Object Oriented Hardware Synthesis and Verification

T. Kuhn, T. Oppold,
C. Schulz-Key,
M. Winterholer,
W. Rosenstiel
Univ. of Tuebingen, Sand 13
72076 Tuebingen, Germany

oase,rosen @informatik.
uni-tuebingen.de

ABSTRACT

The synthesis of hardware from object oriented specifications is
presented. Our approach utilizes the € language that has been
proven to be highly efficient for the verification of hardware. The
€ language is similar to Javaand provides additional constructs for
specification and verification of hardware. We describe an auto-
mated design flow for the synthesis of object oriented descriptions
that tightly integrates simulation based verification. The usability
of our approach is demonstrated by real-world examples.

Keywords
Object oriented hardware modeling, verification, high-level synthe-

sis.

1. INTRODUCTION

There is a growing gap between the number of gates that can
be implemented on a single chip and the number of gates that can
be designed by one person in one day. Additionally, short product
life cycles, time to market, and changing standards require shorter
design times. Therefore, new design methodologies must be ap-
plied. By specifying on a higher level of abstraction the produc-
tivity can be increased enormously. Commercial tools for synthe-
sizing algorithmic descriptions are available already and gain more
and more acceptance. Newer approaches raise the abstraction level
even more by synthesizing object oriented descriptions. The ob-
ject oriented paradigm can be applied in order to cope with the
complexity of system-level designs. This paradigm also simplifies
re-use of IP.

Since hardware description languages like VHDL and Verilog
are more suitable for RT level design than for higher levels of ab-
straction, software languages like C/C++ or Java are recently de-
ployed for synthesis. These languages are aready widely used for
specifications that can be executed. Furthermore, hardware/soft-
ware co-design can be simplified by using a single language for
both domains.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

1SSS 01, October 1-3, 2001, Montréal, Québec, Canada.

Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

M. Edwards
Cisco Systems, Inc.

7025 Kit Creek Road
RTP, NC 27709

jme@cisco.com

189

Y. Kashai
Verisity Design, Inc.
2041 Landings Drive

Mountain View, CA 94043

yaron @ verisity.com

Verification typically consumes over half of the design effort.
The languages currently used for synthesis provide only insuffi-
cient support for verification. Therefore languages like Verisity's
€ (www.verisity.com) or Synopsys Vera (Www. open-vera.com)
hardware verification language are deployed within adedicated en-
vironment to improve the verification task. The € language is sim-
ilar to Java enhanced by various verification and hardware related
constructs. € provides all basic object oriented constructs, sup-
ports multi-threading, and it can be executed in the Specman™ en-
vironment. Therefore it isalso well suited for specification.

Synthesison the system-level requires support for multi-threaded
descriptions. Due to the complexity of such designs, we want to
support verification appropriately in our approach. The powerful
verification features of € and its capability for object oriented spec-
ification, encouraged us to investigate the applicability of the €
language for synthesis. By making the synthesis of € descriptions
possible, we alow to use one single language for specification, ver-
ification, and synthesis.

The remainder of the paper is organized as follows: In Section
2, wewill present an overview of related work. Section 3 describes
object oriented synthesis and details of the synthesis from € de-
scriptions. In Section 4, we present verification within the Specman
environment and the integration of this environment in our design
flow. Section 5 presents examples and discusses the results. Sec-
tion 6 concludes this paper and gives an outlook on further work.

2. PREVIOUSWORK

In the past, various approaches have been made to specify hard-
ware and hardware/software systems on the basis of objects. Ob-
ject oriented VHDL [1, 2] enhances VHDL with object oriented
concepts. SystemC [3] is based on C++ class libraries and is in-
tended for design at the system/algorithmic and register-transfer
levels. Recently, successful efforts have been made to specify [4,
5, 6] and to synthesize [7, 8] from Java.

For validation, simulation and formal verification have a long
tradition and various commercia tools are provided by major EDA
companies, e. g., Cadence, Mentor Graphics, and Synopsys.

