of a struct are made by using the keyword new. A detailed
description of the e language can be found in [10]. The constructs
that we use for the specification of hardware components are de-
scribed in [11].

The analysis for the TCM runHWO of the example code results
in the CFG shown in figure 3. At node 5 in the CFG, the scope
table includes three reference sets R5(x), R5(y) and R5(z). Each
reference set has been initialized in the init method, where three
objects of the struct S have been instantiated. The objects S 1, S 2
and S 3 are labeled with subsequent numbers.

For each type of statement, a different algorithm is implemented
to update the scope table of a node in the CFG. The algorithm for
loop statements, used for the determination of the scope table for
node number 7 in figure 3 is described in algorithm 1.

Table 1 shows the evolution of the reference sets for each iter-
ation of the algorithm. The body of the while loop has to be re-
analyzed four times to get the final reference sets for the while loop
node (without determining the exact number of iterations during
execution).

190

struct S {
foo() is {

 ...
 };
};

struct Test like HWO {
 x : S; y : S; z : S;

init() is {
 x = new S;
 y = new S;
 z = new S;
 };

runHWO() @clk is {
var i : uint;
i = 0;

 while (i < 10)
{

 z = x;
 x = y;

i = i + 1;
 };

z.foo();
 };
};

Figure 2: Struct Test and struct S

14
S_2_foo_2()

5
Test_1_run

6
Test_1_run_1_i=0

7
While

8
Test_1_run_1_i<10

9
Test_1_z = Test_1_x

10
Test_1_x = Test_1_y

11
Test_1_run_1_i = Test_1_run_1_i+1

12
Methodcall

13
S_1_foo_1()

15
S_3_foo_3()

Figure 3: CFG for the TCM runHWO

The analysis terminates because there are no changes in the ref-
erence sets of step three and four. The merged reference sets in the
last column of table 1 are the resulting sets contained in the scope
table S(7) of node 7.

�

S(p)copy of
S(p)copy of

�

Input:

Output: Updated scope table

begin
S(n)
S(tmp)

CFG node
where

n, statement s of n
p is the predecessor node of n

S(n)

repeat
S(n)

�

S(n)
S(tmp) analyze the block statements of the loop

�

until S(n) = S(tmp)
end

S(tmp)

S(p), scope table

Algorithm 1: Analysis of loops

Table 1: Reference sets for the while loop
1. 2. 3. 4. result

R7(x) fS 1g fS 2g fS 2g fS 2g fS 1, S 2g
R7(y) fS 2g fS 2g fS 2g fS 2g fS 2g
R7(z) fS 3g fS 1g fS 2g fS 2g fS 3, S 1, S 2g

The scope table S(7) is the input for the analysis of node 12.
The method call z.foo() uses variable z where R12(z) contains the
objects S 3, S 1 and S 2. On which object the method foo() will
be called depends on how often the while loop has been iterated at
runtime. The analysis splits the CFG into three sub-trees, one for
each object that may be referenced by the variable z.

For each method call, a new node in the CFG is created. The
body of the method builds a sub-tree of the node. When the method
is a TCM, the new CFG node builds an independent CFG with the
method call node as root node. A copy of the reference sets of the
actual scope is the initial scope of the new CFG. The analysis al-
ways terminates because of the constant number of objects in the
whole system. The number of objects in a reference set can not
exceed the maximum number of objects instantiated in the whole
system. The constant number of objects instantiated in the e pro-
gram is guaranteed since the instantiation of objects in loops is only
allowed if the number of iterations can be determined at compile
time. The instantiation of objects is not allowed within cyclic or
recursive method calls.

When the analysis terminates, the CFG is used as input for the
concurrency analysis, which is described in the next section.

3.3 Concurrency Analysis
During the concurrency analysis, the reference sets and the CFGs

of the data and control flow analysis are used for creating a set of
variables which are accessed by different TCMs. A variable can be
accessed by a TCM in two different ways:

� write access: The variable is on the left hand side of an as-
signment and becomes an alias for another object.

� read access: The variable is on the right hand side of an
assignment or is passed to another method as parameter or a
method is called on the variable.

If a node in the CFG accesses a variable the following cases have
to be handled by the analysis:

1. There is no other TCM which reads or writes the variable.
The variable is a normal variable that does not require any
special treatment.

2. At most one TCM has write access to the variable and multi-
ple TCMs have read access. This variable has to be declared
in a global scope to enable multiple TCMs to access the ref-
erenced object.

3. More than one TCM writes to the variable. This case is re-
ported to the user of the system. An arbiter to resolve the
access must then be inserted. This arbiter is an adapted vari-
ation of the arbiter described in [12].