3. OBJECT ORIENTED SYNTHESIS

The object oriented design paradigm has already gained broad
acceptance in software engineering for the design of large systems.
Object oriented synthesis allows hardware modeling on an abstrac-
tion level above the behavioral level. Designers can express their
ideas in a very natural way by thinking of classes rather than of
dataand procedures. Encapsulating things that belong together and

having data and behavior within one entity also simplifies re-use.
We developed an object oriented analysis system (OOAS) that
allows to synthesize object oriented hardware descriptions. Our
OOAS can be used to read in descriptions written in different lan-
guages. Currently we support Java, SystemC, and € as input lan-
guages. In this paper we describe the synthesis from €
Thereisalready avariety of good synthesis tools on the market.
These tools provide an automated design flow for RT and algorith-
mic descriptions, but they do not support object oriented concepts
like object references, inheritance, or polymorphism. We utilize
the algorithms deployed by these tools for the synthesis of object
oriented descriptions by transforming such descriptions into equiv-
alent descriptions on a lower level of abstraction that can be han-
dled by commercial tools. The formats that we generate for those
descriptions are VHDL, Verilog, and SystemC (figure1). For the
sake of simplicity this paper refers only to the output of Verilog.

3.1 Synthesisfrom €

Using one single object oriented language for specification, ver-
ification, and synthesis simplifiesthe design process. Thereisava-
riety of languages that could be used as such an unified language,
each of them having advantages and disadvantages. Most of the
languages do not support verification adequately. Verification of
multi-threaded descriptions is mandatory for hardware design and
particularly challenging. The € language is therefore especially
suited as an unified language for hardware design. Today €is not
only used for verifying hardware descriptions written in VHDL or
Verilog, it is aready used for writing a golden model of the hard-
ware in an object oriented high-level language. This model isthen
manually trandated into a synthesizable HDL description. The ad-
vantage of € over software languages like C/C++ or Java is that
hardware related constructs like bit accurate data types, clocks, etc.
are part of the language.

For the transformation from an object oriented description in €
into an equivalent description in Verilog, the meta data that de-
scribe the object oriented structure is generated. The number and
structure of objects have to be static in the realization in hardware.
This should be considered in the description and is checked by pre-
allocation during the analysis. Objects haveto be allocated for vari-
ables and parameters of methods which reference sets of objects.
The identification of such setsof static referencesis done during an
alias analysis, which is part of the OOAS.

In € concurrent threads of control are described by so called
Time Consuming Methods (TCMs). TCMs are similar to Threads
in Java. TCMs are triggered by events. Events can be defined by
temporal expressionsthat are part of the € language. TCMshaveto
be handled separately from the regular methods (non-TCMs) dur-

Oojeci Orizniad
Java e SystemC
=L

g U
OOAS
3 ¥ ¥
Procacurzl
VHDL Verilog SystemC

32 8 &

| HighLevel and RTL Synthesis |

Figure 1. Languages supported by OOAS

190

ing the transformation process. Conflicts resulting from concurrent
access to variables by different TCMs must be detected by a con-
currency analysis and then be resolved. We now describe the con-
trol dataflow analysisthat is performed for the sequential case and
the concurrency analysisthat is performed for the parallel case.

3.2 Control Data Flow Analysis

The control data flow analysis applies techniques known from
software compiler design [9] to the synthesis of hardware.

After thelexical and semantical analysis done by the scanner and
parser for € astatic control and data flow analysisis performed on
the set of syntax trees for each € object. The result of the analysis
is a control flow graph (CFG) where the data flow information is
stored in a scope table within each node of the graph. Because of
the combination of data and control flow information, no separate
data flow graph has to be generated and the analysis traverses the
syntax tree only once. The CFG has two different types of nodes.
The control flow nodes divide the CFG in multiple sub-trees if a
node has multiple children. Thisisthe case for nodes representing,
e.g., whileloops or if statements. The second type of nodes in the
CFG are the data flow nodes, which do not change the control flow,
like arithmetic operations or assignments.

The main problem of the transformation is the usage of refer-
ences. Deciding which object is accessed when a method is called
on avariable can only be done at runtime. Objects may have sev-
eral references, or aliases at the sametime, soitishard totell which
statements affect which object.

The analysis determines a set of possible objects for each vari-
able within the scope of a statement. Each node of the CFG has
one scope table, where all variables in the scope of the node are
stored together with a set of objects that may be referenced by this
variable. The scope tables are built together with the whole CFG.
When a new node is created, the scope table of the parent node is
cloned and the set of references (‘reference set’) of each variable
changed by the statement is updated.

A reference set Rs(a) is the maximal set of all references on
objects, which can be hidden by the alias a after the execution of
statement s under consideration of the type of the variable and the
preceding control flow. All reference sets R, (a) of variables ac-
cessible in a CFG node n, build the scope table S(n).

Figure2 shows an example of a hardware component written in
€ Classes are described using the keyword struct. A struct de-
clares data fields and methods. Inheritanceis supported by the key-
word like. The init method is similar to the constructor in Java. In-
stances of a struct are made by using the keyword new. A detailed
description of the € language can be found in [10]. The constructs
that we use for the specification of hardware components are de-
scribed in [11].

The analysis for the TCM runHWO of the example code results
in the CFG shown in figure3. At node 5 in the CFG, the scope
table includes three reference sets Rs (z), Rs(y) and Rs(z). Each
reference set has been initialized in the init method, where three
objects of the struct S have been instantiated. The objects S 1, S2
and S 3 are labeled with subsequent numbers.

For each type of statement, a different algorithm isimplemented
to update the scope table of a node in the CFG. The algorithm for
loop statements, used for the determination of the scope table for
node number 7 in figure 3 is described in agorithm 1.

Tablel shows the evolution of the reference sets for each iter-
ation of the algorithm. The body of the while loop has to be re-
analyzed four timesto get the final reference setsfor the whileloop
node (without determining the exact number of iterations during
execution).

struct S {
foo() is {

struct Test like HWO {

X :S;y :8S; z:8S;
init () is {

X = new S;

y = new S;

Z = new S;

}i

runHwWo () @clk is
var i : uint;
i = 0;

while (i < 10)

Figure2: Struct Test and struct S

5
Test_1 run

I

6
Test_1 run 1 i=0
I

7
While \
I
8 9
Test_1 run 1 i<1Q |Test 1 z=Test_1 X
1
10
Test 1 x=Test 1 |
I
11
Test 1 run 1 i=Test 1 run 1 i+l

12

/ Methodcall

13 14
S 1 foo_1() S 2 foo_2()

15
S 3 foo_3()

Figure3: CFG for the TCM runHWO

The analysis terminates because there are no changes in the ref-
erence sets of step three and four. The merged reference setsin the
last column of table1 are the resulting sets contained in the scope
table X7) of node 7.

Input: CFG noden, statement s of n, scope table S(p)
where p is the predecessor node of n
Output: Updated scope table S(n)
begin
§(n) « copy of §p)
S(tmp) < copy of Xp)
repeat
Sn) « §n) v Stmp)
S(tmp) « analyze the block statements of the loop
until §n) = Stmp)
end

Algorithm 1: Analysis of loops

191

Table 1: Reference setsfor thewhile loop

| . [2 | 3 [4 | reiit |
R-(2) || {51} | {52} | {5.2] | {52} | {S.LS2}
Re(y) | {S2} [{S2} | {52} [{S2} [{52

R:(z) || {S3} | {SA} [{S2} | {S2} | {S3,51,52}

The scope table §7) is the input for the analysis of node 12.
The method call zfoo() uses variable z where R,y contains the
objects S 3, S1 and S2. On which object the method foo() will
be called depends on how often the while loop has been iterated at
runtime. The analysis splits the CFG into three sub-trees, one for
each object that may be referenced by the variable z.