For the variables which are accessed by multiple TCMs (case 2)
the CFG is extended by a set of global variables called global. To
build up this set, the CFG is traversed to build a set of variables
read by the TCM t called readt and a set of variables written by t,
called writet. When a read access occurs in a node of the TCM t,

191

the variable v is added to the set readt. If v is in the set writem or
readm , where m is an already analyzed TCM, v becomes element
of global. In case of a write access, v is added to the set writet. If v
is already element of the set writem an error state is reached. When
v is member of readm v becomes element of the set global. The
actual TCMs are stored on a stack because a TCM can start another
TCM. The actual TCM where a read or write access is executed, is
always the top element of a stack called tcmStack. The described
method that creates the global set of shared variables is shown in
algorithm 2.

Input: node {root node of the CFG}
Output: global {set of global references}
begin
 tcmStack ← empty {stack with actual analyzed
TCMs}
 tcmSet ← empty {set of already analyzed TCMs}
 repeat
 switch node
 case start of TCM t
 tcmSet ← tcmSet ∪ tcmStack.top
 tcmStack.push(t)
 case end of TCM t
 tcmSet ← tcmSet ∪ tcmStack.pop
 case statement reads variable v
 TCM t ← tcmStack.top
 readt ← readt ∪ v
 for all TCM m in tcmSet do
 if v ∈ readm or writem then
 global ← global ∪ v
 end if
 end for
 case statement writes variable v
 TCM t ← tcmStack.top
 writet ← writet ∪ v
 for all TCM m in tcmSet do
 if v ∈ readm then
 global ← global ∪ v
 end if
 if v ∈ writem then
 report write access to the user
 end if
 end for
 end switch
 node ← node.next
 until node is empty
end

Algorithm 2: Concurrency analysis

After the complete concurrency analysis, the set global is added
to the root node of the CFG. The CFG is traversed by the Ver-
ilog code generator that uses the scope information to generate the
appropriate Verilog constructs. The TCMs that are used in e to
specify multiple threads of control are transformed into Verilog al-
ways blocks. Each always block is initially idle and starts its actual
execution at the same time as the corresponding TCM is started in
the e specification. In order to obtain this behavior and to ensure
a correct reset behavior of the circuit, a skeleton is built implic-
itly around the actual description. Within that skeleton, the Verilog
statements are generated according to the information in the CFG.

4. VERIFICATION WITHe AND SPECMAN
Closely related to e is the verification environment Specman,

both developed by Verisity Design. Simulation based verification
requires the introduction of stimuli to the Device Under Test (DUT)
being simulated, as well as the collection of DUT responses for

HDL Simulator

DUT
RTL Model

Specman Elite™

Generation
Engine

Checking

Engine
Coverage

Engine

‘e’ Specification
Input model, Checking rules,
Functional coverage points

Figure 4: A typical e driven testbench

the purpose of checking and coverage analysis (figure 4). Specman
and the e language provide powerful support for these verifica-
tion tasks. The supported verification methodology can be applied
to DUTs implemented in e, those implemented in HDLs such as
Verilog and VHDL as well as numerous other modeling languages.

We use this verification environment in three different phases of
the design process depicted in figure 5.

First, the design flow starts with the specification of the hardware
module in e. This system specification may contain algorithmic
descriptions as well as descriptions at the register-transfer level.
The correctness of the specification can be verified by executing
the e code in the Specman environment.

Second, existing Verilog IP can be included for verification by
attaching a simulator. The results of this first step in the verifica-
tion process can be used to refine the test bench, also written in e,
around the hardware module.

Third, the e specification of the hardware module is processed
by our object oriented analysis system. Depending on the descrip-
tion style used in the specification (algorithmic or register-transfer
level) the generated code is either behavioral Verilog, suitable for
high-level synthesis with Synopsys Behavioral CompilerTM/Design
CompilerTM, or a Verilog description at the register-transfer level
that can be synthesized by Design Compiler. Additionally, the
OOAS generates Verilog code that comprises several enhancements
for simulation. The generated Verilog can be verified by attaching
a simulator the same way as for the simulation of Verilog IP. The
same environment is used for the verification of the results of the
commercial tools.

All steps of the verification task are supported by Specman’s so-
phisticated verification methodologies and the test bench can be
re-used easily.

4.1 Input Modeling and Generation
In e, input stimuli are modeled as a hierarchy of objects with

inter relating constraints. By defining object types the user spec-
ifies the universe of data elements or an alphabet for an input se-
quence. Constraints can both remove parts of the alphabet and re-
strict the composition of members of the alphabet into sequences.
Constraints may depend on the state of the system.

192

Coverage
Analysis

Verification

Verilog IP

Specification

Compiler
TM

Design

Synthesis

OOAS

Specman
 TM

Behavioral
TMCompiler

Mapping
Technology

Algorithmic/RT Level

Specification in e

in e
Testbench

FPGA ASIC

Verilog other

HDL Simulator
 TM TM

ModelSim , VCS , etc.

VHDL
SystemC

Figure 5: Design flow

In contrast to deterministic test inputs, the e input model nor-
mally contains degrees of freedom. The Specman test generation
engine uncovers these degrees of freedom and creates input se-
quences using a controlled pseudo-random process.

Constraints are conjunctive by nature, hence one can direct the
generated input sequence by addition of constraints. These addi-
tions can be made per feature to be tested, or as a way to avoid
areas of known defects and work in progress.

4.2 Driving and Checking
A directed random input generation methodology requires auto-

mated checking, since the input model does not predict a unique
response. The e language offers three major features in support
of driving and checking: Events, TCMs, and a complete temporal
language. The temporal language uses events and state formulae
as atomic entities. Temporal and logical operators are used for ex-
pressing protocol rules the DUT must adhere to. Specman features
a temporal engine that interprets temporal expressions as runtime
checkers.

4.3 Functional Coverage
The generation process ensures non-zero probability for any le-

gal input sequence. However, given the huge input space and state
space of modern devices, a practical approach would control the
distribution of input sequences in view of the accumulated cover-
age.

The e language provides a way to define functional coverage
metrics. Functional coverage points are user defined combinations
of states, or sequences of states that have some architectural or
micro-architectural significance. Because of its sequential nature,
functional coverage is a more rigorous metric than code coverage.

The accumulated functional coverage and its breakdown to ar-
chitectural and micro-architectural features provide status informa-

tion about the verification effort. This information is used for steer-
ing the process and to eventually certify that the DUT has a high
probability of being functional.

4.4 Hardware/software Co-Verification
A key aspect of verifying SoC designs, which typically have one

or more processors on board, is verifying the embedded software
together with the hardware. This will flush out integration errors,
beside hardware only and software only defects. In order to apply
the same methodology to the integrated system it is crucial that
generation, coverage, and checking are applied to the software part,
as well as to the hardware part. This will facilitate tests, checks, and
coverage metrics that capture hardware and software dependencies.

This requirement is achieved by the combination of Specman
with a hardware/software co-verification tool, which is running the
software components. Such deep integration exists for the Mentor
Graphics SeamlessTM tool. This integration provides Specman with
the capability of reading and writing to any variable and memory
location. This is the support required for the application of gen-
erated stimuli to the software parts, checking based in part on the
state of the software and collecting functional coverage while tak-
ing into account the state of the software along with the hardware
components.

5. EXAMPLES AND RESULTS
We used our object oriented analysis system for synthesizing

several examples. One example is a part of an ATM header trans-
lator (AHT) another one is the Rana interface. The Rana interface
represents a typical ‘receive’ direction, FIFO buffering scheme be-
tween three proprietary data communication interfaces. The pri-
mary incoming data interface is being buffered into two distinct
FIFOs that are then being transmitted to two identical transmit in-
terfaces. Thus the data stream is being de-multiplexed from the
incoming data stream into two separate data streams. On all three
interfaces handshake flow control is implemented. The Rana in-
terface was developed by Cisco Systems [13] and is presently suc-
cessfully in production.

The results of the synthesis are depicted in table 2. For each mod-
ule, the number of non-comment lines of code (ncloc) of both the
e specification and the resulting Verilog code, and the time needed
by the OOAS for the translation from e to Verilog are given. The
execution time of the OOAS, as well as the time spent by Behav-
ioral Compiler and Design Compiler for the synthesis (BC/DC),
were measured on a 360MHz Sun Ultra-5 with 256 MBytes RAM.
The clock rate for which the module was synthesized and the area
of the resulting circuit are also given in the table. The area is com-
posed of the cell area and the net interconnect area. It is estimated
by Design Compiler and given in units of the used library. We used
the lca300k library, where one unit is the area of one basic cell of
the LCA.

The AHT module contains almost no object oriented constructs
and therefore the translation of the e specification into Verilog re-
sults in a description of nearly equal size. In contrast to that, there
is a great number of objects involved in the Rana module. One
of these objects is a FIFO buffer used to store other objects. We
have synthesized the Rana module with three different sizes for the
FIFO buffer. The depth of the FIFO (i.e., the number of objects that
can be stored in the buffer) is appended to the module names in ta-
ble 2. While the e specifications differ only in the declaration of
the FIFO depth and therefore have the same size, the resulting Ver-
ilog code is growing considerably. The reason for that is, that poly-
morphic method calls have to be resolved to enable the transfor-
mation from an object oriented specification into procedural code.