For each method call, a new node in the CFG is created. The
body of the method builds a sub-tree of the node. When the method
isaTCM, the new CFG node builds an independent CFG with the
method call node as root node. A copy of the reference sets of the
actual scope is the initial scope of the new CFG. The analysis al-
ways terminates because of the constant number of objects in the
whole system. The number of objects in a reference set can not
exceed the maximum number of objects instantiated in the whole
system. The constant number of objects instantiated in the € pro-
gram isguaranteed since the instantiation of objectsinloopsisonly
alowed if the number of iterations can be determined at compile
time. The instantiation of objects is not allowed within cyclic or
recursive method calls.

When the analysis terminates, the CFG is used as input for the
concurrency analysis, which is described in the next section.

3.3 Concurrency Analysis

During the concurrency analysis, the reference sets and the CFGs
of the data and control flow analysis are used for creating a set of
variables which are accessed by different TCMs. A variable can be
accessed by aTCM in two different ways:

e write access: The variable is on the left hand side of an as-
signment and becomes an alias for another object.

e read access. The variable is on the right hand side of an
assignment or is passed to another method as parameter or a
method is called on the variable.

If anode in the CFG accesses avariable the following cases have
to be handled by the analysis:

1. There is no other TCM which reads or writes the variable.
The variable is a normal variable that does not require any
special treatment.

2. At most one TCM has write access to the variable and multi-
ple TCMs have read access. This variable has to be declared
in aglobal scope to enable multiple TCMs to access the ref-
erenced object.

3. More than one TCM writes to the variable. This caseisre-
ported to the user of the system. An arbiter to resolve the
access must then be inserted. This arbiter is an adapted vari-
ation of the arbiter described in [12].

For the variables which are accessed by multiple TCMs (case 2)
the CFG is extended by a set of global variables called global. To
build up this set, the CFG is traversed to build a set of variables
read by the TCM ¢ called read; and a set of variables written by ¢,
called write,. When aread access occurs in a node of the TCM ¢,

the variable v is added to the set read;. If v isin the set write,, or
read,,,, where m is an aready analyzed TCM, v becomes element
of global. In case of awrite access, v isadded to the set write;. If v
isaready element of the set write,, an error stateisreached. When
v is member of read,, v becomes element of the set global. The
actual TCMsare stored on astack because a TCM can start another
TCM. The actual TCM where aread or write access is executed, is
always the top element of a stack called tcmStack. The described
method that creates the global set of shared variables is shown in
algorithm 2.

Input: node {root node of the CFG}
Output: global {set of global references}
begin
temStack «— empty { stack with actual analyzed
TCMs}
temSet «— empty { set of already analyzed TCMs}
repeat
switch node
case start of TCM t
temSet «— temSet U temStack.top
temStack.push(t)
caseend of TCM t
temSet «— temSet LU temStack.pop
case statement reads variable v
TCM t « tcmSack.top
read, « readi U v
for all TCM min temSet do
if v e read,, or write,, then
global « global U v
end if
end for
case statement writes variable v
TCM t « tcmStack.top
write, ¢~ writeg U v
for all TCM min tcmSet do
if ve read,then
global « global U v
end if
if ve write, then
report write access to the user
end if
end for
end switch
node « node.next
until node is empty
end

Algorithm 2: Concurrency analysis

After the complete concurrency analysis, the set global is added
to the root node of the CFG. The CFG is traversed by the Ver-
ilog code generator that uses the scope information to generate the
appropriate Verilog constructs. The TCMs that are used in € to
specify multiple threads of control are transformed into Verilog al-
ways blocks. Each always block isinitialy idle and startsits actual
execution at the same time as the corresponding TCM is started in
the € specification. In order to obtain this behavior and to ensure
a correct reset behavior of the circuit, a skeleton is built implic-
itly around the actual description. Within that skeleton, the Verilog
statements are generated according to the information in the CFG.

4. VERIFICATIONWITH €AND SPECMAN

Closdly related to € is the verification environment Specman,
both developed by Verisity Design. Simulation based verification
requires the introduction of stimuli to the Device Under Test (DUT)
being simulated, as well as the collection of DUT responses for

‘e Specification
Input model, Checking rules,
Functional coverage points

N

Specman Elite™

[GeneraﬁonJ ‘ CheckingJ [Coverage

Engine Engine Engine
ERS ZS ZAN
I
DUT
RTL Model
HDL Simulator

Figure4: A typical € driven testbench

the purpose of checking and coverage analysis (figure4). Specman
and the € language provide powerful support for these verifica-
tion tasks. The supported verification methodology can be applied
to DUTs implemented in € those implemented in HDLs such as
Verilog and VHDL aswell as numerous other modeling languages.

We use this verification environment in three different phases of
the design process depicted in figure5.

First, the design flow startswith the specification of the hardware
module in € This system specification may contain algorithmic
descriptions as well as descriptions at the register-transfer level.
The correctness of the specification can be verified by executing
the € code in the Specman environment.

Second, existing Verilog IP can be included for verification by
attaching a simulator. The results of this first step in the verifica-
tion process can be used to refine the test bench, also written in €
around the hardware module.

Third, the € specification of the hardware module is processed
by our object oriented analysis system. Depending on the descrip-
tion style used in the specification (algorithmic or register-transfer
level) the generated code is either behavioral Verilog, suitable for
high-level synthesis with Synopsys Behavioral Compiler™ /Design
Compiler™, or a Verilog description at the register-transfer level
that can be synthesized by Design Compiler. Additionally, the
OOA S generates Verilog code that comprises several enhancements
for simulation. The generated Verilog can be verified by attaching
a simulator the same way as for the simulation of Verilog IP. The
same environment is used for the verification of the results of the
commercia tools.

All steps of the verification task are supported by Specman’s so-
phisticated verification methodologies and the test bench can be
re-used easily.

4.1 Input Modeling and Generation

In € input stimuli are modeled as a hierarchy of objects with
inter relating constraints. By defining object types the user spec-
ifies the universe of data elements or an alphabet for an input se-
guence. Constraints can both remove parts of the alphabet and re-
strict the composition of members of the alphabet into sequences.
Constraints may depend on the state of the system.

| Specification |
|
| Algorithmic/RT Level |
| Speification in € |
1 ‘
N l
L NG Synthesis
| |
' | Testbench | | OOAS |
! [|
| in € | ' | Verilog other |
| X |
|
| ™ X Y |
|
| Coverage Specan : ‘ Behaviordl |
i Analysis . | Compiler™ !
‘ t /i |
| | .
| HDL Simulator o | Deson Y vhpL,
\ ™ ™ N Compiler SystemC'!
| ModelSim ,VCS ,etc. ||, |
|
| N v |
| L Technology !
| 1| Mapping |
1| VerilogIP N |
|
| X |
|
| Verification | IFPGA ASIC |
|

Figure5: Design flow

In contrast to deterministic test inputs, the € input model nor-
mally contains degrees of freedom. The Specman test generation
engine uncovers these degrees of freedom and creates input se-
guences using a controlled pseudo-random process.

Constraints are conjunctive by nature, hence one can direct the
generated input sequence by addition of constraints. These addi-
tions can be made per feature to be tested, or as a way to avoid
areas of known defects and work in progress.

4.2 Driving and Checking

A directed random input generation methodology requires auto-
mated checking, since the input model does not predict a unique
response. The € language offers three major features in support
of driving and checking: Events, TCMs, and a complete temporal
language. The temporal language uses events and state formulae
as atomic entities. Temporal and logical operators are used for ex-
pressing protocol rulesthe DUT must adhere to. Specman features
a tempora engine that interprets temporal expressions as runtime
checkers.

4.3 Functional Coverage

The generation process ensures non-zero probability for any le-
gal input sequence. However, given the huge input space and state
space of modern devices, a practical approach would control the
distribution of input sequences in view of the accumulated cover-
age.
The € language provides a way to define functional coverage
metrics. Functional coverage points are user defined combinations
of states, or sequences of states that have some architectural or
micro-architectural significance. Because of its sequential nature,
functional coverage is amore rigorous metric than code coverage.