193

Table 2: Results of the synthesized examples
Module ncloc ncloc OO BC/ Clk Area

e Verilog AS DC

AHT 134 132 11 92 40 1426
sec sec MHz

Rana3 945 1535 48 32 20 17239
sec min MHz

Rana8 945 1920 55 1h 20 24707
sec 24m MHz

Rana16 945 2536 68 5h 20 36707
sec 36m MHz

The control data flow analysis therefore determines statically for
each method call on an object all possible references the variable
can hold during run-time and a case statement with branches for
all possible values is inserted in the Verilog code. Since the num-
ber of possible objects grows with the depth of the FIFO, the size
of the generated Verilog code also increases with the FIFO depth.
This effect is even more drastic as we use the technique of inlining
method calls in the calling method.

6. CONCLUSIONS AND FUTURE WORK
This paper presented results from the DFG project OASE and a

cooperation between Cisco Systems, Verisity Design, and the Com-
puter Engineering Department from the University of Tuebingen.
Our approach provides an automated design flow for synthesis of
object oriented specifications. Verification is tightly integrated in
the design flow and all the design tasks can be carried out using
the object oriented language e. This contribution shows that syn-
thesis from high-level models written in e is practical and that the
presented analysis system is capable of dealing with real-world ap-
plications.

At present, no extensions have been made to the e language in
order to distinguish hardware and software objects or to define the
interfaces between them. Instead inheritance was used to augment
object semantics as needed. We consider adding proper constructs
to the e language to simplify the specification task for the designer.

Further research will be done in the area of optimization of mul-
tiple concurrent tasks within the same hardware object and hierar-
chies of hardware objects with no formal interface between them.

So far we have deployed our synthesis system to improve and
speed up the implementation flow. When applied to the verifica-
tion flow, some components of the test environment may be subject
to synthesis which may facilitate test bench acceleration and post
silicon validation.

We also investigate the application of object oriented concepts
for hardware/software co-design partitioning[14].

7. ACKNOWLEDGMENTS
This work is funded by CISCO and DFG project No. RO 1030/8-

1.

8. REFERENCES
[1] S. Swamy, A. Molin, and B. Covnot. OO-VHDL:

Object-oriented extensions to VHDL. IEEE Computer, 1995.
[2] M. Radetzki, W. Putzke-Röming, and W. Nebel. Objective

VHDL: The object-oriented approach to hardware reuse. In
Advances in Information Technologies: The Business
Challenge, 1997.

[3] www.systemc.org.

[4] R. Helaihel and K. Olukotun. Java as a specification
language for hardware-software systems. In IEEE/ACM
International Conference on Computer-Aided Design, 1997.

[5] J. S. Young, J. MacDonald, M. Shilman, P. H. Tabbara, and
A. R. Newton. Design and specification of embedded
systems in Java using successive formal refinement. In
Proceedings of the Design Automation Conference
(DAC’1998), 1998.

[6] T. Kuhn, W. Rosenstiel, and U. Kebschull. Description and
simulation of hardware/software systems with Java. In
Proceedings of the Design Automation Conference
(DAC’1999), 1999.

[7] LavaLogic. Forge-J: Fast Java to Verilog-HDL Compiler.
http://www.lavalogic.com, 1999.

[8] T. Kuhn and W. Rosenstiel. Java based object oriented
hardware specification and synthesis. In Proceedings of
ASP-DAC, 2000.

[9] R. Wilson and M. Lam. Efficient context sensitive pointer
analysis for C programs. In Proceedings of the ACM
SIGPLAN Conference on Programming Languages Design
and Implementation, 1995.

[10] Y. Hollander, M. Morley, and A. Noy. The e language: A
fresh separation of concerns. In Proceedings of TOOLS-38,
2001.

[11] T. Kuhn, T. Oppold, M. Winterholer, W. Rosenstiel,
M. Edwards, and Y. Kashai. A framework for object oriented
hardware specification, verification, and synthesis. In
Proceedings of the Design Automation Conference
(DAC’2001), 2001.

[12] J. Madsen and J.P. Brage. Modeling shared variables in
VHDL. Transactions on the ACM, 1994.

[13] www.cisco.com.
[14] C. Schulz-Key, T. Kuhn, and W. Rosenstiel. A framework for

system-level partitioning of object-oriented specifications. In
Proceedings of the tenth workshop on Synthesis and System
Integration of Mixed Technologies (SASIMI’2001), Nara,
Japan, 2001.

194

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