The accumulated functional coverage and its breakdown to ar-
chitectural and micro-architectural features provide status informa-

193

tion about the verification effort. Thisinformation isused for steer-
ing the process and to eventually certify that the DUT has a high
probability of being functional.

4.4 Hardware/software Co-Verification

A key aspect of verifying SoC designs, which typically have one
or more processors on board, is verifying the embedded software
together with the hardware. This will flush out integration errors,
beside hardware only and software only defects. In order to apply
the same methodology to the integrated system it is crucia that
generation, coverage, and checking are applied to the software part,
aswell asto the hardware part. Thiswill facilitate tests, checks, and
coverage metricsthat capture hardware and software dependencies.

This requirement is achieved by the combination of Specman
with a hardware/software co-verification tool, which is running the
software components. Such deep integration exists for the Mentor
Graphics Seamless™ tool. Thisintegration provides Specman with
the capability of reading and writing to any variable and memory
location. This is the support required for the application of gen-
erated stimuli to the software parts, checking based in part on the
state of the software and collecting functiona coverage while tak-
ing into account the state of the software along with the hardware
components.

5. EXAMPLESAND RESULTS

We used our object oriented analysis system for synthesizing
several examples. One example is a part of an ATM header trans-
lator (AHT) another one is the Ranainterface. The Rana interface
represents atypical ‘receive’ direction, FIFO buffering scheme be-
tween three proprietary data communication interfaces. The pri-
mary incoming data interface is being buffered into two distinct
FIFOs that are then being transmitted to two identical transmit in-
terfaces. Thus the data stream is being de-multiplexed from the
incoming data stream into two separate data streams. On al three
interfaces handshake flow control is implemented. The Rana in-
terface was developed by Cisco Systems [13] and is presently suc-
cessfully in production.

Theresults of the synthesis are depicted in table 2. For each mod-
ule, the number of non-comment lines of code (ncloc) of both the
€ specification and the resulting Verilog code, and the time needed
by the OOAS for the trandlation from € to Verilog are given. The
execution time of the OOAS, as well as the time spent by Behav-
ioral Compiler and Design Compiler for the synthesis (BC/DC),
were measured on a 360MHz Sun Ultra-5 with 256 MBytes RAM.
The clock rate for which the module was synthesized and the area
of the resulting circuit are also given in the table. The areais com-
posed of the cell area and the net interconnect area. It is estimated
by Design Compiler and given in units of the used library. We used
the 1ca300k library, where one unit is the area of one basic cell of
the LCA.

The AHT module contains almost no object oriented constructs
and therefore the tranglation of the € specification into Verilog re-
sultsin a description of nearly equal size. In contrast to that, there
is a great number of objects involved in the Rana module. One
of these objects is a FIFO buffer used to store other objects. We
have synthesized the Rana modul e with three different sizes for the
FIFO buffer. The depth of the FIFO (i.e., the number of objectsthat
can be stored in the buffer) is appended to the module names in ta-
ble2. While the € specifications differ only in the declaration of
the FIFO depth and therefore have the same size, the resulting Ver-
ilog code is growing considerably. Thereason for that is, that poly-
morphic method calls have to be resolved to enable the transfor-
mation from an object oriented specification into procedural code.

Table 2: Results of the synthesized examples

Module | ncloc | ncloc | OO | BC/ | Clk Area
€ | Vveilog | AS | DC

AHT 134 132 11 92 40 1426
sec | sec | MHz

Rana3 945 1535 438 32 20 17239
sec | min | MHz

Rana8 945 1920 55 1h 20 | 24707
sec | 24m | MHz

Ranal6 | 945 2536 68 5h 20 | 36707
sec | 36m | MHz

The control data flow analysis therefore determines statically for
each method call on an object all possible references the variable
can hold during run-time and a case statement with branches for
all possible values is inserted in the Verilog code. Since the num-
ber of possible objects grows with the depth of the FIFO, the size
of the generated Verilog code also increases with the FIFO depth.
This effect is even more drastic as we use the technique of inlining
method callsin the calling method.

6. CONCLUSIONSAND FUTURE WORK

This paper presented results from the DFG project OASE and a
cooperation between Cisco Systems, Verisity Design, and the Com-
puter Engineering Department from the University of Tuebingen.
Our approach provides an automated design flow for synthesis of
object oriented specifications. Verification is tightly integrated in
the design flow and al the design tasks can be carried out using
the object oriented language € This contribution shows that syn-
thesis from high-level models written in € is practical and that the
presented analysis system is capable of dealing with real-world ap-
plications.

At present, no extensions have been made to the € language in
order to distinguish hardware and software objects or to define the
interfaces between them. Instead inheritance was used to augment
object semantics as needed. We consider adding proper constructs
to the € language to simplify the specification task for the designer.

Further research will be done in the area of optimization of mul-
tiple concurrent tasks within the same hardware object and hierar-
chies of hardware objects with no formal interface between them.

So far we have deployed our synthesis system to improve and
speed up the implementation flow. When applied to the verifica-
tion flow, some components of the test environment may be subject
to synthesis which may facilitate test bench acceleration and post
silicon validation.

We aso investigate the application of object oriented concepts
for hardware/software co-design partitioning[14].

7. ACKNOWLEDGMENTS

Thiswork isfunded by CISCO and DFG project No. RO 1030/8-
1

8. REFERENCES

[1] S. Swamy, A. Molin, and B. Covnot. OO-VHDL.:
Object-oriented extensions to VHDL . IEEE Computer, 1995.

[2] M. Radetzki, W. Putzke-Roming, and W. Nebel. Objective
VHDL: The object-oriented approach to hardware reuse. In
Advances in Information Technologies: The Business
Challenge, 1997.

[3] www.systemc.org.

194

[4] R.Helaihel and K. Olukotun. Java as a specification
language for hardware-software systems. In IEEE/ACM
International Conference on Computer-Aided Design, 1997.
J. S. Young, J. MacDonald, M. Shilman, P. H. Tabbara, and
A. R. Newton. Design and specification of embedded
systems in Java using successive formal refinement. In
Proceedings of the Design Automation Conference
(DAC’1998), 1998.

T. Kuhn, W. Rosengtiel, and U. Kebschull. Description and

simulation of hardware/software systems with Java. In

Proceedings of the Design Automation Conference

(DAC’1999), 1999.

Laval ogic. Forge-J: Fast Javato Verilog-HDL Compiler.

http://www.laval ogic.com, 1999.

T. Kuhn and W. Rosenstiel. Java based object oriented

hardware specification and synthesis. In Proceedings of

ASP-DAC, 2000.

R. Wilson and M. Lam. Efficient context sensitive pointer

analysisfor C programs. In Proceedings of the ACM

S GPLAN Conference on Programming Languages Design

and Implementation, 1995.

Y. Hollander, M. Morley, and A. Noy. The e language: A

fresh separation of concerns. In Proceedings of TOOLS-38,

2001.

T. Kuhn, T. Oppold, M. Winterholer, W. Rosenstiel,

M. Edwards, and Y. Kashai. A framework for object oriented

hardware specification, verification, and synthesis. In

Proceedings of the Design Automation Conference

(DAC'2001), 2001.

[12] J. Madsen and J.P. Brage. Modeling shared variablesin
VHDL. Transactions on the ACM, 1994.

[13] www.cisco.com.

[14] C. Schulz-Key, T. Kuhn, and W. Rosenstiel. A framework for
system-level partitioning of object-oriented specifications. In
Proceedings of the tenth workshop on Synthesis and System
Integration of Mixed Technologies (SASIMI’2001), Nara,
Japan, 2001.

(5]

(6]

(8]

(9]

[10]

[11]

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

